
Using Ensembles of Decision Trees to Automate
Repetitive Tasks in Web Applications

Zachary Bray
Computer Laboratory

University of Cambridge
JJ Thomson Avenue, CB3 0FD, Cambridge, UK

zachary.bray@cantab.net

Per Ola Kristensson
Cavendish Laboratory

University of Cambridge
JJ Thomson Avenue, CB3 0HE, Cambridge, UK

pok21@cam.ac.uk

ABSTRACT
Web applications such as web-based email, spreadsheets
and form filling applications have become ubiquitous.
However, many of the tasks that users try to accomplish
with such web applications are highly repetitive. In this
paper we present the design of a system we have developed
that learns and thereafter automates users’ repetitive tasks
in web applications. Our system infers users’ intentions
using an ensemble of decision trees. This enables it to
handle branching, generalization and recurrent changes of
relative and absolute positions. Our evaluation shows that
our system converges to the correct solution after 3–8
iterations when the pattern is noise-free, and after 3–14
iterations for a noise level between 5–35%.

Author Keywords
End-user programming, programming by example

ACM Classification Keywords
I.2.2. Automatic Programming: Program synthesis. I.5.5.
Implementation: Interactive systems.

General Terms
Algorithms, Design, Experimentation, Human Factors

INTRODUCTION
Many of the tasks we do in our day-to-day lives are
repetitive in their nature. Greenberg [5] has conducted
several empirical studies in which users perform a range of
repetitive tasks, such as dialing phone numbers and
searching for information in manuals. For users it is near
impossible to avoid needless repetition in most software
since most software is not specifically tailored to users’
needs. Programming by example (PBE) [16] is a research
field that tries to help users with avoiding repetition by
designing intelligent agents that learn users’ tasks [10].
In this paper we present a PBE system that uses ensembles
of decision trees to infer and automate a variety of

repetitive tasks in web applications. Our system works by
observing users’ actions and inferring the underlying
repetitive patterns. Suggestions for automation are then
proposed to the user. Our system can handle branching,
generalization and recurrent changes of absolute and
relative position changes. After a few iterations our system
learns a variety of recurring sequences of user interface
actions. We have implemented our system as an extension
to the Firefox web browser. Our evaluation shows that
ensembles of decision trees converge to the correct solution
after 3–8 iterations when the pattern is noise-free and after
3–14 iterations when the noise level is between 5–35%.

SYSTEM
Our system was developed as a Firefox extension. Firefox
is built on top of Mozilla, which uses XML User Interface
Language (XUL) and JavaScript to control the user
interface. XUL is used to specify how user interface
components are laid out in the user interface, while
JavaScript is used to control the behavior. Firefox follows
the Document Object Model (DOM) Level 2 Specification
[7]. DOM is used to specify both the Firefox user interface
(via XUL), as well as the web pages (HTML, XHTML and
XML documents). Thus the DOM provides a unified
interface for our system to interact with.
An important aspect of a highly interactive system is
latency. In our case, the inference system must produce
inferences quickly enough to keep up with the user’s
interaction with the web browser. In practice, this means
that the average latency for an inference needs to be less
than 200 ms. We found that JavaScript was too slow to
satisfy this requirement. We therefore wrote the inference
system in Java and used LiveConnect [4] to bridge Java to
Firefox’s JavaScript interpreter. Our complete system
consists of three sub-systems: the event system, the
graphical user interface, and the inference system. We now
describe each of these sub-systems in turn.

EVENT SYSTEM
The event system has two primary functions. The first is to
capture DOM-events in the browser, enrich them, and then
convert them into events that can be handled by the
inference system. The second is to dispatch new events to
the browser.

35

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’10, June 19–23, 2010, Berlin, Germany.
Copyright 2010 ACM 978-1-4503-0083-4/10/06...$10.00.

Firefox uses two DOM-documents: one for the browser and
one for the current web page. The event system attaches
listeners to the root node of both these DOM-documents.
When a user interacts with an element of either DOM-
document, the element fires an event that propagates
upwards in the element tree until it eventually reaches the
root node where it is caught by our listener. Then we
compute an address vector by concatenating the indices of
the child elements traversed on the path from the document
root to the element where the event originated. Next we
construct an event containing the DOM event type, the
address vector, and the attribute values of the element. Then
we send this event to the inference system.

GRAPHICAL USER INTERFACE
The GUI has three primary functions. The first is to enable
users to configure aspects of the system. The second is to
non-intrusively present the user with suggestions for
automation (see top of web page in Figure 1). The third is
to provide feedback to users about the next inferred user
action. We provide this feedback by using green
highlighting to notify the user where the system thinks the
next event will take place (Figure 1). This technique has
previously been used in EAGER [2].

Figure 1. Our PBE system (Sparky) is non-intrusively
suggesting automating the user’s task (top). The next
predicted user interface element is highlighted with a

green rectangle (near bottom).

INFERENCE
The inference system uses ensembles of decision trees to
perform inference on the events delivered by the event
system.

Task and Input
The inference task is a supervised statistical classification
problem: given a sequence of user-triggered events, how
can we infer the user’s future events?
Sequences of past events form training examples }{ iE=Ε .
Each training example ()oE ,i= consists of an input event

vector []Tneee ,,, 21 =i and an output event o . The
input event vector consists of the sequence of n events that
led to the output event o . The task is to learn a function f
that maps a sequence of input events to an output event:

 of →i: (1)

In our system each event is a map of attributes onto values.

Decision Trees
A decision tree learning algorithm analyzes a set of
examples }{ iE to generalize patterns in data [13]. The
examples are pairs containing an input event vector i and
an output event o . Assuming the output event is dependent
on the input events, there will be attribute values in the
input events that imply certain output events. We use this
information to construct a tree T that can infer output
events from input events.
Entropy measures the uncertainty of a random variable.
Here the random variable ranges over output events }{ io
within a set of examples }{ iE=Ε . The entropy)(ΕH is:

 () ∑
∈

−=Ε
}{

2log
ioc

cc PPH , (2)

where cP is the proportion of output events that are equal
to output event c in the training set Ε .
Information gain measures the reduction in entropy of a
random variable when there is knowledge about the current
state. Here, the current state is a sequence of input events.
The information gain),(AIG Ε is:

 () () ()∑
∈

Ε
Ε

Ε
−Ε=Ε

)(
,

AVv
v

v HHAIG , (3)

where)(AV is the set of distinct values that attribute A
can take on, Ε⊆Εv is the subset of training examples that
have the value v for the attribute A , and ⋅ is the
cardinality of a set.
The task of finding the optimal decision tree is NP-
complete. We currently use a greedy algorithm, detailed in
Quinlan’s book [14]. Due to space constraints we only
sketch the general idea here. The decision tree algorithm
creates the tree T recursively. Each node in the tree
contains a set of examples to classify. The algorithm tries to
split the examples on each of the possible attributes. For
each attribute split, it computes the information gain IG
(Equation 3). The algorithm makes the final split of the
examples using the attribute that maximizes the information
gain. It then creates child nodes for each attribute value
split. For each of these child nodes, it calls itself recursively
and passes in the child node, the associated examples, and
the remaining attributes. When the information gain from
splitting on any of the remaining attributes is zero the
recurrence terminates.

Improvements to C4.5
We made two changes to Quinlan’s decision tree algorithm
C4.5 [14], which we detail here.

36

First, we found that we could reduce the upper bound time
complexity of the algorithm from))(log(2nmnO to

))(log(nmnO , where m is the number of attributes and n
is the number of examples in the training set. For each split,
the C4.5 algorithm needs to decide which is the best
attribute to split on. For each attribute, the algorithm sorts
the examples in the order of their attribute value, then splits,
and thereafter works out the information gain. We
eliminated the sorting step in the above process by instead
having each attribute use a hash table of collections. The
algorithm goes through each of the examples and uses a
hash of their attribute value to assign them to a collection.
This reduces the time complexity of finding the best split
for a level in the tree from)log(nmnO to)(mnO .

Second, every time a user triggers an event in the browser,
the system converts it into an output event that completes a
new example. It uses this to build an updated decision tree
which is only used to infer the next output event from the
current input event vector. Hence, by lazily constructing the
branches of the decision trees, we can reduce the upper
bound time complexity further.
We found that these two relatively straightforward
modifications dramatically increased classification speed.

Ensembles
It is important that the inference system can model a variety
of tasks. To achieve this we use ensembles of decision
trees. To our knowledge, this is the first use of ensembles of
decision trees in PBE.
The utility of an ensemble is determined by two factors.
The first is the coverage of the problem space provided by
its individual classifiers. The second is the design of the
decision function that determines which decision tree makes
the final classification.

Coverage
After extensive experimentation we discovered that using a
variety of decision trees, each with different sizes of input
event vectors in the examples, leads to dramatically
increased accuracy and faster convergence.
The system also limits the number of previous examples
used to build decision trees. This improves the adaptability
when users change their activity. A decision tree with a
relatively small set of examples allows new input events to
have more influence on how the decision tree will split.

Decision Function
The design of the decision function that chooses the
decision tree is crucial for the success of an ensemble.
Many different variations of combining decision trees have
been explored in the literature (see Banfield et al. [1] for a
recent overview).
We decided to choose decision trees according to the
system’s confidence in the correctness of their
classifications. We designed a decaying confidence function

that biases confidence towards recently correct trees. Again,
this improves the adaptability of the inference system when
users change their activity.
Each time a tree receives an input event it adds a Boolean
value to a buffer that represents whether the previous
prediction made by the tree was correct or not. This buffer
has a fixed size, which means that new events push out the
oldest events from the buffer when the buffer is at its
capacity. The confidence of a decision tree)(Tc is
computed using the following formula:

 ∑=
i

i
ibTc α)(, (4)

where),,,(21 nbbb  is the buffer of Boolean values,
1=ib if the prediction made by T i predictions ago was

correct, otherwise 0=ib , and α is an empirically
determined constant. In our implementation we set 6.0=α .

Temporally Dispersed Tasks
Temporally dispersed tasks are tasks that occur
infrequently, for example, doing a regional house search
once every morning. Such repeated events are difficult to
infer for a decision tree because it would need to keep a
long history of events. Decision trees are not scalable to
large sets of examples when integrated into a web browser.
Our system works around this by complementing the
ensemble of general decision trees with a collection of
decision trees for each URL. Each input event has a URL
attribute attached to it. The system uses the domain names
extracted from these URLs as keys to find the domain-
name-specific decision trees. It then uses these decision
trees in conjunction with the general decision trees to
determine the tree with the highest confidence.

Relative and Absolute Addressing
A key aspect of the decision tree is how it defines the
equality of two output events. Equation 2 uses a set of
output events to compute the entropy of a set of examples.
To create a set of output events the system needs to
determine which output events are equal. In our system two
output events are equal if and only if they have exactly the
same address vector, type, and extra information associated
with the type.
Decision trees take each received input event and generate
an output event that they use in conjunction with previous
input events to form a training example. An output event
has the following attributes: an address vector, a type, and
any extra attributes associated with the type, such as the
button of a click event. To generate an output event from an
input event, the system copies the type and extra type
attributes into a new output event. The address vector can
be formed via either absolute or relative addressing.

37

Absolute Addressing
Using absolute addressing the system copies the address
vector from the input event without modification to the
output event. In this mode, the system is able to infer
sequences of events as long as there is no recurring address
pattern that needs to be generalized. It is unable to
generalize address patterns because each of the addresses
stored in the output events are unique, which means that
similar changes in position are not classified under the same
output event.

Relative Addressing
Using relative addressing the system does not copy the
address vector from the input event to the output event.
Instead it computes the vector difference between the two
previous input events’ address vectors and uses that as the
address vector for the output event. This enables the system
to model relative changes in addressing.
There are two situations in which the system needs to
switch between absolute and relative addressing when
performing inference.

Repeated Change of Position until Certain Element
The first situation is when a user performs a task where the
system needs to infer a repeated change in element
positions until it reaches a certain element. For example, a
user of a music downloads website intends to teach our
system to add all the singles by an artist that are currently
on offer to their shopping basket. When they search for
“Queen”, the website presents them with a page containing
a list of five singles by Queen, and a fixed button at the
bottom of the page labelled “More”. When the “More”
button is clicked it dynamically replaces the list with the
next five singles. To teach the system to add all singles that
contain the word “offer” in the blurb to the shopping basket
the user clicks on the blurb of each item in the list in order,
and when the word “offer” is in the blurb they also click on
the item’s “add to basket” button. At the end of the list the
user clicks on the “More” button and restarts the process
from the start of the new list.
To model this task the system uses an ensemble of both
absolutely and relatively addressed decision trees. Whether
or not to use an absolutely or relatively addressed decision
tree depends on the address of the last input event. The
decision is made by computing an address-specific
confidence based on recent events that were preceded by an
event with a particular address. Each time a decision tree
receives a new input event it uses the previous input event’s
address vector as a key to retrieve a Boolean buffer. It adds
a Boolean value to this buffer that represents whether or not
the previous prediction the decision tree made was correct.
When the decision tree needs to infer from an input event it
then uses the input event’s address vector as a key to get the
corresponding Boolean buffer. It then uses an address-
specific confidence function to find its confidence)(Tca :

 ∑=
i

i
ia bTc α)(, (5)

where }{ ib is the Boolean buffer and α has the same
definition as in Equation 4.
The system then fuses the general confidence function

)(Tc (Equation 4) with the address-specific confidence
function)(Tca (Equation 5) via a linear combination, thus
producing a combined confidence)(Tcc :

)()1()()(TcTcTc ac ββ −+= , (6)

where]1,5.0[∈β is an empirically determined constant
that controls the relative contribution of the address-specific
confidence over the general confidence. In our
implementation we set 8.0=β .

Intertwined Absolute and Relative Position Changes
The second situation where switching between absolute and
relative addressing is needed occurs when the user is
performing a task that involves intertwined relative and
absolute position changes. Recall the previous music
downloads website example. Imagine that clicking the
“More” button appended items to the list rather than
replacing them. The relative and absolute position changes
then intertwine with each other and do not depend on the
preceding event’s address vector. Instead they depend on
the address of the event two places back in the event
sequence.
To solve this problem our system breaks the patterns into
several sub-patterns consisting of absolute periods and
relative periods. The system uses decision trees to model
each of these sub-patterns and then joins them together.
Each of the decision trees has an on-period and an off-
period. They are fed new events and contribute to the
inference during their on-periods, but are ignored during
their off-periods.
For example, the pattern RRRAARRRAARRRAA (where
R stands for relative position changes and A stands for
absolute position changes) is broken down into RRR-- and
AA--- (where dashes stand for off-periods). A relatively
addressed decision tree with an on-cycle of three and an
off-cycle of two can model the first pattern. Similarly, an
absolutely addressed decision tree with an on-cycle of two
and an off-cycle of three can model the second pattern.
However, the second pattern occurs at an offset from the
start of the initial pattern. The system models this by using
decision trees for each combination of sub-pattern and
offset. For example, the decision trees modeling the AA---
sub-pattern would include AA---, -AA--, --AA-, ---AA, and
A---A. During the learning phase the two sub-patterns begin
to learn their respective parts of the
RRRAARRRAARRRAA sequence. The final task for the
system is to choose the correct decision trees from all
available sub-pattern decision trees at the right times. This

38

is done via a confidence function (Equation 4) adapted to
handle the on- and off-periods.

EVALUATION
We evaluated our system on two test cases extracted from
actual user activities. The test cases were chosen because of
the high difficulty level for a PBE system to accurately infer
the patterns behind them. These test cases were converted
into test patterns. To test the system against varying levels
of noise, we used a teacher simulation where the noise level
could be calibrated. Each simulation performed a task a
number of times. For each task the simulator would perform
each step of the task one by one. In between each of the
steps the simulator would inject a mistake if a uniformly
distributed random variable fell within the noise threshold.
The results for each example consist of values averaged
over 100 tests of 25 iterations each, where each run of 25
iterations began with no examples present in the ensemble.

Test Case 1: Web-based Spreadsheet
The first test case was a web-based spreadsheet
application.1

Task

 This test case assessed branching,
generalization and recurrent address switching behavior.

The user is filling the rows of a column on a spreadsheet
with three alternative lines of text. The spreadsheet
implementation is unusual in the way it requires the user to
use a static text box at the top of the page to enter text into
a cell. This means our system must successfully switch
between absolute and relative modes of addressing.

Results
Figure 2 (left) shows mean accuracy as a function of the
number of iterations, with no noise. As shown the system
has linearly converged to the correct solution after the third
example.
Figure 2 (right) shows the mean number of iterations
required to converge to the correct solution as a function of
the noise level. As can be seen, there is an exponential
trend, and the number of iterations needed to reach the
correct solution range from 3–14 for a noise level in the
range 5–35%.

Test Case 2: Web-based Email
The second test case was a web-based email application.2

Task

This test case assessed if the system can infer branching
behavior.

The user is going through each of the messages stored in
their account. The user is looking for a keyword in the
subject of the message. If the user finds the keyword the
user interacts with some of the on-screen components to

1 http://www.simple-groupware.de
2 http://webmail.hermes.cam.ac.uk

move the message into another folder. Then the user
continues by navigating to the next message and repeats.

Results
Figure 3 (left) shows mean accuracy as a function of the
number of iterations, with no noise. The system is
completely accurate after the eighth example. Obviously,
the system cannot reach 100% accuracy unless it has seen
all the branch outcomes. The curve in Figure 3 (left) is
similar to a geometric probability distribution of the branch
outcomes which suggests the system converges to the
correct solution as soon as it has seen each of the outcomes.
Figure 3 (right) shows the mean number of iterations
required to converge to the correct solution as a function of
the noise level. Similar to figure 2 (right) it shows an
exponential trend, and the number of iterations required
range from 3–9 with a noise level in the range 5–35%.

0.00%

50.00%

100.00%

1 5 9 13 17 21 25

Iterations

A
cc

ur
ac

y

0
2
4
6
8

10
12
14
16

0.00% 20.00% 40.00%

Noise Level

Ite
ra

tio
ns

 to
 C

on
ve

rg
e

Figure 2. Results from the web-based spreadsheet test

case. (Left) Mean accuracy as a function of the number
of iterations. (Right) Mean number of iterations
required to converge to the correct solution as a

function of the noise level.

0.00%

50.00%

100.00%

1 5 9 13 17 21 25

Iterations

A
cc

ur
ac

y

0

2

4

6

8

10

0.00% 20.00% 40.00%

Noise Level

Ite
ra

tio
ns

 to
 C

on
ve

rg
e

Figure 3. Results from the web-based email test case.

(Left) Mean accuracy as a function of number of
iterations. (Right) Mean number of iterations required
to converge to the correct solution as a function of the

noise level.
For both test cases, the time taken for the system to produce
an inference ranged between 10–200 ms on a 2.1 GHz Mac.

RELATED WORK
One of the earliest PBE systems, possibly the first, was
Teitelman’s PILOT system [17, 6]. Some of the first
modern systems were Metamouse [12] and EAGER [2].
The former automates drawings by asking the user a series of
questions, while the latter automates loops for users.

39

Overviews of the general field of PBE can be found in the
books Watch What I Do [3] and Your Wish is My Command
[9].
A recent example of a system that automates web application
tasks is CoScripter [8]. Similar to our system it is also
implemented as a Firefox extension. However, unlike our
system CoScripter does not attempt to infer a variety of user
activities. Rather it is a macro recorder with an accompanying
scripting environment that enables users to easily edit and
share their scripts. In the context of PBE, Ruvini and Dony
[15] used a custom concept learning algorithm to infer
repetitive user actions in a Smalltalk programming
environment. Mahmud and Lau [11] created CoTester which
is designed to simplify web site testing. It automatically
groups low-level web site actions, such as a mouse click, into
high-level subroutines, such as “Add to cart”. Unlike these
previous approaches our inference system uses decision trees
[13]. We improve upon this technique by using ensembles of
decision trees. The use of ensembles has been proposed
before in the machine learning literature (see Banfield et al.
[1] for a recent survey). While previous approaches inspired
aspects of our design, our particular solution with confidence
functions is novel. By using ensembles of decision trees and
taking into account absolute and relative position changes we
have demonstrated how it is possible to infer a wide variety
of user tasks.

CONCLUSIONS
We have presented a system that automates users’ repetitive
tasks in web applications. Our system is implemented as a
Firefox extension and is capable of making predictions with
low latency (less than 200 ms). Our system uses an ensemble
of decision trees of varying lengths to be able to infer a wide
variety of tasks. In comparison to previous PBE systems our
system can infer complex tasks, such as tasks with a high
branching factor, and tasks with intermixed relative and
absolute position changes. Such tasks are common in many
web applications and it is therefore important that the
machine learning algorithm is capable of accurately modeling
them. Our system is also tolerant to noise, which is essential
for a PBE system to be effective in practice. We evaluated
our system with two test cases that required our system to
handle branching, generalization and recurrent address
switching behavior. With no noise our system converged to
the correct solution after 3–8 iterations depending on the
branching factor of the task. With a noise level between 5–
35% our system converged to the correct solution after 3–14
iterations.

ACKNOWLEDGEMENTS
We thank Carl Scheffler, Philip Sterne and Keith Vertanen
for their assistance. The following applies to P.O.K. only:
The research leading to these results has received funding
from the European Community’s Seventh Framework
Programme FP7/2007 2013 under grant agreement number
220793.

REFERENCES
1. Banfield, R.E., Hall, L.O., Bowyer, K.W. and

Kegelmeyer, W.P. A comparison of decision tree
ensemble creation techniques, IEEE T. Pattern Anal. 29,
1 (January 2007), 173–180.

2. Cypher, A. EAGER: programming repetitive tasks by
example, in Proceedings of CHI ’91 (New Orleans LA,
April-May 1991), ACM Press, 33–39.

3. Cypher, A. (ed.). Watch What I Do: Programming by
Demonstration, MIT Press, Cambridge MA, 1993.

4. Flanagan, D. JavaScript: The Definite Guide, Fifth
Edition, O’Reilly Media, Sebastopol CA, 2006.

5. Greenberg, S. The Computer as Toolsmith: the Use,
Reuse, and Organization of Computer-Based Tools,
Cambridge University Press, Cambridge UK, 1993.

6. Kay, A. Foreword. In Cypher, A. (ed.), Watch What I Do:
Programming by Demonstration, MIT Press, Cambridge
MA, 1993.

7. Le Hors, A., Le Hégaret, P., Wood, L., Nicol, G., Robie,
J., Champion, M. and Byrne, S. Document Object Model
(DOM) Level 2 Core Specification, W3C, 2000.

8. Leshed, G., Haber, E.M., Matthews, T. and Lau, T.
CoScripter: automating & sharing how-to knowledge in
the enterprise, in Proceedings of CHI ‘08 (Florence IT,
April 2008), ACM Press, 1719–1728.

9. Lieberman, H. (ed.). Your Wish is My Command:
Programming by Example, Morgan Kaufmann, San
Francisco CA, 2001.

10. Maes, P. Agents that reduce work and information
overload, Commun. ACM 37, 7 (July 1994), 30–40.

11. Mahmud, J. and Lau, T. Lowering the barriers to website
testing with CoTester, in Proceedings of IUI ‘10 (Hong
Kong CN, February 2010), ACM Press, 169–178.

12. Maulsby, D. and Witten, I. Inducing programs in a direct-
manipulation environment, in Proceedings of CHI ’89
(Austin TX, April-May 1989), ACM Press, 57–62.

13. Quinlan, J.R. Induction of decision trees, Mach. Learn. 1
(January 1986), 81–106.

14. Quinlan, J.R. C4.5: Programs for Machine Learning,
Morgan Kaufmann, San Mateo CA, 1993.

15. Ruvini, J.-D. and Dony, C. APE: learning user's habits to
automate repetitive tasks, in Proceedings of IUI ’00 (New
Orleans LA, February 2000), ACM Press, 229–232.

16. Smith, D.C., Cypher, A. and Tesler, L. Programming by
example: novice programming comes of age. Commun.
ACM 43, 3 (March 2000), 75–81.

17. Teitelman, W. Toward a programming laboratory, in
Proceedings of IJCAI ‘69 (Washington DC, May 1969),
Morgan Kaufmann, 1–8.

40

	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	INTRODUCTION
	SYSTEM
	EVENT SYSTEM
	GRAPHICAL USER INTERFACE
	INFERENCE
	Task and Input
	Decision Trees
	Improvements to C4.5

	Ensembles
	Coverage
	Decision Function

	Temporally Dispersed Tasks
	Relative and Absolute Addressing
	Absolute Addressing
	Relative Addressing
	Repeated Change of Position until Certain Element
	Intertwined Absolute and Relative Position Changes

	EVALUATION
	Test Case 1: Web-based Spreadsheet
	Task
	Results

	Test Case 2: Web-based Email
	Task
	Results

	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

