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ABSTRACT 
Web applications such as web-based email, spreadsheets 
and form filling applications have become ubiquitous. 
However, many of the tasks that users try to accomplish 
with such web applications are highly repetitive. In this 
paper we present the design of a system we have developed 
that learns and thereafter automates users’ repetitive tasks 
in web applications. Our system infers users’ intentions 
using an ensemble of decision trees. This enables it to 
handle branching, generalization and recurrent changes of 
relative and absolute positions. Our evaluation shows that 
our system converges to the correct solution after 3–8 
iterations when the pattern is noise-free, and after 3–14 
iterations for a noise level between 5–35%. 
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ACM Classification Keywords 
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INTRODUCTION 
Many of the tasks we do in our day-to-day lives are 
repetitive in their nature. Greenberg [5] has conducted 
several empirical studies in which users perform a range of 
repetitive tasks, such as dialing phone numbers and 
searching for information in manuals. For users it is near 
impossible to avoid needless repetition in most software 
since most software is not specifically tailored to users’ 
needs. Programming by example (PBE) [16] is a research 
field that tries to help users with avoiding repetition by 
designing intelligent agents that learn users’ tasks [10]. 
In this paper we present a PBE system that uses ensembles 
of decision trees to infer and automate a variety of 

repetitive tasks in web applications. Our system works by 
observing users’ actions and inferring the underlying 
repetitive patterns. Suggestions for automation are then 
proposed to the user. Our system can handle branching, 
generalization and recurrent changes of absolute and 
relative position changes. After a few iterations our system 
learns a variety of recurring sequences of user interface 
actions. We have implemented our system as an extension 
to the Firefox web browser. Our evaluation shows that 
ensembles of decision trees converge to the correct solution 
after 3–8 iterations when the pattern is noise-free and after 
3–14 iterations when the noise level is between 5–35%. 

SYSTEM 
Our system was developed as a Firefox extension. Firefox 
is built on top of Mozilla, which uses XML User Interface 
Language (XUL) and JavaScript to control the user 
interface. XUL is used to specify how user interface 
components are laid out in the user interface, while 
JavaScript is used to control the behavior. Firefox follows 
the Document Object Model (DOM) Level 2 Specification 
[7]. DOM is used to specify both the Firefox user interface 
(via XUL), as well as the web pages (HTML, XHTML and 
XML documents). Thus the DOM provides a unified 
interface for our system to interact with. 
An important aspect of a highly interactive system is 
latency. In our case, the inference system must produce 
inferences quickly enough to keep up with the user’s 
interaction with the web browser. In practice, this means 
that the average latency for an inference needs to be less 
than 200 ms. We found that JavaScript was too slow to 
satisfy this requirement.  We therefore wrote the inference 
system in Java and used LiveConnect [4] to bridge Java to 
Firefox’s JavaScript interpreter. Our complete system 
consists of three sub-systems: the event system, the 
graphical user interface, and the inference system. We now 
describe each of these sub-systems in turn. 

EVENT SYSTEM 
The event system has two primary functions. The first is to 
capture DOM-events in the browser, enrich them, and then 
convert them into events that can be handled by the 
inference system. The second is to dispatch new events to 
the browser. 
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Firefox uses two DOM-documents: one for the browser and 
one for the current web page. The event system attaches 
listeners to the root node of both these DOM-documents. 
When a user interacts with an element of either DOM-
document, the element fires an event that propagates 
upwards in the element tree until it eventually reaches the 
root node where it is caught by our listener. Then we 
compute an address vector by concatenating the indices of 
the child elements traversed on the path from the document 
root to the element where the event originated. Next we 
construct an event containing the DOM event type, the 
address vector, and the attribute values of the element. Then 
we send this event to the inference system. 

GRAPHICAL USER INTERFACE 
The GUI has three primary functions. The first is to enable 
users to configure aspects of the system. The second is to 
non-intrusively present the user with suggestions for 
automation (see top of web page in Figure 1). The third is 
to provide feedback to users about the next inferred user 
action. We provide this feedback by using green 
highlighting to notify the user where the system thinks the 
next event will take place (Figure 1). This technique has 
previously been used in EAGER [2]. 

        
Figure 1. Our PBE system (Sparky) is non-intrusively 
suggesting automating the user’s task (top). The next 
predicted user interface element is highlighted with a 

green rectangle (near bottom). 

INFERENCE 
The inference system uses ensembles of decision trees to 
perform inference on the events delivered by the event 
system. 

Task and Input 
The inference task is a supervised statistical classification 
problem: given a sequence of user-triggered events, how 
can we infer the user’s future events? 
Sequences of past events form training examples }{ iE=Ε . 
Each training example ( )oE ,i=  consists of an input event 

vector [ ]Tneee ,,, 21 =i  and an output event o . The 
input event vector consists of the sequence of n  events that 
led to the output event o . The task is to learn a function f  
that maps a sequence of input events to an output event: 

 of →i:  (1) 

In our system each event is a map of attributes onto values. 

Decision Trees 
A decision tree learning algorithm analyzes a set of 
examples }{ iE  to generalize patterns in data [13]. The 
examples are pairs containing an input event vector i  and 
an output event o . Assuming the output event is dependent 
on the input events, there will be attribute values in the 
input events that imply certain output events. We use this 
information to construct a tree T  that can infer output 
events from input events. 
Entropy measures the uncertainty of a random variable. 
Here the random variable ranges over output events }{ io  
within a set of examples }{ iE=Ε . The entropy )(ΕH  is: 

 ( ) ∑
∈

−=Ε
}{

2log
ioc

cc PPH , (2) 

where cP  is the proportion of output events that are equal 
to output event c  in the training set Ε . 
Information gain measures the reduction in entropy of a 
random variable when there is knowledge about the current 
state. Here, the current state is a sequence of input events. 
The information gain ),( AIG Ε  is: 

 ( ) ( ) ( )∑
∈

Ε
Ε

Ε
−Ε=Ε
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,

AVv
v

v HHAIG , (3) 

where )(AV  is the set of distinct values that attribute A  
can take on, Ε⊆Εv  is the subset of training examples that 
have the value v  for the attribute A , and ⋅  is the 
cardinality of a set. 
The task of finding the optimal decision tree is NP-
complete. We currently use a greedy algorithm, detailed in 
Quinlan’s book [14]. Due to space constraints we only 
sketch the general idea here. The decision tree algorithm 
creates the tree T  recursively. Each node in the tree 
contains a set of examples to classify. The algorithm tries to 
split the examples on each of the possible attributes. For 
each attribute split, it computes the information gain IG  
(Equation 3). The algorithm makes the final split of the 
examples using the attribute that maximizes the information 
gain. It then creates child nodes for each attribute value 
split. For each of these child nodes, it calls itself recursively 
and passes in the child node, the associated examples, and 
the remaining attributes. When the information gain from 
splitting on any of the remaining attributes is zero the 
recurrence terminates. 

Improvements to C4.5 
We made two changes to Quinlan’s decision tree algorithm 
C4.5 [14], which we detail here. 
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First, we found that we could reduce the upper bound time 
complexity of the algorithm from ))(log( 2nmnO  to 

))(log( nmnO , where m  is the number of attributes and n  
is the number of examples in the training set. For each split, 
the C4.5 algorithm needs to decide which is the best 
attribute to split on. For each attribute, the algorithm sorts 
the examples in the order of their attribute value, then splits, 
and thereafter works out the information gain. We 
eliminated the sorting step in the above process by instead 
having each attribute use a hash table of collections. The 
algorithm goes through each of the examples and uses a 
hash of their attribute value to assign them to a collection. 
This reduces the time complexity of finding the best split 
for a level in the tree from )log( nmnO  to )(mnO . 

Second, every time a user triggers an event in the browser, 
the system converts it into an output event that completes a 
new example. It uses this to build an updated decision tree 
which is only used to infer the next output event from the 
current input event vector. Hence, by lazily constructing the 
branches of the decision trees, we can reduce the upper 
bound time complexity further. 
We found that these two relatively straightforward 
modifications dramatically increased classification speed. 

Ensembles 
It is important that the inference system can model a variety 
of tasks. To achieve this we use ensembles of decision 
trees. To our knowledge, this is the first use of ensembles of 
decision trees in PBE. 
The utility of an ensemble is determined by two factors. 
The first is the coverage of the problem space provided by 
its individual classifiers. The second is the design of the 
decision function that determines which decision tree makes 
the final classification. 

Coverage 
After extensive experimentation we discovered that using a 
variety of decision trees, each with different sizes of input 
event vectors in the examples, leads to dramatically 
increased accuracy and faster convergence. 
The system also limits the number of previous examples 
used to build decision trees. This improves the adaptability 
when users change their activity. A decision tree with a 
relatively small set of examples allows new input events to 
have more influence on how the decision tree will split. 

Decision Function 
The design of the decision function that chooses the 
decision tree is crucial for the success of an ensemble. 
Many different variations of combining decision trees have 
been explored in the literature (see Banfield et al. [1] for a 
recent overview). 
We decided to choose decision trees according to the 
system’s confidence in the correctness of their 
classifications. We designed a decaying confidence function 

that biases confidence towards recently correct trees. Again, 
this improves the adaptability of the inference system when 
users change their activity. 
Each time a tree receives an input event it adds a Boolean 
value to a buffer that represents whether the previous 
prediction made by the tree was correct or not. This buffer 
has a fixed size, which means that new events push out the 
oldest events from the buffer when the buffer is at its 
capacity. The confidence of a decision tree )(Tc  is 
computed using the following formula: 

 ∑=
i

i
ibTc α)( , (4) 

where ),,,( 21 nbbb   is the buffer of Boolean values,  
1=ib  if the prediction made by T  i  predictions ago was 

correct, otherwise 0=ib , and α   is an empirically 
determined constant. In our implementation we set 6.0=α . 

Temporally Dispersed Tasks 
Temporally dispersed tasks are tasks that occur 
infrequently, for example, doing a regional house search 
once every morning. Such repeated events are difficult to 
infer for a decision tree because it would need to keep a 
long history of events. Decision trees are not scalable to 
large sets of examples when integrated into a web browser. 
Our system works around this by complementing the 
ensemble of general decision trees with a collection of 
decision trees for each URL. Each input event has a URL 
attribute attached to it. The system uses the domain names 
extracted from these URLs as keys to find the domain-
name-specific decision trees. It then uses these decision 
trees in conjunction with the general decision trees to 
determine the tree with the highest confidence. 

Relative and Absolute Addressing 
A key aspect of the decision tree is how it defines the 
equality of two output events. Equation 2 uses a set of 
output events to compute the entropy of a set of examples. 
To create a set of output events the system needs to 
determine which output events are equal. In our system two 
output events are equal if and only if they have exactly the 
same address vector, type, and extra information associated 
with the type. 
Decision trees take each received input event and generate 
an output event that they use in conjunction with previous 
input events to form a training example. An output event 
has the following attributes: an address vector, a type, and 
any extra attributes associated with the type, such as the 
button of a click event. To generate an output event from an 
input event, the system copies the type and extra type 
attributes into a new output event. The address vector can 
be formed via either absolute or relative addressing. 
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Absolute Addressing 
Using absolute addressing the system copies the address 
vector from the input event without modification to the 
output event. In this mode, the system is able to infer 
sequences of events as long as there is no recurring address 
pattern that needs to be generalized. It is unable to 
generalize address patterns because each of the addresses 
stored in the output events are unique, which means that 
similar changes in position are not classified under the same 
output event. 

Relative Addressing 
Using relative addressing the system does not copy the 
address vector from the input event to the output event. 
Instead it computes the vector difference between the two 
previous input events’ address vectors and uses that as the 
address vector for the output event. This enables the system 
to model relative changes in addressing. 
There are two situations in which the system needs to 
switch between absolute and relative addressing when 
performing inference. 

Repeated Change of Position until Certain Element 
The first situation is when a user performs a task where the 
system needs to infer a repeated change in element 
positions until it reaches a certain element. For example, a 
user of a music downloads website intends to teach our 
system to add all the singles by an artist that are currently 
on offer to their shopping basket. When they search for 
“Queen”, the website presents them with a page containing 
a list of five singles by Queen, and a fixed button at the 
bottom of the page labelled “More”. When the “More” 
button is clicked it dynamically replaces the list with the 
next five singles. To teach the system to add all singles that 
contain the word “offer” in the blurb to the shopping basket 
the user clicks on the blurb of each item in the list in order, 
and when the word “offer” is in the blurb they also click on 
the item’s “add to basket” button. At the end of the list the 
user clicks on the “More” button and restarts the process 
from the start of the new list. 
To model this task the system uses an ensemble of both 
absolutely and relatively addressed decision trees. Whether 
or not to use an absolutely or relatively addressed decision 
tree depends on the address of the last input event. The 
decision is made by computing an address-specific 
confidence based on recent events that were preceded by an 
event with a particular address. Each time a decision tree 
receives a new input event it uses the previous input event’s 
address vector as a key to retrieve a Boolean buffer. It adds 
a Boolean value to this buffer that represents whether or not 
the previous prediction the decision tree made was correct. 
When the decision tree needs to infer from an input event it 
then uses the input event’s address vector as a key to get the 
corresponding Boolean buffer. It then uses an address-
specific confidence function to find its confidence )(Tca : 

 ∑=
i

i
ia bTc α)( , (5) 

where }{ ib  is the Boolean buffer and α  has the same 
definition as in Equation 4. 
The system then fuses the general confidence function 

)(Tc  (Equation 4) with the address-specific confidence 
function )(Tca  (Equation 5) via a linear combination, thus 
producing a combined confidence )(Tcc : 

 )()1()()( TcTcTc ac ββ −+= , (6) 

where ]1,5.0[∈β  is an empirically determined constant 
that controls the relative contribution of the address-specific 
confidence over the general confidence. In our 
implementation we set 8.0=β . 

Intertwined Absolute and Relative Position Changes 
The second situation where switching between absolute and 
relative addressing is needed occurs when the user is 
performing a task that involves intertwined relative and 
absolute position changes. Recall the previous music 
downloads website example. Imagine that clicking the 
“More” button appended items to the list rather than 
replacing them. The relative and absolute position changes 
then intertwine with each other and do not depend on the 
preceding event’s address vector. Instead they depend on 
the address of the event two places back in the event 
sequence. 
To solve this problem our system breaks the patterns into 
several sub-patterns consisting of absolute periods and 
relative periods. The system uses decision trees to model 
each of these sub-patterns and then joins them together. 
Each of the decision trees has an on-period and an off-
period. They are fed new events and contribute to the 
inference during their on-periods, but are ignored during 
their off-periods. 
For example, the pattern RRRAARRRAARRRAA (where 
R stands for relative position changes and A stands for 
absolute position changes) is broken down into RRR-- and 
AA--- (where dashes stand for off-periods). A relatively 
addressed decision tree with an on-cycle of three and an 
off-cycle of two can model the first pattern. Similarly, an 
absolutely addressed decision tree with an on-cycle of two 
and an off-cycle of three can model the second pattern. 
However, the second pattern occurs at an offset from the 
start of the initial pattern. The system models this by using 
decision trees for each combination of sub-pattern and 
offset. For example, the decision trees modeling the AA--- 
sub-pattern would include AA---, -AA--, --AA-, ---AA, and 
A---A. During the learning phase the two sub-patterns begin 
to learn their respective parts of the 
RRRAARRRAARRRAA sequence. The final task for the 
system is to choose the correct decision trees from all 
available sub-pattern decision trees at the right times. This 
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is done via a confidence function (Equation 4) adapted to 
handle the on- and off-periods.  

EVALUATION 
We evaluated our system on two test cases extracted from 
actual user activities. The test cases were chosen because of 
the high difficulty level for a PBE system to accurately infer 
the patterns behind them. These test cases were converted 
into test patterns. To test the system against varying levels 
of noise, we used a teacher simulation where the noise level 
could be calibrated. Each simulation performed a task a 
number of times. For each task the simulator would perform 
each step of the task one by one. In between each of the 
steps the simulator would inject a mistake if a uniformly 
distributed random variable fell within the noise threshold. 
The results for each example consist of values averaged 
over 100 tests of 25 iterations each, where each run of 25 
iterations began with no examples present in the ensemble. 

Test Case 1: Web-based Spreadsheet 
The first test case was a web-based spreadsheet 
application.1

Task 

 This test case assessed branching, 
generalization and recurrent address switching behavior. 

The user is filling the rows of a column on a spreadsheet 
with three alternative lines of text. The spreadsheet 
implementation is unusual in the way it requires the user to 
use a static text box at the top of the page to enter text into 
a cell. This means our system must successfully switch 
between absolute and relative modes of addressing. 

Results 
Figure 2 (left) shows mean accuracy as a function of the 
number of iterations, with no noise. As shown the system 
has linearly converged to the correct solution after the third 
example. 
Figure 2 (right) shows the mean number of iterations 
required to converge to the correct solution as a function of 
the noise level. As can be seen, there is an exponential 
trend, and the number of iterations needed to reach the 
correct solution range from 3–14 for a noise level in the 
range 5–35%. 

Test Case 2: Web-based Email 
The second test case was a web-based email application.2

Task 

 
This test case assessed if the system can infer branching 
behavior. 

The user is going through each of the messages stored in 
their account. The user is looking for a keyword in the 
subject of the message. If the user finds the keyword the 
user interacts with some of the on-screen components to 

                                                           
1 http://www.simple-groupware.de 
2 http://webmail.hermes.cam.ac.uk 

move the message into another folder. Then the user 
continues by navigating to the next message and repeats. 

Results 
Figure 3 (left) shows mean accuracy as a function of the 
number of iterations, with no noise. The system is 
completely accurate after the eighth example. Obviously, 
the system cannot reach 100% accuracy unless it has seen 
all the branch outcomes. The curve in Figure 3 (left) is 
similar to a geometric probability distribution of the branch 
outcomes which suggests the system converges to the 
correct solution as soon as it has seen each of the outcomes. 
Figure 3 (right) shows the mean number of iterations 
required to converge to the correct solution as a function of 
the noise level. Similar to figure 2 (right) it shows an 
exponential trend, and the number of iterations required 
range from 3–9 with a noise level in the range 5–35%. 
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Figure 2. Results from the web-based spreadsheet test 

case. (Left) Mean accuracy as a function of the number 
of iterations. (Right) Mean number of iterations 
required to converge to the correct solution as a 

function of the noise level. 
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Figure 3. Results from the web-based email test case. 

(Left) Mean accuracy as a function of number of 
iterations. (Right) Mean number of iterations required 
to converge to the correct solution as a function of the 

noise level. 
For both test cases, the time taken for the system to produce 
an inference ranged between 10–200 ms on a 2.1 GHz Mac. 

RELATED WORK 
One of the earliest PBE systems, possibly the first, was 
Teitelman’s PILOT system [17, 6]. Some of the first 
modern systems were Metamouse [12] and EAGER [2]. 
The former automates drawings by asking the user a series of 
questions, while the latter automates loops for users. 
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Overviews of the general field of PBE can be found in the 
books Watch What I Do [3] and Your Wish is My Command 
[9]. 
A recent example of a system that automates web application 
tasks is CoScripter [8]. Similar to our system it is also 
implemented as a Firefox extension. However, unlike our 
system CoScripter does not attempt to infer a variety of user 
activities. Rather it is a macro recorder with an accompanying 
scripting environment that enables users to easily edit and 
share their scripts. In the context of PBE, Ruvini and Dony 
[15] used a custom concept learning algorithm to infer 
repetitive user actions in a Smalltalk programming 
environment. Mahmud and Lau [11] created CoTester which 
is designed to simplify web site testing. It automatically 
groups low-level web site actions, such as a mouse click, into 
high-level subroutines, such as “Add to cart”. Unlike these 
previous approaches our inference system uses decision trees 
[13]. We improve upon this technique by using ensembles of 
decision trees. The use of ensembles has been proposed 
before in the machine learning literature (see Banfield et al. 
[1] for a recent survey). While previous approaches inspired 
aspects of our design, our particular solution with confidence 
functions is novel. By using ensembles of decision trees and 
taking into account absolute and relative position changes we 
have demonstrated how it is possible to infer a wide variety 
of user tasks. 

CONCLUSIONS 
We have presented a system that automates users’ repetitive 
tasks in web applications. Our system is implemented as a 
Firefox extension and is capable of making predictions with 
low latency (less than 200 ms). Our system uses an ensemble 
of decision trees of varying lengths to be able to infer a wide 
variety of tasks. In comparison to previous PBE systems our 
system can infer complex tasks, such as tasks with a high 
branching factor, and tasks with intermixed relative and 
absolute position changes. Such tasks are common in many 
web applications and it is therefore important that the 
machine learning algorithm is capable of accurately modeling 
them. Our system is also tolerant to noise, which is essential 
for a PBE system to be effective in practice. We evaluated 
our system with two test cases that required our system to 
handle branching, generalization and recurrent address 
switching behavior. With no noise our system converged to 
the correct solution after 3–8 iterations depending on the 
branching factor of the task. With a noise level between 5–
35% our system converged to the correct solution after 3–14 
iterations. 
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