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ABSTRACT 
Designers reportedly struggle with design optimization tasks where 
they are asked to fnd a combination of design parameters that max-
imizes a given set of objectives. In HCI, design optimization prob-
lems are often exceedingly complex, involving multiple objectives 
and expensive empirical evaluations. Model-based computational 
design algorithms assist designers by generating design examples 
during design, however they assume a model of the interaction 
domain. Black box methods for assistance, on the other hand, can 
work with any design problem. However, virtually all empirical 
studies of this human-in-the-loop approach have been carried out 
by either researchers or end-users. The question stands out if such 
methods can help designers in realistic tasks. In this paper, we 
study Bayesian optimization as an algorithmic method to guide the 
design optimization process. It operates by proposing to a designer 
which design candidate to try next, given previous observations. 
We report observations from a comparative study with 40 novice 
designers who were tasked to optimize a complex 3D touch inter-
action technique. The optimizer helped designers explore larger 
proportions of the design space and arrive at a better solution, how-
ever they reported lower agency and expressiveness. Designers 
guided by an optimizer reported lower mental efort but also felt 
less creative and less in charge of the progress. We conclude that 
human-in-the-loop optimization can support novice designers in 
cases where agency is not critical. 
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1 INTRODUCTION 
One central problem in design is that of fnding a satisfactory oper-
ating point in a multidimensional design space, one that balances 
trade-ofs between relevant design objectives (e.g., [7, 13]). Such 
an operating point can be obtained using diferent strategies. A 
common strategy is relying on prior experience, intuition, and a 
bit of trial and error. Under such a strategy, the designer explores 
the space by gradually searching for suitable parameter values and 
assessing the observed trade-ofs between the objectives. This ap-
proach can be efective when the design space is simple or familiar. 
However, as a method, it is not reliable. It is sensitive to the level of 
skill and prior-experience of the designer as well as the complexity 
of the design problem at hand. Moreover, it scales poorly and ofers 
no guarantees that all reasonable options have been considered. 
An emerging alternative strategy which we study in this paper 
is to use an optimization-driven design method in which explo-
ration is guided by a search algorithm [3, 15, 24, 46, 47, 52]. An 
optimization-driven design method guides the designer in their 
design space exploration and may ofer various tools to inform fnal 
design selection. In this paper we contrast these two approaches in 
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an empirical study in order to report on the various positive and 
negative qualities of human-in-the-loop optimization. 

Both the designer-led and optimization-driven strategies have 
conceivable advantages and disadvantages, thereby ofering a rich 
collection of hypotheses worthy of examination. With complete 
freedom over the exploration of the design space, the designer is 
likely to have a stronger sense of agency which may deliver greater 
engagement in the task. A recent study of designers’ expectations 
about data-driven design raised the loss of agency as a concern 
[22]. On the other hand, a potential drawback of the designer-led 
approach is that exploration of the design space is either consciously 
or subconsciously constrained by preconceived notions held by 
the designer. These preconceptions may be accurate, in which case 
constraints applied on exploration yield greater efciency. Empirical 
research has exposed biases that limit the creative capability, such 
as confrmation bias [26], as well as a tendency for fxation, or ‘blind 
adherence with a solution’ [30, 56], which the literature suggests 
is hard to break [1]. Promising regions of the design space can 
be missed and outcomes fail to deviate signifcantly from those 
arrived at early in the process by the designer. We hypothesize that 
optimization-driven design may help to address problems such as 
design fxation but at the cost of designer agency and engagement. 
Optimization-driven design also serves to mitigate sensitivity to 
the expertise and prior experience of the individual designer which 
in turn may deliver more consistent outcomes when engaging a 
group of designers of diferent skill and experience levels. 

This paper contributes to empirical research on computational 
methods for designers. Our focus is on a HCI-related design task 
relevant for the development of interactive systems and interaction 
techniques. Our anecdotal evidence is that relatively few papers 
presenting interactive systems at CHI, the premier venue of the 
HCI feld, explore their parameter spaces systematically. We recog-
nized the three following strategies described below. First, potential 
design parameters can be assigned or eliminated by extrapolating 
from evidence presented in the literature. HiveFive [38], for ex-
ample, is a VR visualization technique that was optimized by frst 
referencing a biological theory of bee swarming to substantially 
narrow down the search range for each parameter, and second, 
fxing values in a pilot study (with three people). Second, a divide 
and conquer strategy can be employed in which parameters are 
tackled one by one. For example, in Body Follows Eye [50], an in-
teraction technique that guides users’ posture change in VR was 
optimized over a series of six sub-studies where each determined 
the threshold for one of the six motion types. Third, sometimes the 
dimensionality of the problem is simplifed with a mathematical 
model. For example, ErgonomicsTouch [53] exploits the so-called 
Hermite curve to amplify the user’s hand movements into a larger 
movement for increasing physical comfort while preserving own-
ership. It was optimized by reducing the dimensionality of the 
problem by identifying four parameters that determine the map-
ping curve, with respect to the objectives of accuracy, comfort, and 
ownership. Lower and upper bounds for amplifcations were then 
determined empirically with a pilot study with fve users. 

To better understand the pitfalls and perks of optimization-
driven design in contrast to a designer-led approach, we conducted 
a study with 40 novice designers. We hypothesized that novices 
might beneft the most from computational assistance, especially to 

achieve a degree of directedness and organization when exploring 
designs [11]. To account for learning efects across the two condi-
tions, we used a between-subjects protocol assigning 20 participants 
to each condition and examined both the quality of design outcomes 
and the designers’ subjective experience of designing. The specifc 
optimization technique we employed in the optimization-driven 
condition was Multi-Objective Bayesian Optimization (MOBO). 
Bayesian optimization has shown signifcant potential in HCI de-
sign problems and ofers an efcient method for exploring design 
spaces that are poorly understood by the designer at the outset. To 
make this investigation concrete, designers are given a non-trivial 
design task involving the selection of parameters characterizing 
the behavior and haptic feedback of a 3D touch interaction in vir-
tual reality to maximize efciency and accuracy. This design task 
involves two competing objectives for which the relationship to 
the controllable design parameters is unclear. It therefore ensures a 
degree of challenge for designers and MOBO alike. 

In summary, the core contribution in this paper is the empirical 
investigation of the positive and negative qualities of designer-led 
and optimization-driven design in a study with novice designers. 
We found that the optimization-driven design of the 3D touch inter-
action technique delivers a superior outcome in terms of reducing 
spatial error but at the cost of the subjective experience of agency 
and ownership. Furthermore, optimization-driven design using 
MOBO promotes wider exploration of the design space helping to 
mitigate detrimental design fxation. 

2 RELATED WORK 
Designing better interaction techniques is a long-standing topic 
within the HCI researcher and practitioner community. This has 
motivated the development of various strategies and tools to sup-
port the designer in this process. Papers in this vein in HCI typically 
demonstrate their new method or tool by highlighting improve-
ments in the design outcomes but less commonly examine the 
secondary impact on the design process and the designer’s expe-
rience. In this paper we seek to understand how the interaction 
technique design process is infuenced by the tools made avail-
able to the designer. Specifcally, we examine the advantages and 
disadvantages provided by human-in-the-loop optimization using 
Bayesian methods. 

Below, we briefy review the related work to provide insight into 
the design process involving optimization methods within HCI. 
We frst cover the broader topic of data-driven optimization before 
examining interaction design with human-in-the-loop optimization 
and multi-objective optimization. Finally we review prior work 
utilizing Bayesian optimization specifcally to support the design 
process. 

2.1 Data-Driven Optimization 
One viable approach to improving interaction techniques is to 
leverage data collected on the whole or sub-tasks involved. An 
example of this approach is provided by Feit et al. [18] who collected 
eye tracking data from 80 people performing a calibration task. Feit 
et al. [18] demonstrated an optimization procedure leveraging this 
data to select optimal flter parameters and inform the design of 
gaze interfaces in terms of target sizes. 
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Captured data may also be combined with relatively simple em-
pirical models such as Fitts’ Law to optimize various interactive 
elements such as hierarchical menus [19, 42] and keyboard lay-
outs [4, 17, 58]. SUPPLE [21] takes a related approach in optimizing 
interface designs based on specifed device constraints and user 
activity traces. Deep neural networks modelling user performance 
when interacting with vertical menus [39] have also been leveraged 
to drive optimization [14]. These various approaches may involve 
a degree of designer involvement to determine the feasible design 
space and interpret outputs, but the optimization process itself is 
largely ofoaded to the computer. 

Although not necessarily involving explicit optimization, data-
driven methods leveraging deep learning have shown recent promise. 
GUIGAN [59] employs a generative adversarial network (GAN) fed 
with a large dataset of real Android application graphical user in-
terfaces (GUIs) to construct a generative model for creating novel 
application GUIs. The quality of GUIGAN-generated GUIs is evalu-
ated in the paper but there is no investigation of how the generative 
model can assist or infuence the design process for designers. Also 
employing deep learning, Guo et al. [24] introduce Vinci which 
applies a variational autoencoder to construct a generative model 
for advertising posters. Critically, the Vinci system takes user input 
in the form of a product category, product image, and tagline text. 
These inputs condition the generative process and are incorporated 
into the generated poster. Various features of the Vinci system were 
evaluated with both novice and expert designers with generally 
favorable outcomes, particularly in terms of the tool’s efciency 
in generating a large number of design alternatives. Nevertheless, 
concerns were raised by designers in terms of the “controllability, 
comprehensibility, and predictability” of the design process using 
Vinci. 

2.2 Human-in-the-Loop Optimization and 
Multi-objective Optimization 

Human-in-the-loop optimization refers to the process in which 
the optimization process is steered by human input, for instance 
through training feedback and observed human behavior to a set of 
input parameters. This process has been extensively applied to HCI 
design tasks, for example in MenuOptimizer [3] where the designer 
is assisted during the task of combinatorial optimization of menus, 
and DesignScape [46] where layout suggestions for position, scale, 
and alignment of elements are interactively suggested to the de-
signer. Other design tools that have a human-in-the-loop aspect 
include Sketchplore [52] where real-time design optimization is 
integrated into a sketching tool; Forte [9], in which designers can 
directly iterate on fabrication shape design through topology opti-
mization; in Kapoor et al. [32], where the behavior of classifcation 
systems can be iteratively refned by designers to support more 
intuitive behavior; and in Lomas et al. [41], where the arrangement 
of game elements is iteratively adjusted for increased user perfor-
mance. Overall, these tools all feature the central aspect of human 
interaction where the human actively participates during the op-
timization process to generate better designs. In broad terms, this 
human-in-the-loop paradigm of design is an evolution of the line 
of work introduced by [44] which aims to enhance the efciency of 

the interface design process by automatically generating the code 
for the interface after demonstration of the interface specifcations. 

Yannakakis et al. [55] introduce the concept of player modeling 
in which a computational model is constructed of the cognitive, 
behavioral, and afective states of the player of a game. This con-
structed model may be dynamically updated in-game based on 
observations of user inputs and, in turn, used to drive changes in 
gameplay and game content. This general approach has been used 
to adjust game mechanics to maintain a challenging gaming expe-
rience for players [12, 54]. With a focus on designers as opposed 
to players, Guzdial et al. [25] explore co-creation with an agent 
for game level design and identify various potential roles for an 
agent in this design process, e.g., the agent portrayed as a friend, 
collaborator, student or manager. Liapis et al. [40] provide a review 
of related mixed-initiative methods applied to procedural content 
generation in game design. 

Multi-objective optimization for interaction design serves as a 
special case for optimization-based design where instead of one 
objective to optimize over, there are now multiple objectives. As 
there is no longer one defned optimum for multiple objectives, 
the concept of Pareto optimality is important, where a design is 
considered to be Pareto optimal if no individual objective can be 
enhanced by changing the design parameters without resulting in 
at least one individual objective worse of. Multi-objective optimiza-
tion aims to search for Pareto optimal designs so that an optimal 
trade-of between competing objectives is found. In HCI, multi-
objective optimization has been applied to touchscreen keyboard 
design to trade-of speed, familiarity, and improved spell checking 
[17], multi-fnger input for mid-air text entry [51], and linkage 
design for a haptic interface [28]. Many algorithms and computa-
tional methods have been applied for multi-objective optimization, 
including aggregating the diferent objectives into one via a linear 
weighted sum [51], grid-based methods [17], evolutionary-based 
methods [34], and Bayesian optimization [29]. In this paper, we 
seek to assess one specifc multi-objective optimization algorithm, 
namely Bayesian optimization, in a human-in-the-loop context to 
explore the benefts and drawbacks as compared to the designer-led 
process, as it shows great potential in HCI design as detailed in 
Section 2.3. 

2.3 Bayesian Optimization 
Bayesian optimization is a machine learning technique for facil-
itating the optimization of unknown and/or difcult-to-evaluate 
functions. It works by iteratively refning a surrogate model repre-
senting the function and intelligently selecting new test points to 
evaluate by balancing between exploration of the design space and 
exploitation of regions where the designs are particularly promis-
ing. A major strength of Bayesian optimization is that the surro-
gate model is leveraged to ensure efcient search of the design 
space. Bayesian optimization is therefore well suited to interac-
tion technique design problems where the relationship between 
design parameters and user performance and/or subject experience 
is unknown or easily modeled. 

Bayesian optimization has been employed in HCI to tackle vari-
ous design problems as a human-in-the-loop optimization method. 
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Early work by Brochu et al. [6] demonstrated how Bayesian opti-
mization can incorporate direct feedback from users in a preference 
gallery to help determine desired parameters governing the appear-
ance of animations. Koyama et al. [36, 37] use a similar approach 
to allow users to rapidly adjust the visual appearance of an image 
in line with some desired aesthetic. Bayesian optimization has also 
been used as a tool to determine game mechanic settings to maxi-
mize engagement [33], adjust font parameters to maximize reading 
speed [31] and adjust interface and interaction features to minimize 
task completion time [15]. These various studies serve to highlight 
how Bayesian optimization provides an efective tool to support 
design tasks in HCI. What is lacking, however, is a clear under-
standing of how design driven by this mechanism is experienced 
by or impacts the designer. 

2.4 Summary 
The various research eforts reviewed above ofer a range of al-
ternative tools and techniques for optimizing user interfaces and 
interactions. Lacking, however, is a clear understanding of how 
these various tools and strategies infuence the design process and 
experience for designers. This paper seeks to address this gap in the 
literature by comparing the outcomes and experience of designing 
with and without assistance from Bayesian optimization. We focus 
on Bayesian optimization as the tool ofered to designers given the 
signifcant advantages that have been demonstrated within the HCI 
domain in terms of its efciency and its ability to handle black box 
optimization problems. 

3 CASE: 3D TOUCH INTERACTION 
Our empirical study focuses on a complex and realistic interaction 
technique case – 3D touch interaction – which is ubiquitously 
applied in virtual reality. Here, we compare two approaches: the 
designer-led and the optimizer-driven approach, and in this section, 
we outline the background of the interaction, the design space 
parameterization, and the design objective functions. In particular, 
we specifcally chose this task as 1) target acquisition in 3D is an 
important problem in the domain of virtual reality, 2) the resulting 
performance of the interaction is easily observable to the user as the 
design parameters vary, and 3) it serves as a classic multi-objective 
design problem in HCI as we will detail in Section 3.1. 

3.1 Background of 3D Touch Interaction 
Target selection is a crucial, if not the most important, task for a 
virtual reality (VR) or an augmented reality (AR) application [2]. A 
great variety of VR and AR selection methods have been proposed 
[5] in mind with the challenge of the trade-of between speed and ac-
curacy that was identifed in early works [2]. Poupyrev categorized 
such selection techniques into the use of a virtual pointer or virtual 
hand metaphor [49]. A good 3D selection design should allow selec-
tion to be fast and accurate; however, searching for the good design 
candidates while satisfying both objectives is known to be a chal-
lenging design problem. Moreover, previous works showed that the 
control-to-display transfer function (including 2D and 3D selection) 
requires diferent numbers of parameters, which can range from 
two to ten [2, 20, 35, 43, 48]. Thus, the high-dimensional design 

space makes searching a promising design instance especially time-
consuming and costly. For instance, previous approaches applied for 
designing 2D transfer functions are either based on a great amount 
of trial-and-error [7], which is a costly process, or by heuristics 
[45, 57], which requires prior domain expertise. 

The Go-Go technique is a well-known 3D touch interaction design 
proposed by Poupyrev, which has been widely applied in VR and AR 
interactions [48]. Essentially, a hybrid control-to-display transfer 
function determines the virtual hand’s position according to the 
physical hand’s movement. Within a certain range, the transfer 
function follows a linear mapping, in which the virtual hand moves 
linearly based on the physical hand’s position. Beyond this range, 
the transfer function follows a non-linear mapping, in which the 
virtual hand moves quadratically away according to the physical 
hand’s position. This combination enables users to stably touch 
the objects that are closer to the body while being able to hit the 
targets that are beyond the physical hand’s reach. Two parameters 
determine the switch of the mapping methods and the degree of 
the nonlinearity in the nonlinear schema. 

Despite the number of the design parameters being relatively 
low, exhaustively searching the design space for the optimal de-
sign instance is not practical due to the challenges discussed above. 
While the 3D touch interaction design is timely and increasingly 
important, optimization of its design either based on manual pa-
rameter tuning done by a designer or an optimization algorithm 
has not been well documented or explored. For example, the Go-Go 
technique as described in the original paper recommends parameter 
settings without a proper rigorous justifcation [48]. In the follow-
ing experiment, we selected the Go-Go technique as a base example 
to compare a human designer’s iterative search and the Bayesian 
optimization workfow, with some add-on design parameters to 
allow greater selection accuracy and speed. 

3.2 Parameterizing 3D Touch Interaction and 
the Objective Functions 

3.2.1 3D Touch Interaction. The 3D touch interaction used in the 
later experiment is built on the original Go-Go technique with 
some modifcations. The original Go-Go technique decided the 
chest position as the reference origin point. The arm vector rr was 
obtained by subtracting the physical hand position to the chest 
then translating to the hand’s coordinate and direction. In our 
experiment, we shifted the reference point to the shoulder, which 
captures more natural hand movements, as shown in Figure 1. 
We further defned 1 unit of the “operation range” as the distance 
between the origin (which is shoulder of the operating hand) and 
the hand when the arm is fully extended. The Go-Go technique’s 
transfer function was then applied to calculate the virtual hand’s 
position. 

3.2.2 Design Parameters. There are two parameters in the original 
Go-Go technique – D and k – which jointly form the hybrid transfer 
function. D is the range which divides the linear and non-linear 
mapping, and k determines the scale of the nonlinear component. 
If the physical hand’s distance is within the range D, the transfer 
function linearly maps the user’s physical hand to the virtual hand 
along the same direction, where the real arm vector rr is assigned 
to the Go-Go cursor rc (Figure 1a). Once the physical hand moves 
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Real Arm 
Vector, rr

Threshold 
Distance, D

Go-Go 
Cursor, rc

Activatio-
Vibration 
Gap, G

Vibration 
Amplitude, A

a crc=rr if rr < D rc=rr + k(rr-D)2  if rr ≥ Db

Go-Go 
Cursor, rc

Threshold 
Distance, D

Real Arm 
Vector, rr

Figure 1: Our empirical study focuses on the task of improving the transfer function of the Go-Go technique. The technique 
calculates the virtual hand’s position with the parameters D and k . (a) It maps the position linearly when the physical hand’s 
distance is within the range D, or (b) non-linearly by a factor controlled by k when it moves beyond the range D. (c) In addition, 
the two parameters G and A for the activation-vibration gap and the vibration amplitude determine the vibrotactile feedback 
when the target is reached. 

beyond the distance D, the nonlinear mapping allows the virtual 
hand to move much faster away from the origin (shoulder) along 
the direction of the physical hand by a factor controlled by k , with 
which the Go-Go cursor rc is computed as rr + k(rr − D)2 (Figure 
1b). We directly took D and k as the design parameters for our 3D 
touch interaction, and set the ranges of these two parameters to be 
D ∈ [0, 1] and k ∈ [0, 0.5]. 

However, there are other parameters that will afect the 3D selec-
tion performance, including a vibration cue. This has been proven 
efective for enhancing efciency and accuracy, and it has been 
applied to commercial devices. Following this direction, we look 
to add the simplest and most pervasive haptic feedback when the 
target is reached to enhance user performance—a vibrotactile cue. 
For a balanced design, we selected two parameters for vibrotac-
tile feedback: the activation-vibration point, G, and the vibration 
intensity, A, as shown in Figure 1c. The duration of the feedback 
was fxed at 300 ms. We set the range of the activation-vibration 
point to activate at any point in the range of 15 cm before and 5 cm 
after touching a target. We also set the vibration amplitude to be 
within the maximum voltage level (3.1V), which led the vibration 
amplitude to be within 2.6g. All design parameters are summarized 
in Table 1. 

3.2.3 Objective Functions. The objective functions refer to the met-
rics we aim to maximize or minimize during the design process. 
Following the discussion above, we considered two design metrics 
— completion time (speed) and spatial error (accuracy) in target 
acquisition — as our objective functions to be minimized. The frst 
objective function, completion time, refers to the average duration 
between the moment a target is shown in the 3D experimental en-
vironment and the moment it is successfully touched by the virtual 
hand. The second objective, spatial error, is the maximum overshoot 
distance, which is the maximum Euclidean distance between the 
virtual hand and the target’s 3D position if the virtual hand moves 
beyond the range of the target. If a participant touches the target 
without any overshoot occurring (the cursor did not go beyond the 

Because the values of the completion time and spatial error have 
their own ranges, normalization is required before the optimization 
process. We converted these two metrics into two values which we 
refer to as speed and accuracy by linearly transforming the comple-
tion time ranged [1,600 ms, 900 ms] into to speed ranged [-1, 1] , 
and the spatial error ranged [1 cm, 0 cm] into the accuracy ranged 
[-1, 1]. Note that after the conversion, both the speed and accuracy 
objectives are now functions to be maximized instead (the higher 
value indicates better performance). The ranges of completion time 
and spatial error were decided from a pilot test conducted with 
eight participants. 

3.2.4 Hyperparameter Setup for Bayesian Optimization. The Bayesian 
optimization in our implementation is built upon BoTorch1, a PyTorch-
enabled Bayesian Optimization library. This library is commonly 
used in many research projects, and it ofers reliable performance 
and the fexibility of picking the Gaussian Process models and ac-
quisition functions. The Gaussian Process we applied in the later 
experiment is the multi-output Gaussian Process. The acquisition 
function we applied is qEHVI, which represents the expected hy-
pervolume increase, where we set q = 1 to ensure that after each 
iteration, a batch of size one is selected to be given to the designer 
for testing. Other hyperparameter settings include using 10 opti-
mization restarts during the optimization of the acquisition func-
tion, 1024 as the number of restart candidates for the acquisition 
function optimization, and 512 as the number of Monte Carlo sam-
ples to approximate the acquisition function. These were selected 
to ensure good computational efciency for each iteration of the 
optimization process. 

4 EXPERIMENTAL METHOD 
The goal of the experiment is to investigate positive and negative 
aspects of human-in-the-loop optimization by contrasting it to the 
designer-led approach. The metrics we used to analyze the results 
cover the design outcomes and a wide range of designer experiences 
including the perceived creativity and workload. The optimization 

range of the target at all), the spatial error will remain zero. 1https://botorch.org/ 

https://1https://botorch.org
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Table 1: The four design parameters for the 3D touch interaction design, with the ranges. All four design parameters are 
continuous. 

Design Parameter Description Range 

x1: Distance Threshold, D 
x2: Scale Factor, k 
x3: Activation-Vibration Gap, G 

Division between linear and non-linear mappings. 
Scale of the non-linear component. 
Cues when the target is reached. 

[0, 1]
[0, 0.5]

[15 cm, -5 cm] 
x4: Vibration Amplitude, A Vibrotactile feedback intensity. [0 g, 2.6 g] 

task consists of four design parameters left undetermined and two 
objectives to which the 3D touch interaction is set to be optimized 
during the design process. 

In the designer-led condition, the search is progressed manually 
by actively exploring and refning design candidates. In contrast, 
the optimizer-driven condition follows a human-in-the-loop pro-
cess in which a Bayesian optimizer leads the search for the designer; 
at the end, the designer determines the optimal designs from a set of 
Pareto optimal designs suggested by the optimizer. To avoid learn-
ing efects on the design target across experiment conditions, the 
experiment followed a between-subjects design. We measured the 
performance of designs produced in the two conditions, quantifed 
the perceived creativity and workload using the Creativity Support 
Index [10] and NASA-TLX [27], and collected user feedback with 
a semi-structured interview. With the mixed-methods approach, 
we looked to understand the trade-ofs for human-in-the-loop opti-
mization as compared to the designer-led process. 

4.1 Participants 
We recruited 40 novice designers (20 F, 20 M), with a mean age 
of 22.2 years (sd: 2.4), via snowball sampling and through a Face-
book group page dedicated to recruiting participants from a local 
university. Most participants were enrolled in a master’s program 
with their expertise covering engineering, architecture, interac-
tion, and education. Following the between-subjects design, they 
were randomly divided into the groups for the designer-led or 
optimizer-driven processes. All volunteered under informed con-
sent and agreed to the recording and anonymized publication of 
results. They were compensated 20€ for their participation. 

4.2 Apparatus 
The apparatus mainly consisted of the 3D touch interaction. How-
ever, the interface to support the optimization process was cus-
tomized according to the experimental condition for the designer-
led or optimizer-driven processes. 

4.2.1 The 3D Touch Interaction and Prototype. We built the 3D 
touch interaction in Unity 3D2 with the Oculus Quest 23 and the 
companion hand controllers, as shown in Figure 2. Our prototype 
implementation matches closely to the original one in [49] with the 
minor changes listed in Section 3.2.2. To provide vibrotactile feed-
back on the controllers that can be precisely controlled, we added 
a vibration motor, Precision Microdrives 310-1174 (rise time 97 ms), 
on the controller such that users can easily rest their thumb on the 

2https://unity.com/
3https://www.oculus.com 
4https://www.precisionmicrodrives.com/product/310-117-10mm-vibration-motor-
3mm-type 

motor. The vibrotactile feedback was controlled via a DRV2605L 
driver and an Arduino Uno microprocessor. During the optimiza-
tion task, participants were asked to sit on a legged chair so that 
a polar coordinate system can be easily maintained. We followed 
task arrangements used in [8] for 3D target acquisition. The three 
variables that determined target locations are: the inclination angle 
(30°, 45°, and 60°); the azimuth angle (0°, 45°, 90°, 135°, 180°, 225°, 
270°, and 315°); and the radial distance to the target (0.5 units, 1 
unit, 1.5 units, 2 units of the operation range). The fourth variable 
determines target widths (3 cm, 4 cm, and 5 cm). In total, there were 
288 (3 inclination angles × 8 azimuth angles × 4 distances × 3 target 
widths) variations of movement trials, as illustrated in Figure 2d. 

4.2.2 The Parameter Sliders and Evaluation Buton. We ofer pa-
rameter sliders and an evaluation button as shown in Figure 3a, 
which participants in the designer-led group use to adjust param-
eters for a new design and to initiate a formal evaluation of the 
design, respectively. Four parameter sliders are located at the lower 
right-hand side of the participant in VR, whose values correspond 
to the four parameters of the interaction. Any adjustment of the 
slider values directly applies the design parameters to the interac-
tion. Since there is always a random target presented in the virtual 
space, participants can test the current design by simply selecting 
the target; subsequently, the next target appears for further testing. 
To initiate a formal evaluation of the current design, the participant 
presses the evaluation button below the parameter sliders. This 
enters a dedicated mode where these widgets disappear and the 
participant starts to follow a series of 36 trials randomly selected 
from the 288 variations while keeping an equal sampling across 
target distance and target width. The evaluation was completed 
when 36 trials were fnished. Then, the averaged completion time 
and spatial error of the trials were computed and indicated on the 
objectives chart (detailed in subsection 4.2.3). 

4.2.3 The Parameters and Objectives Charts. The parameters chart 
and objectives chart allow designers to keep track of all the designs 
that have gone through formal evaluation. The parameters chart 
contains a parallel coordinate plot of the designs evaluated, and 
the objectives chart contains 2D scatter plots of the corresponding 
objectives calculated from their formal evaluations. Once a formal 
evaluation is completed, the two charts are brought up for the par-
ticipant to visualize the performance of the design under evaluation 
(Figure 3b). The data point in dark blue in the objectives chart in-
dicates the most recent evaluation. Pressing the controller’s menu 
button dismisses or invokes the charts. These charts also support 
interactive functions. For example, the two charts are interlinked: 
on selection of a data point, indicated in red in the objectives chart, 
the corresponding design in the parameters chart is highlighted in 

https://unity.com/
https://www.oculus.com
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Figure 2: (a) The experiment setup for the 3D touch interaction adapted from the original Go-Go technique, and (b) the inter-
action enhanced with vibrotactile feedback via the vibrator added to the controller. (c) Participants acquire the target using a 
cursor (e.g., the virtual hand) with dwell-based selection. (d) All possible locations of targets. 

red, and vice versa. Two foating text felds appear beside the selec-
tion to show detailed data of the evaluation. In addition, the charts 
also directly apply the selected design to the parameter sliders and 
thus the interaction, allowing designers to easily revisit previously 
evaluated designs. 

4.2.4 The Bayesian Optimizer. In the optimizer-driven group, par-
ticipants worked with the optimizer to determine optimal designs. 
The Bayesian optimizer was confgured for optimizing the 3D touch 
interaction as described in Section 3.2.4. 

4.3 Task 
We created a realistic brief for proposing 3D touch interaction 
designs in the form of a one-page description with background and 
goals. Participants were prescribed as designers and were tasked 
to propose three optimal designs as the outcome of the design 
optimization. 

In the designer-led group, participants led the design process by 
actively testing and evaluating designs using the parameter sliders, 
evaluation button, and the charts. They were instructed to conclude 
the designs within a time limit of 60 minutes. However, they could 
propose to end early when they were satisfed with the design 
outcome. 

In the optimizer-driven group, participants worked with the op-
timizer in two stages – the design and decision stages – to conclude 
three optimal designs. In the design stage, the optimizer would 
propose in total forty designs; each required the participant to 
complete a formal evaluation by selecting 36 trials in sequence. 
After completing each evaluation, the design parameters and the 
design performance were displayed to the participant on the charts. 
The initial ten designs were randomly sampled by the Bayesian 
optimizer for optimization seeding. Completing the forty design 
evaluations entered the decision stage, where the participant was 
presented with the Pareto optimal designs (e.g., the designs con-
nected by the red line on the objectives chart in Figure 4). They 

could test each of the Pareto optimal designs by selecting it. Then, 
they concluded the optimization process by selecting three designs 
from the Pareto optimal designs. As a result, the number of Pareto 
optimal designs could be fewer than three instances, in which case 
re-selection was allowed. In other words, if there was only one 
Pareto optimal design proposed, the three selected designs would 
be the same Pareto optimal design. From our study, the average 
number of Pareto optimal designs proposed is 3.3 (sd = 1.5) by the 
optimizer across participants. 

4.4 Procedure 
Figure 5 illustrates the study procedure. After briefng the study, 
the experimenter helped the participants wear the VR device, ex-
plained the parameters of the interaction, and allowed them to 
adjust the design parameters to observe the interaction behavior so 
as to familiarize the participants with the setup. According to the 
participant’s experimental condition, the experimenter introduced 
the interface and the overall procedure. In design optimization, 
the designer-led group was tasked to propose three optimal de-
signs within 60 minutes. The optimizer-driven group was told they 
would be working with an optimizer, which could take 60 minutes 
or longer depending on the situation. 

Once participants concluded their three designs, we again col-
lected the performance data from them on those three designs in 
a separate session. Since the participants’ skill on the interaction 
may grow over time, this separate session was intended to ensure 
equal infuence on the three designs’ evaluation. In this session, the 
three designs were presented in random order to the participant, 
each with a formal evaluation containing 36 trials to acquire their 
averaged performance. Participants did not know which design 
among the three designs was under evaluation. 

4.4.1 Qestionnaires. We collected their subjective experience re-
garding the design process with three question sets. The overall 
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Figure 3: (a) In the designer-led condition, the designers can adjust the 3D touch interaction’s parameters using parameter 
sliders, and initiate a formal evaluation containing 36 trials on the current design with the evaluation button. (b) On comple-
tion of a formal evaluation, the parameters and objectives charts are brought up to show the evaluation results. The latest 
evaluation is indicated in dark blue, and the selected evaluation in red. 

experience set contained four 7-point Likert scale questions regard-
ing (1) Satisfaction: how much they were satisfed with the fnal 
design, (2) Confdence: how confdent they felt the fnal designs pro-
posed were optimal designs, (3) Agency: how much they felt they 
were conducting the design, and (4) Ownership: how much they 
felt they owned the fnal designs. We used the Creativity Support 
Index (CSI) [10], a standardized psychometric tool for assessing 
the perceived creativity support of a tool. It takes into account 
aspects of perceived creativity including exploration, expressive-
ness, results worth efort, enjoyment, immersion, and collaboration. 
We also used NASA-TLX [27], a widely used assessment tool that 
rates the perceived workload of a task by looking at Mental De-
mand, Physical Demand, Temporal Demand, Performance, Efort, 
and Frustration. 
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Figure 4: In the optimizer-driven condition, after the 40 for-
mal evaluations, participants were allowed to test the Pareto 
optimal designs in the Pareto frontier, indicated in red. 
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Measuring 
performance Questionnaires Interview

4.4.2 Semi-structured Interviews. At the end of each experiment, 
we conducted a semi-structured interview focusing on experience, 
perceived issues, and how the participant values the design pro-
cess and learns about the design space. The interview was audio-
recorded. The procedure took about 2 hours in total per participant. 

5 RESULTS 
5.1 Quantitative Results 
5.1.1 Design Performance. Figure 6a shows the averaged comple-
tion time and spatial error of the three designs concluded by partic-
ipant designers in each group. The average completion times were 
1120 ms (sd = 119.4) and 1185 ms (sd = 97.2), and the averaged 
spatial errors were 2.2 cm (sd = 1.2) and 1.5 cm (sd = 0.7), in the 
designer-led and optimizer-driven groups, respectively. For statisti-
cal analysis, we initially log-transformed the completion time data, 
and confrmed the homogeneity of variances was not violated us-
ing Levene’s Test for both transformed completion time and spatial 
error data. Then, unpaired t-tests were run on completion time and 
spatial error data to investigate if any signifcant diferences exist 
between the groups. The analysis reported signifcant diferences 
on spatial error (t(38) = 2.237,p < 0.05) but not on completion 
time. This indicates the optimizer-driven method outperformed 
the designer-led approach in terms of the accuracy of the designs 
generated. 

5.1.2 Designer Performance. Notably, designers in the designer-
led group spent 0.6 times less time in design optimization, but 
visited 6.7 times more design instances than those in the optimizer-
driven group. The designer-led group participants spent on average 
51.8 minutes (sd = 10.0) on the design, compared to 78.0 minutes 
(sd = 6.3) in the optimizer-driven group, comprising on average 
75.8 and 2.2 minutes respectively in the design and decision stages. 

Figure 5: Diagram showing the study procedure: Briefng; 
Design Optimization where designers conclude three opti-
mal designs; Measuring Performance where design perfor-
mance on the three designs is re-collected on designers; 
Questionnaires; and Interview 

5.1.3 Experience and Workload. Figure 6b displays user ratings 
on Satisfaction, Confdence, Agency, and Ownership as well as 
the statistical analyses between the two groups. We ran Mann-
Whitney U Test on each scale to investigate if signifcant diferences 
exist. The analysis reported diferences existed on Agency (t(38) = 
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Figure 6: (a) The averaged completion time and spatial error 
of the designs concluded in the designer-led and optimizer-
driven groups. (b) The ratings of general experience on Satis-
faction, Confdence, Agency, and Ownership. The error bars 
denote 1 standard deviation. The one-star (∗) and two-star 
(∗∗) symbols indicate p < 0.05 and p < 0.001 signifcant difer-
ences, respectively. 

−5.523, p < 0.001) and Ownership (t(38) = −3.892, p < 0.001), but 
not on Satisfaction and Confdence. 

Table 2 summarizes the CSI scores and the statistics analysis 
between the groups. The Mann-Whitney U Test was applied on the 
overall CSI score and each factor comprising the CSI. The analysis 
shows a signifcant diference on the overall CSI score (t(38) = 
−2.503, p < 0.05), suggesting that perceived creativity support was 
higher in the designer-led group than that in the optimizer-driven 
group. Comparing each of the factors, signifcant diferences were 
only found on the Expressiveness factor (t(38) = −3.222, p < 0.001). 
No diferences were found on Exploration, Result Worth Efort, 
Immersion, and Collaboration. 

The NASA-TLX scores and the statistical analysis between the 
groups are summarized in Table 3. The Mann-Whitney U Test was 
applied on the overall NASA-TLX score and each factor of the 
NASA-TLX. The analysis shows no diference in the overall score. 
Looking into each factor, signifcant diferences were found only 
on the Mental Demand and Efort (both p < 0.05). No diferences 
were found for the Physical Demands, Temporal Demands, Per-
formance, and Frustration. We found rationales that suggest the 
factor ratings in each group are distinct and worth discussion. In 
the following subsection, we will discuss the results and rationales 
between groups by factor. 

Figure 7: (a) The number of hypercubes covered for both 
optimizer-driven and designer-led methods for m = 2 and 
m = 3. (b) The total successive distance for both optimizer-
driven and designer-led processes for the unnormalized case 
and the normalized case. The error bars denote 1 standard 
deviation. The one-star (∗) and two-star (∗∗) symbols indi-
cate p ≤ 0.001 and p ≤ 0.0001 signifcant diferences, respec-
tively. 

5.1.4 Exploration and Exploitation during Design. In terms of de-
sign exploration, the designer-led group on average visited 271 
diferent designs (sd = 192.4), in which testing contributed on av-
erage 259 designs (sd = 194.5) and formal evaluations contributed 
on average 12.5 designs (sd = 5.5). In comparison, the optimizer-
driven group visited only 40 designs selected by the optimizer. We 
further assessed how designers explored the design space in both 
conditions. To this end, we came up with the metric of fnding how 
many hypercubes are covered. For our specifc application, the total 
design space is [0, 1]4 and for a given division parameter m, we 
divide up the space into m4 hypercubes. We assign a hypercube 
as being covered if there exists a design parameter set obtained 
that lies within the hypercube bounds, lower bounds inclusive and 
upper bounds exclusive. We have the upper bound being inclusive 
for the special case if the design parameter includes a parameter 
having the value of 1. We assessed the hypercube coverage of both 
design methods with m = 2 and m = 3, each having 16 and 81 
hypercubes respectively in Figure 7a. We see that for both values of 
m, the number of hypercubes covered is greater for the optimizer-
driven process as compared to the designer-led method. Figure 8 
shows the hypercube coverage for the worst and best performances 
from the participants for both optimizer-driven and designer-led 
processes for m = 2. The fgure illustrates that the worst-case and 
best-case coverage for the designer-led process covers less of the 

Designer-led Optimizer-driven Sig. 
Factor Score sd Score sd p 
Exploration 
Expressiveness 
Worth Efort. 
Enjoyment 
Immersion 
Collaboration 

53.5 
44.9 
55.7 
44.0 
21.4 
6.4 

16.9 
23.2 
22.9 
28.1 
21.0 
10.2 

49.3 
23.0 
48.6 
40.8 
28.2 
9.3 

12.5 
18.9 
26.2 
35.6 
18.5 
15.8 

.149 

.001 

.301 

.678 

.183 

.718 
CSI 75.3 13.0 65.4 12.7 .011 

Designer-led Optimizer-driven Sig. 
Factor Score sd Score sd p 
Mental. 
Physical. 
Temporal. 
Performance 
Efort 
Frustration 

14.9 
31.8 
12.2 
25.1 
24.9 
8.5 

8.3 
21.5 
20.6 
19.8 
15.3 
12.7 

8.4 
38.5 
12.6 
15.7 
13.7 
10.0 

9.8 
32.2 
19.9 
12.7 
11.7 
15.8 

.011 

.242 

.242 

.398 

.040 
1.00 

NASA-TLX 57.6 24.4 49.6 28.3 .758 
Table 2: User ratings on Creativity Support Index (CSI). Table 3: User ratings on workloads (NASA-TLX). 
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design space than that of the optimizer-driven process. Further-
more, we conducted an unpaired t-test to assess whether the means 
of the two independent conditions are diferent, and we achieve 
a p-value of 0.0001 for m = 2 and 0.0019 for m = 3, both indicat-
ing very statistically signifcant results. Therefore, this shows that 
optimizer-driven process is able to explore more of the design space 
consistently as opposed to the designer-led process and hence able 
to come up with more diverse design candidates. This helps the 
designer in exploring more diferent candidates which can alleviate 
the problems of over-exploitation of a region in the design space. 

We also extended the hypercube coverage analysis for various 
levels of m for the Pareto-optimal designs achieved by each partici-
pant. For m = 2, the mean hypercube coverage for the designer-led 
method is 1.4 (sd = 0.6) and for the optimizer-driven method is 1.5 
(sd = 0.5). There is no statistical signifcance in the diference of 
the means through an unpaired t-test through these two groups 
(p = 0.3950). For m = 3, the mean hypercube coverage for the 
designer-led method is 1.7 (sd = 0.8) and for the optimizer-driven 
method is 2.0 (sd = 0.9), with no statistical signifcance in the difer-
ence of means (p = 0.1766). However, as m increases, the diference 
in the means becomes statistically signifcant as for m = 4, the 
mean for the designer-led method is 1.7 (sd = 0.6) whereas it is 2.3 
(sd = 0.9) for the optimizer-driven method with p-value of 0.0214, 
and for m = 5, the means for the designer-led and optimizer-driven 
method are 1.7 (sd = 0.7) and 2.4 (sd = 1.2) respectively with a 
p-value of 0.0380. This shows the advantage of changing m as a 
coarseness parameter in determining the level of exploration for 
diferent methods of interaction design, as m increases, the hyper-
cubes we considered to be covered become smaller in volume. The 
above analysis suggests that the optimizer-driven design may be 
better in determining a wider variety of Pareto-optimal designs 
with a statistically signifcant greater coverage of hypercubes as 
m increases. However, the region of the Pareto-optimal designs 
can also largely depend on the nature of the problem itself. For 
instance in our application, certain parameters lead in general to 
better accuracy and speed trade-ofs, and also variation between 
individual performances of diferent users. 
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bounds exclusive. We have the upper bound being inclusive for the
special case if the design parameter includes a parameter having
the value of 1. We assessed the hypercube coverage of both design
methods with < = 2 and < = 3, each having 16 and 81 hyper-
cubes respectively in Figure 7a. We see that for both values of <,
the number of hypercubes covered is greater for the optimizer-led
process as compared to the designer-led method. Figure 8 shows
the hypercube coverage for the worst and best performances from
the participants for both optimizer-led and designer-led processes
for< = 2. The �gure illustrates that the worst-case and best-case
coverage for the designer-led process covers less of the design space
than that of the optimizer-led process. Furthermore, we conducted
an unpaired t-test to assess whether the means of the two indepen-
dent conditions are di�erent, and we achieve a p-value of 0.0001
for < = 2 and 0.0019 for < = 3, both indicating very statistically
signi�cant results. Therefore, this shows that optimizer-led design
is able to explore more of the design space consistently as opposed
to the designer and hence able to come up with more diverse de-
sign candidates. This helps the designer in exploring more di�erent
candidates which can alleviate the problems of over-exploitation
of a region in the design space.

We also extended the hypercube coverage analysis for various
levels of < for the Pareto-optimal designs achieved by each partici-
pant. For < = 2, the mean hypercube coverage for the designer-led
method is 1.4 (sd = 0.6) and for the optimizer-led method is 1.5 (sd =
0.5). There is no statistical signi�cance in the di�erence of the means
through an unpaired t-test through these two groups (? = 0.3950).
For < = 3, the mean hypercube coverage for the designer-led
method is 1.7 (sd = 0.8) and for the optimizer-led method is 2.0 (sd
= 0.9), with no statistical signi�cance in the di�erence of means
(? = 0.1766). However, as < increases, the di�erence in the means
becomes statistically signi�cant as for < = 4, the mean for the
designer-led method is 1.7 (sd = 0.6) whereas it is 2.3 (sd = 0.9) for
the optimizer-led method with p-value of 0.0214, and for < = 5,
the means for the designer-led and optimizer-led method are 1.7
(sd = 0.7) and 2.4 (sd = 1.2) respectively with a p-value of 0.0380.
This shows the advantage of changing< as a coarseness parameter
in determining the level of exploration for di�erent methods of
interaction design, as< increases, the hypercubes we considered
to be covered become smaller in volume. The above analysis sug-
gests that the optimizer-led design may be better in determining a
wider variety of Pareto-optimal design with a greater coverage of
hypercubes as < increases that is statistically signi�cant. However,
the region of the Pareto-optimal designs can also largely depend on
the nature of the problem itself, such as in our application, certain
parameters lead in general to better accuracy and speed trade-o�s,
and also variation between individual performances of di�erent
users.

Next, we assessed explicitly how much designers exploit narrow
regions of the design space. We used the metric of the total succes-
sive distance—the sum of the Euclidean distances between succes-
sive design parameters tried for consecutive design iterations—to
measure this. If a designer is over-exploiting or �xated, the suc-
cessive distance between designs would be small as opposed to a
designer who is exploring many very di�erent design candidates.
More speci�cally, a designer that would be �xated would focus on
a smaller region of the design space, yielding design instances that
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Figure 8: Figure showing the best and worst performance of
hypercube coverage for both the designer-led and optimizer-
led conditions from the 40 participants. A hypercube is col-
ored green if it is explored during the optimizer-led process.
(a) and (b) show the worst and best coverage for the designer-
led processes and (c) and (d) show the worst and best cover-
age for the optimizer-led processes.

are clustered to each other, yielding a smaller successive distance
between consecutive iterations and hence a smaller total successive
distance. If there was more exploration done on the design space,
then the design instances would be in more di�erent regions of the
design space, yielding a greater successive distance between con-
secutive iterations and hence a greater total successive distance. In
addition, for the designer-led group, there are cases where the total
number of design parameters attempted is very large (up to 830
iterations for both exploring and testing), whereas for the optimizer-
led group, the total number is set to be 40 iterations. To account
for the variation in the total number of design iterations, we also
normalized the total successive distance over the total number of
design iterations. This metric would help eliminate the increase in
the total successive distance due to simply more design iterations
attempted.

The results for the successive distances are shown in Figure
7b. We see that for both normalized and unnormalized successive
distances, the optimizer-led process has a higher value than the
designer-led method. It is also worth noting that for the designer-
led method, the variance in total unnormalized successive distance
is similar to that of the optimizer-led method, suggesting that both
methods yield a consistent level of exploration with respect to its
mean successive distance. Furthermore, we conducted an unpaired
t-test to assess whether the means of the two independent condi-
tions are di�erent, and we achieve a p-value of < 0.0001 for both
the unnormalized and normalized total successive distances, both
indicating statistical signi�cance. This shows that the optimizer-led
process leads to less focusing on a speci�c design region and with
greater variation in terms of design exploration due to the greater
variation in the designs generated in consecutive iterations. There-
fore, this indicates that the optimizer-led process is a useful tool
for designers in order to cover more diverse designs.

5.2 Qualitative Results
5.2.1 Exploration. 18 out of 20 participants in the designer-led
group stated the tool as intuitive, calling it “straightforward” (P3,
P7, P14) and “easy to learn” (P2, P5, P17). Six designers stated the
tool allowed them to be e�cient at exploration (P3: “testing a design
allowed me to gain some idea about the design before going into full
evaluation”) especially “when you want to quickly test alternatives
around a design” (P7). However, six participants reported some sort
of anchoring bias, “I invested most of the time in �ne-tuning.” (P3, P5),
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bounds exclusive. We have the upper bound being inclusive for the
special case if the design parameter includes a parameter having
the value of 1. We assessed the hypercube coverage of both design
methods with < = 2 and < = 3, each having 16 and 81 hyper-
cubes respectively in Figure 7a. We see that for both values of <,
the number of hypercubes covered is greater for the optimizer-led
process as compared to the designer-led method. Figure 8 shows
the hypercube coverage for the worst and best performances from
the participants for both optimizer-led and designer-led processes
for< = 2. The �gure illustrates that the worst-case and best-case
coverage for the designer-led process covers less of the design space
than that of the optimizer-led process. Furthermore, we conducted
an unpaired t-test to assess whether the means of the two indepen-
dent conditions are di�erent, and we achieve a p-value of 0.0001
for < = 2 and 0.0019 for < = 3, both indicating very statistically
signi�cant results. Therefore, this shows that optimizer-led design
is able to explore more of the design space consistently as opposed
to the designer and hence able to come up with more diverse de-
sign candidates. This helps the designer in exploring more di�erent
candidates which can alleviate the problems of over-exploitation
of a region in the design space.

We also extended the hypercube coverage analysis for various
levels of < for the Pareto-optimal designs achieved by each partici-
pant. For < = 2, the mean hypercube coverage for the designer-led
method is 1.4 (sd = 0.6) and for the optimizer-led method is 1.5 (sd =
0.5). There is no statistical signi�cance in the di�erence of the means
through an unpaired t-test through these two groups (? = 0.3950).
For < = 3, the mean hypercube coverage for the designer-led
method is 1.7 (sd = 0.8) and for the optimizer-led method is 2.0 (sd
= 0.9), with no statistical signi�cance in the di�erence of means
(? = 0.1766). However, as < increases, the di�erence in the means
becomes statistically signi�cant as for < = 4, the mean for the
designer-led method is 1.7 (sd = 0.6) whereas it is 2.3 (sd = 0.9) for
the optimizer-led method with p-value of 0.0214, and for < = 5,
the means for the designer-led and optimizer-led method are 1.7
(sd = 0.7) and 2.4 (sd = 1.2) respectively with a p-value of 0.0380.
This shows the advantage of changing< as a coarseness parameter
in determining the level of exploration for di�erent methods of
interaction design, as< increases, the hypercubes we considered
to be covered become smaller in volume. The above analysis sug-
gests that the optimizer-led design may be better in determining a
wider variety of Pareto-optimal design with a greater coverage of
hypercubes as < increases that is statistically signi�cant. However,
the region of the Pareto-optimal designs can also largely depend on
the nature of the problem itself, such as in our application, certain
parameters lead in general to better accuracy and speed trade-o�s,
and also variation between individual performances of di�erent
users.

Next, we assessed explicitly how much designers exploit narrow
regions of the design space. We used the metric of the total succes-
sive distance—the sum of the Euclidean distances between succes-
sive design parameters tried for consecutive design iterations—to
measure this. If a designer is over-exploiting or �xated, the suc-
cessive distance between designs would be small as opposed to a
designer who is exploring many very di�erent design candidates.
More speci�cally, a designer that would be �xated would focus on
a smaller region of the design space, yielding design instances that
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Figure 8: Figure showing the best and worst performance of
hypercube coverage for both the designer-led and optimizer-
led conditions from the 40 participants. A hypercube is col-
ored green if it is explored during the optimizer-led process.
(a) and (b) show the worst and best coverage for the designer-
led processes and (c) and (d) show the worst and best cover-
age for the optimizer-led processes.

are clustered to each other, yielding a smaller successive distance
between consecutive iterations and hence a smaller total successive
distance. If there was more exploration done on the design space,
then the design instances would be in more di�erent regions of the
design space, yielding a greater successive distance between con-
secutive iterations and hence a greater total successive distance. In
addition, for the designer-led group, there are cases where the total
number of design parameters attempted is very large (up to 830
iterations for both exploring and testing), whereas for the optimizer-
led group, the total number is set to be 40 iterations. To account
for the variation in the total number of design iterations, we also
normalized the total successive distance over the total number of
design iterations. This metric would help eliminate the increase in
the total successive distance due to simply more design iterations
attempted.

The results for the successive distances are shown in Figure
7b. We see that for both normalized and unnormalized successive
distances, the optimizer-led process has a higher value than the
designer-led method. It is also worth noting that for the designer-
led method, the variance in total unnormalized successive distance
is similar to that of the optimizer-led method, suggesting that both
methods yield a consistent level of exploration with respect to its
mean successive distance. Furthermore, we conducted an unpaired
t-test to assess whether the means of the two independent condi-
tions are di�erent, and we achieve a p-value of < 0.0001 for both
the unnormalized and normalized total successive distances, both
indicating statistical signi�cance. This shows that the optimizer-led
process leads to less focusing on a speci�c design region and with
greater variation in terms of design exploration due to the greater
variation in the designs generated in consecutive iterations. There-
fore, this indicates that the optimizer-led process is a useful tool
for designers in order to cover more diverse designs.

5.2 Qualitative Results
5.2.1 Exploration. 18 out of 20 participants in the designer-led
group stated the tool as intuitive, calling it “straightforward” (P3,
P7, P14) and “easy to learn” (P2, P5, P17). Six designers stated the
tool allowed them to be e�cient at exploration (P3: “testing a design
allowed me to gain some idea about the design before going into full
evaluation”) especially “when you want to quickly test alternatives
around a design” (P7). However, six participants reported some sort
of anchoring bias, “I invested most of the time in �ne-tuning.” (P3, P5),
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hypercube coverage for both the designer-led and optimizer-
driven conditions from the 40 participants. A hypercube is 
colored green if it is explored during the optimizer-driven or 
designer-led process. (a) and (b) show the worst and best cov-
erage for the designer-led processes and (c) and (d) show the 
worst and best coverage for the optimizer-driven processes. 

Next, we assessed explicitly how much designers exploit narrow 
regions of the design space. We used the metric of the total succes-
sive distance—the sum of the Euclidean distances between succes-
sive design parameters tried for consecutive design iterations—to 

measure this. If a designer is over-exploiting or fxated, the suc-
cessive distance between designs would be small as opposed to a 
designer who is exploring many very diferent design candidates. 
More specifcally, a designer that would be fxated would focus 
on a smaller region of the design space, yielding design instances 
that are clustered to each other. This results in a smaller succes-
sive distance between consecutive iterations and hence a smaller 
total successive distance. If there was more exploration done on 
the design space, then the design instances would be in more dis-
parate regions of the design space, yielding a greater successive 
distance between consecutive iterations and hence a greater total 
successive distance. In addition, for the designer-led group, there 
are cases where the total number of design parameters attempted 
is very large (up to 830 iterations for both exploring and testing), 
whereas for the optimizer-driven group, the total number is set to 
be 40 iterations. To account for the variation in the total number of 
design iterations, we also normalized the total successive distance 
over the total number of design iterations. This metric would help 
eliminate the increase in the total successive distance due to simply 
more design iterations attempted. 

The results for the successive distances are shown in Figure 7b. 
We see that for both normalized and unnormalized successive dis-
tances, the optimizer-driven process has a higher value than the 
designer-led method. It is also worth noting that for the designer-
led method, the variance in total unnormalized successive distance 
is similar to that of the optimizer-driven method, suggesting that 
both methods yield a similar level of exploration with respect to its 
mean successive distance. Furthermore, we conducted an unpaired 
t-test to assess whether the means of the two independent condi-
tions are diferent, and we achieve a p-value of < 0.0001 for both 
the unnormalized and normalized total successive distances, both 
indicating statistical signifcance. This shows that the optimizer-
driven process leads to less fxation on a specifc design region and 
with greater variation in terms of design exploration due to the 
greater discrepancy in the designs generated in consecutive itera-
tions. Therefore, this indicates that the optimizer-driven process 
is a useful tool for designers in order to cover more diverse design 
instances. 

5.2 Qualitative Results 
5.2.1 Exploration. 18 out of 20 participants in the designer-led 
group stated the tool as intuitive, calling it “straightforward” (P3, 
P7, P14) and “easy to learn” (P2, P5, P17). Six designers stated the 
tool allowed them to be efcient at exploration (P3: “testing a design 
allowed me to gain some idea about the design before going into full 
evaluation”) especially “when you want to quickly test alternatives 
around a design” (P7). However, six participants reported some sort 
of anchoring bias, stating “I invested most of the time in fne-tuning.” 
(P3, P5), and that they were aware that “many [alternatives] were 
left unvisited”. P12 stated being stuck: “I think I can push further the 
[completion] time, but I can’t fnd how”. P14 expressed dissatisfac-
tion but was also resistant to re-initiate the search, saying “I may 
start over with any diferent design, but that would be another long 
investment”. Designers in the optimizer-driven group perceived the 
exploration diferently. Four participants stated it was interesting 
to watch “what designs the AI will bring up to me” (P22, P24, P34, 
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P38). P21 mentioned “it was obvious to me there were many diferent 
designs” and stated he got to know the design space and estab-
lished what constituted smooth interactions in the process. These 
comments were echoed by P27 who commented: “experiencing bad 
and good designs is helpful in gauging how parameters gave good 
interaction.” 

5.2.2 Explainability and Reflection. Most participants stated the 
optimizer generally led them to better designs over time. However, 
there were those moments they would become confused when “the 
new proposal suddenly appeared to be worse” (P30). P24 mentioned 
“I thought I was doing good with the AI, but then it seemed to steer 
into a very diferent design direction”. Some blamed the confusion 
on the AI side, thinking it was “broken”, and “got lost”. Others 
attributed the confusion to themselves, saying “I wondered if it 
was my [bad] performance that caused the AI to bring the design” 
(P22). Ten participants stated they looked to have some form of 
explanation from the AI. In most cases, participants realized the 
optimizer steered them back on good-performance designs and 
could regain their satisfaction with the AI. Otherwise, two designers 
who ranked low satisfaction and confdence, commented “the AI 
was limited” (P22, P34). 

5.2.3 Agency and Expressiveness . In contrast to the designer-led 
group, the designers in the optimizer-driven group generally ex-
pressed low agency and low expressiveness. Six designers stated 
they wanted to have some form of agency and express their ideas 
to the optimizer, especially when they disagreed with designs of-
fered by it. For instance, P24 mentioned, “I knew what I wanted. I 
wanted the gap [value] to be reduced, but the AI didn’t give me that 
design”. He suggested a feature of recommending the direction of 
adjustment, taking the gap as an example. Also, P32 suggested a 
feature for inputting preference on the design to AI, saying: “I wish 
I can just tell the AI I don’t like it [the design]”. P33 wanted to skip 
evaluations where he thought “trying out [in an evaluation] on a 
design that I knew wouldn’t work is a waste of time.” 

5.2.4 Ownership and Adaptability . The optimizer-driven group 
received on average low ownership about the design outcome. How-
ever, participants reported mixed opinions, refecting the relatively 
high variance in the ratings. Six participants attributed low own-
ership to low enjoyment, calling it “felt like working for the AI on 
those trials.” (P22), “bored”, and “not intellectual work”. In addition, 
P28 commented on no sense of adaptation, stating “the outcome 
seemed not to refect who I am”, thinking others would also get the 
same design. Since the optimization algorithm leads the design, P30 
stated, “the AI takes the responsibility of the design outcome”. Four 
designers who gave high ratings commented about the concept of 
relatedness. For instance, P24 stated “I realized the AI was adapting 
design for me when I found the design is getting useful with increasing 
performance, that I felt I am part of the design”. P35 mentioned the 
sense of relatedness saying “the AI was watching closely on those 
designs I performed well, and providing designs related, and it felt 
related to me”. P38 attributed the ownership to the efort invested, 
“the AI cannot go on designing without me working out those trials”. 

5.2.5 Enjoyment and Engagement. The rationales that suggest en-
joyment are distinct between groups. In the designer-led group, 

participants enjoyed advancing the design outcome with their ac-
tive exploration, saying “it resembles gaming” (P12), and in par-
ticular, “seeing my adjustment result in progress is stimulating and 
helping me engage” (P11). P4 said “although it’s simple and repet-
itive, I don’t get bored on iterating.” By contrast, designers in the 
optimizer-driven group attributed their enjoyment to curiosity and 
unexpectedness. Three participants stated, “an interesting way to 
learn design possibilities” (P29) and, “fun to feel like working with the 
AI” (P26). Four participants stated being suspicious, for instance 
saying “I was doubting it would work out” (P22) but then felt ex-
citement when seeing progress. Three said “you don’t know what’s 
coming up next until you get to try it” (P23, P28), so “each time got 
me something to expect” (P38). P33 stated “adapting myself to a new 
design is the fun part and sometimes challenging”. However, the 
enjoyment seemed to not last long; most participants mentioned 
the enjoyment reduced in later half rounds owing to long design 
time. 

5.2.6 Efort and Responsibility. The designer-led group perceived 
higher mental demands and efort invested than the optimizer-
driven group. Four designers attributed the efort to “the need to 
fgure out how each parameter works” (P3), and “trying to further 
increase the performance” (P14). Three participants stated it is chal-
lenging to handle two objectives, such that P18 commented “in 
fne-tuning, I tended to work on reducing completion time more than 
spatial errors.” In the optimizer-driven group, participants reported 
mental efort was little. P22 stated “I feel relaxed as the AI is doing 
the design part”. 18 out of 20 participants ran overtime (more than 
60 minutes). However, most reported little pressure of time. P24 
mentioned “it was overtime but I didn’t feel it took that long”. Two 
participants stated they did not feel responsible for the design out-
come, saying “the AI took the lead and should take the responsibility” 
(P32, P34). 

6 DISCUSSION 
Our experimental results expose previously unreported trade-ofs 
when using human-in-the-loop optimization to design interac-
tion techniques. Diferences found between the designer-led and 
optimizer-driven conditions are summarized in Table 4. The results 
demonstrate that Bayesian optimization enables designers to ex-
plore the design space more broadly. In our study, optimizer-driven 
designers had around 1.5 times more extensive coverage when mea-
sured as hypercube coverage than when designers explore on their 
own. The optimizer-driven group also ended up with somewhat 
better designs. Their fnal designs better accounted for the balance 
of the two objectives with less efort, while designers without opti-
mization assistance focused more on selection speed at the expense 
of accuracy. However, on the negative side, optimizer-driven de-
signers reported lower expressiveness and agency as well as lower 
ownership of the design outcomes. The low expressiveness and low 
agency are likely attributed to the fact that designers are ‘dictated 
to’ by the optimizer resulting in a reduced sense of creativity. How-
ever, an observed beneft of this ’hand-holding’ is that designers 
felt less efort: some attributed this to being more relaxed, while 
others felt less time pressure and less stress related to the design 
outcomes. 
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Table 4: Summary of diferences found between designer-led 
and optimizer-driven conditions. 

Factor Designer-led Optimizer-driven 

Completion Time Equal Equal 
Spatial Error Worse Better 

Agency Better Worse 
Ownership Better Worse 

Exploration Equal Equal 
Expressiveness Better Worse 

Creativity Support Better Worse 

Mental Demands Worse (High) Better (Low) 
Efort Worse (High) Better (Low) 

6.1 Four Challenges to Improve 
Human-in-the-loop Optimization 

The results inform the development of better methods for human-
in-the-loop optimization, which in our view must converge proper 
interaction techniques with commensurate developments on the 
algorithmic side. 

Challenge 1: Steering the optimizer with partial ideas. Our results 
suggest that Bayesian optimization is efective when exploring a 
vast design space. A previous study on a system called Vinci, which 
used generative models to propose design suggestions interactively 
[24], reported that designers felt a lack of diversity in important de-
sign dimensions. However, our participants felt that loss of agency 
and expressiveness when being led by the Bayesian optimizer. We 
see this as an opportunity to develop interaction techniques that 
allow steering Bayesian optimization. 

A key aspect of this challenge is to enable designers to express 
partial (vague) ideas that the optimizer could explore for them. In 
our study, designers commented that once they had constructed an 
internal model of the requirements for a ‘good’ interaction design, 
they wanted to be able to express these ideas to the optimizer. This 
was mostly strongly felt when they found themselves disagreeing 
with subsequent designs ofered by optimizer. Refecting on this 
feedback, interaction techniques are needed that allow users to 
express priorities in design dimensions, or directions where to 
look at next. However, such developments need commensurate 
developments in how the Bayesian optimization works, especially 
in the acquisition function. 

Challenge 2: Mixed-initiative interaction. Another direction to 
improve interactivity is to push the optimizer to the background, 
making its suggestions recommendations and not dictations as in 
our study. In a mixed-initiative fashion, it could make suggestions 
when it sees a signifcant opportunity. For instance, the Bayesian 
optimizer could patiently construct a surrogate model of the design 
space in the background using only the evaluations the designers 
have encountered in the design process. If the optimizer observes 
that the designer is spending excess time examining a well-explored 
region of the design space, the optimizer can suggest alternative 
design candidates in less well-explored regions. This assistance 
could also be initiated by designers, for example by pressing a 
button to request a recommendation from the optimizer when they 

are stuck for ideas on how to improve the current design. Further, 
distinct support for exploitation and exploration could be ofered 
for triggering recommendations that respectively aim for local 
improvements in regions of design space known to be promising or 
that aim to obtain new insight about unvisited or uncertain regions 
of the design space. 

Challenge 3: Improving transparency. Our designers expressed 
wanting the optimizer to be more transparent about the proposals. 
This fnding is consistent with general observations within related 
research areas such as Interactive Machine Learning [16] and Ex-
plainable AI [23]. User feedback indicated that designers expect 
monotonicity during the design process, meaning that designers 
expect that each new design proposed by the optimizer yields some 
improvement over the previous iteration. Confusion occurs when 
they experience the optimizer presenting designs that are then 
found to perform worse than preceding designs. This confusion 
in part stems from the users’ lack of knowledge about the inner 
workings of Bayesian optimization. It iteratively refnes a surrogate 
model and leverages an acquisition function to drive the proposition 
of new points to test, in an exploration and exploitation trade-of. 
Exploitation seeks to sample where the surrogate model predicts a 
good objective while exploration samples where the uncertainty 
is high. Transparency of the method could be improved simply by 
communicating in which mode it is currently operating so that 
designers then know they are assisting the optimizer in evaluating 
uncertain territory where high risk or opportunity is presumed. 

Challenge 4: Supporting exploration/exploitation decisions. Our 
data suggests that user engagement comes from two sources: frst, 
in exploitation where incremental improvement in performance 
can be expected, and second, in exploration where a fresh unfamil-
iar design attracts user attention. Human-in-the-loop optimization 
should help designers take these perspectives when needed. A re-
cent study [60] has explored this concept by allowing users to 
control sampling behavior in Bayesian optimization determined 
by acquisition functions so as to adjust the balance between explo-
ration and exploitation. Furthermore, the participants commented 
that the exploitation process resembled computer games. In the 
optimizer-driven condition users linked unexpectedness to enjoy-
ment. This observation suggests that it may be fruitful to encourage 
periodic switching between exploitation and exploration in order 
to improve engagement under both designer-led and optimization-
driven strategies. Such a control may be optionally applied to the 
Bayesian optimizer by simply assigning a minimum and maximum 
number of iterations spent in each of the exploitation or exploration 
modes before mode switching occurs. 

6.2 Limitations and Future Work 
Our fndings are drawn from an empirical study on 3D touch in-
teraction, of which the two objectives for optimization are clearly 
observable for human designers. Other types of interaction tech-
niques that are not as perceivable to human designers may lead to 
diferent techniques to improve the optimization process, which 
calls for more experimentation. In addition, the results of the empir-
ical study are potentially subject to interpersonal diferences due 
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to the between-subjects protocol used. More experimentation is 
needed to validate reliability of the diferences reported. 

7 CONCLUSION 
This paper has reported novel observations from a comparative 
study where two groups of novice designers, one optimized-led and 
the other self-led, completed a realistic interaction design optimiza-
tion task. Our main fnding is that optimization-led design can help 
novices identify better designs, but at the expense of agency and 
expressiveness. When led by an optimizer, designers report lower 
mental efort but also feel less creative and less in charge of what 
happens. The results have a practical implication: designers who 
know a design domain poorly can beneft from Bayesian optimiza-
tion when optimizing a design. However, more efort is needed to 
make optimization methods truly interactive, in particular in such 
ways that can help designers without compromising their agency 
over the process. We have proposed several ideas to this end in the 
previous discussion section. 

8 OPEN SCIENCE 
The Bayesian optimizer and the collected (anonymized) data are 
released on our project page: https://userinterfaces.aalto.f/dit. In-
structions for the prototype studied in the empirical part will be 
released, including the installation instructions and the computer 
program. 
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