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ABSTRACT
We report on typing behaviour and performance of 168,000
volunteers in an online study. The large dataset allows de-
tailed statistical analyses of keystroking patterns, linking them
to typing performance. Besides reporting distributions and
confirming some earlier findings, we report two new findings.
First, letter pairs typed by different hands or fingers are more
predictive of typing speed than, for example, letter repetitions.
Second, rollover-typing, wherein the next key is pressed before
the previous one is released, is surprisingly prevalent. Notwith-
standing considerable variation in typing patterns, unsuper-
vised clustering using normalised inter-key intervals reveals
that most users can be divided into eight groups of typists that
differ in performance, accuracy, hand and finger usage, and
rollover. The code and dataset are released for scientific use.
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INTRODUCTION
The study presented here contributes to recent efforts to revisit
the scientific understanding of typing in the era of modern
computer keyboards [5, 22, 24, 32]. Historically, most studies
of typing were carried out with trained typists using the touch
typing system on typewriters [4, 34, 36]. However, contempo-
rary keyboards and users are very different. Most computer
users do not undertake formal training in the touch typing
system, wherein each finger is responsible for pressing the
keys in one or two columns. Instead, typing styles emerge
and manifest themselves as highly varied strategies employing
between 2 and 10 fingers [5]. Physical keyboards are still
a core input device for word processing, programming, and
communication, and they are used on a daily basis. Rigor-
ous studies of patterns and predictors of typing performance
have potential to improve the productivity, enjoyability, and
ergonomics of computer use.
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This paper presents new data and statistical analyses of mod-
ern typing. Among the empirical studies done on typing with
modern keyboards, most studies of keystroke dynamics are
related to biometric security (e.g. [6, 15, 29]). Several papers
have examined typing dynamics and gesturing on small physi-
cal keyboards and mobile (soft) keyboards (e.g. [3, 9, 13, 25,
35, 43]). The papers considering modern typing have involved
laboratory studies with small sample sizes. Nonetheless, they
have provided some early insights into movement patterns.
For instance, a recent study using motion tracking (N = 30)
found that consistent use of fingers, preparatory movements,
and minimal global hand motion predict high performance [5].
Even participants not using all their fingers, and not trained
for the touch typing system, reached speeds comparable to, or
greater than, that of touch typists [5].

In contrast to prior work with its relatively low number of
participants, we report here on results for keystroke-level
performance and patterns from a large-scale dataset for over
168,000 volunteers around the globe producing over 136 mil-
lion keystrokes. Even if online studies of self-selected vol-
unteers do not permit as rigorous control, large samples in-
crease statistical power and yield better estimates and shapes
of distributions [31]. They were shown to attract more varied
participants than lab experiments, while yielding similar re-
sults [8, 30]. However, large-scale analyses of general typing
are rare in the literature and undertaken mostly by commer-
cial organisations, such as typing-test companies that may use
results only proprietarily and not conform to standards for
performance measurement.

With a goal of better understanding of modern typing be-
haviour and how it affects performance, we report firstly on
distributions for standard metrics, including words per minute
(WPM), error rate, inter-key intervals (IKIs), keypress dura-
tions, keystrokes per character (KSPC), and error corrections.
We compare the speed of hands and analyse specific types of
errors (omission, insertion, substitution), variations in IKIs of
bigrams, and behaviours such as rollover. We then perform
a detailed correlation analysis of these measures and com-
pare groups: fast versus slow and trained versus untrained
typists. This binary partitioning conceals many differences,
but prior work has not provided enough ground for more de-
tailed distinction between groups of typists. Hence, we use
unsupervised clustering on keystroke-level features, to explore
similarities in typing behaviour between participants. We
found 8 groups of typists, which differ in hand usage, errors,
and rollover behaviour, affecting their typing performance.

In summary, this paper contributes the following. First, the
results expose distributions of keystroke-level metrics for a
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very large global sample. Second, we present new insights
into modern typing behaviour by comparing fast versus slow
and trained versus untrained typists, where the large dataset
gives us good estimates of the effect sizes. Third, we show
which aspects of typing predict performance, reporting on new
findings, such as the prevalence of rollover typing (wherein
the next key is pressed down before the previous is released).
Fourth, explorative analysis through clustering suggests that
keystroke dynamics enable characterising typing behaviour.
They can be used to cluster typists into eight groups by typing
performance, accuracy, rollover, and hand usage. Finally, we
discuss implications for text entry design and future research.

BACKGROUND AND RELATED WORK
Cognitive and motor aspects of typing have been a central
topic of research since the introduction of the typewriter. Most
scientific accounts of typing come from the 1930s–1980s,
when research was carried out with mechanical or electric
typewriters. Dvorak (e.g. [4]), Gentner (e.g. [7]), Shaffer (e.g.
[36]), and Salthouse (e.g. [33]) used mainly professional typ-
ists deploying the touch typing strategy. Participants’ weekly
amount of typewriter use averaged about 11 hours [33].

These studies observed performance of around 60–
75 WPM [33, 12], with average IKIs of 140 ms [36].
Letter pairs typed by fingers of different hands were 30–60 ms
faster than those using fingers of the same hand [34] and
about 80 ms faster than with the same finger. Error rates
were found to range from 1.0% to 3.2% when typists were
asked to type as quickly and accurately as possible while
not correcting mistakes. Insertion errors (typing an extra
letter) and omission errors (leaving one out) were more
common than substitution errors (replacing one character with
another) [12, 33], whereas the opposite was found for novice
touch typists [12]. Others have provided more extensive
reviews of empirical phenomena (e.g. [34, 41]). Predictive
models have been proposed for typing, based on such results.
Given a letter sequence, they attempt to predict the time
between two keypresses. These range from theoretical (verbal)
models to simulation and mathematical models. See, for
example, the overview by Feit et al. [5].

There is no principled reason to expect that higher-level per-
ceptual and cognitive aspects would differ dramatically be-
tween the typewriter and the modern keyboard. However, the
physical properties allow for very different hand and finger
movements. This could imply differences in bimanual and eye–
hand coordination. Still, to our knowledge, no model exists
for contemporary non-touch typists, who may use any range
of fingers between 1 and 10. Datasets such as that presented
here are important enablers for revisiting models.

Typing on Modern Keyboards
Only a few studies analyse movement behaviour with mod-
ern keyboards. In contrast to research on typewriters, they
are conducted with less skilled typists and performance is
much lower than that of professional typists reported in ear-
lier decades [10, 20]. Logan et al. [24] studied how typists
trade off between Fitts’ law and Hick’s law to find the optimal
mapping from fingers to keys. They argued that trained touch

typists are able to type more rapidly because they use more
fingers and type more consistently, using the same finger for
a given key. Rieger and Bart [32] compared touch typists
and ‘idiosyncratic’ (non-touch) typists and found that faster
typists rely less on visual information about the typing pro-
cess (e.g. location of fingers on keyboard). This was seen for
both trained and untrained typists. However, the findings were
based on self-reporting by participants. Feit et al. [5] captured
hand and finger movements for a sample of 36 users with a
motion-capture system. They found that consistent use of the
fingers, minimal global hand motion, and preparation of key-
presses were predictors of performance, again independent of
the typing strategy employed. The results suggest that typing
performance is determined less by which finger is used for
which key and more by other factors, such as keypress prepa-
ration and consistent finger use. Though based on a small
sample, the findings encourage larger-scale data collection.

Typing on Multitouch Devices
Much of the focus on typing has shifted to mobile text entry
methods, such as smartphones’ and tablets’ soft keyboards and
the small physical keyboards used on phones. This research
has aimed to improve touch accuracy, support auto-correction,
or personalise keyboards [3, 9, 13, 25, 35, 43], sometimes us-
ing large-scale data collection methods [13]. However, touch
keyboards are mostly operated by only 1–2 fingers. One excep-
tion is a recent study of multi-finger typing on a tabletop touch
surface [37]. Average performance was found to be around
30 WPM, as compared to the 60 WPM found for typing on
physical keyboards. The finger use differed from that in typing
on a physical keyboard, but the authors did not further analyse
this typing behaviour.

Assessment of Typing Performance
The experimental task employed in this work is transcription
typing, the act of typing sequences of characters by look-
ing at an existing written record. The process includes hand
and finger movements on the keyboards, keypresses, and any
key-finding strategies used [34]. The transcription process
is well suited to studying movement behaviour independent
of the cognitive factors related to text generation, editing, or
proofreading. The text corpus is an important methodological
consideration. Researchers have proposed various corpora,
designed to capture statistical characteristics of the tested lan-
guage, be easy to memorise, or include the full range of the
alphabet [17, 26, 38]. Recently, Yi et al. [42] proposed word
clarity as a metric for sampling test sets for touch screen key-
boards. A comparison of five datasets studied by Kristensson
et al. [22] shows differences in text entry style and perfor-
mance. Our work contributes to the design of suitable test
sets for typing on physical keyboards. We found that certain
bigrams are more predictive of performance and are thus better
indicators of typing speed.

Keystroke Patterns in User Authentication
Keystroking patterns are considered consistent for each per-
son to a recognisable degree and hence have been proposed
as a biometric security mechanism [2, 15, 18]. The dataset
and findings presented in this paper can benefit research on
biometric authentication.
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Figure 1. The interface in the experiment. Participants were shown one
sentence at a time, with progress presented at the top right.

DATA COLLECTION
A controlled transcription task using a modern text corpus
was designed by the authors and hosted on a university server.
The test was launched globally on the Internet in collaboration
with a commercial organisation offering online typing courses
and typing tests. In contrast to commercial web sites, our
transcription task was designed in line with common practices
in text entry research and analyses standard measures [40,
39]. The study represents best efforts in collection of a valid
dataset on typing over the Internet, following guidelines of
online study platforms [30].

Sampling and Participants
Participants in the study were self-selected from the user base
of the commercial site. Our typing test was advertised on
their web site as a ‘scientific alternative’ to their regular typing
test. Users coming to the page could choose between the
standard one-minute typing test with a fixed piece of text and
our experiment. The user base of the company is composed
mainly of younger people from the US who are interested in
testing and improving their typing skills.

Table 1 summarises the demographics of 168,960 voluntary
participants who completed all 15 sentences and filled in the
demographic questionnaire. We observe that the volunteers
in our experiment show similar demographics to the customer
base the company reports: mainly teenagers and young adults,
with a higher percentage of females. Many had taken part in
some typing training. This sample represents people interested
in testing and developing their typing skills. As is common in
online volunteer studies [28, 31], ours had a high dropout rate:
of ∼406,000 participants starting the study, only ∼193,000
finished the test and questionnaire. Of these, we excluded 12%
as detailed below.

Task and Procedure
The task was to transcribe 15 English sentences. Participants
were shown instructions stating to first read through and mem-
orise a sentence, then type it as quickly and accurately as
possible. Breaks could be taken between sentences. After ac-
knowledging that they had read the instructions and that they
gave their consent for data collection, the first sentence was
displayed, as shown in Figure 1. Upon pressing Enter, the next
sentence was displayed. When all sentences had been tran-
scribed, participants had to fill in a demographic questionnaire.
It asked their age and gender, country and native language,
keyboard type and layout, typing experience, and number of

Demographics Result Remark
Females 52.7% Rest preferred not to specify

Males 41.5%
Age: mean 24.5 75% 11–30 yrs

SD 11.2
Countries 218 68.05% from US, 85% native

language English
Took a typing course 72%

Hours typing/day: mean 3.2 64% < 2 hrs, 14% > 6 hrs
SD 3.2

Qwerty layout 98.1% Rest local alternatives or oth-
ers

Physical keyboard 43.8% Rest on-screen (touch)
Laptop keyboard 54.15% or small physical keyboard
Table 1. Background statistics for the participants.

fingers used for typing. Only then were typing results shown to
the participant. The results page showed WPM and error rate
in comparison to other participants in the form of a histogram
with explanations of the metrics, as well as the slowest and
fastest sentence and the one with the most errors. After that,
participants were offered transcription of more sentences to
improve the assessment. Further sentences were not included
in the dataset analysed.

Our study was designed in accordance with guidelines from
other online study platforms, such as LabintheWild [30]. Typ-
ing 15 sentences was considered short enough to not be-
come tedious or exhausting, and we showed participants their
progress and used simple language. Most importantly, the
participants were rewarded with interesting statistics about
their performance in comparison to others, which is the main
motivation for participation in the study.

Materials
Sentences were drawn randomly from a set of 1,525 sentences,
composed of the Enron mobile email corpus [38] and English
gigaword newswire corpus [11]. These corpora are commonly
used in text entry studies since they represent the language
used in typing tasks with the physical keyboard. From those
corpora, random sentences were chosen that contained at least
3 words and at maximum 70 characters, fewer than five nu-
merical symbols, and only simple punctuation marks (, . ! ?
’). This ensured that sentences could be typed similarly across
international keyboard standards, which differ mainly in the
placement of special characters (punctuation marks etc.).

Implementation
The front end was implemented as a web page using HTML,
CSS, and JavaScript. The page was hosted on a university
server and embedded on the company web site. Data were
stored in a MySQL database, and computations at the back
end were performed in Scala via the Play framework. We
recorded participants’ demographics, the sentences presented
and transcribed, and keystroke data (timestamps for key down
and up and the associated character). We collected data for a
duration of three months.

Key-event Instrumentation
The timestamps were recorded via JavaScript’s date.now()
function. Expected precision on a regular computer is 10–15
ms. Local logging of timestamps is accurate to 1 ms with
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Left hand Right hand Hand-alternation Letter repetition
as, sa, er, re,
sd, ds, ec, ce,
ew, we, wa,
aw, cr, sc, cs

lk, lo, ol, op,
po, io, oi, no,
on, in, ni

al, la, ak, ka, am, ma,
an, na, ai, ia, so, os,
sp, ps, en, ne, em,
me, el, le, ep, pe

ll, cc, aa, nn, tt,
ss, pp

Table 2. Categorisation of bigrams by which hand is more commonly
used to type the corresponding letters.

date.now(), and modern browsers pass key-events to listeners
with an overhead of 1–3 milliseconds at worst. However, OS-
level threading may delay timestamping by a few milliseconds.
The largest source of variability stems from the USB polling
rate, which under the standard is set to 10 ms (source: usb.org
HID1-11, Table E.5, page 68).

PREPROCESSING AND DATA ANALYSIS
The collected dataset was first preprocessed to remove incom-
plete, inaccurate, or corrupted items. As described above, we
include only participants who typed all 15 sentences and com-
pleted the demographic questionnaire. Of these, we exclude
those with error rate > 25% and those with technical problems
or cases of participants obviously getting distracted during sen-
tences (IKIs of >50 s). This removed ∼12% of participants, a
rate consistent with other online studies’ [8].

Performance Measures
The computation of performance metrics follows the standard
definition in text entry research [39]. If not otherwise noted, all
keystrokes were included in the analysis. Computed measures
were stored in the database along with the logged typing data,
and further analysis used these measures:

WORDS PER MINUTE (WPM) is calculated for each typed sentence
as the length of the string transcribed (in words, where one
word consists of any five characters) divided by the time from
the first to the last keypress (in minutes).

UNCORRECTED ERROR RATE is calculated as the Levenshtein
edit distance [23] between the string presented and the tran-
scribed string, divided by the larger number of characters
between the two strings.

ERROR CORRECTIONS (%) refers to the percentage of key-
presses using the Backspace (BKSP) or Delete (DEL) key
during typing. Note that edit operations were not restricted to
backspace; they allowed use of the mouse and arrow keys to
select and delete many characters at once. From log data it is
difficult to assess how often this happened.

KEYSTROKES PER CHARACTER (KSPC) is the number of
keystrokes (scribed as well as non-scribed keypresses) divided
by the number of characters in the final string produced.

INTER-KEY INTERVAL (IKI) is the difference in timestamps be-
tween two keypress events. For IKI-based analysis, we re-
moved keystrokes that were typed more than 5000 ms after
the previous keystroke.

KEYPRESS DURATION denotes how long a key is kept pressed,
computed as the difference in timestamps between the key-
down and key-up events.

Error Metrics
We used Wobbrock’s TextTest software [40] to make a detailed
analysis of the corrected and uncorrected errors. Given the
input stream, the software computes errors in typing alphanu-
meric characters and the spacebar and categorises them into
the following error classes:

SUBSTITUTION ERROR RATE A substitution error is one wherein
a participant wrongly types one character instead of another.
For example, typing the word ‘road’ as ‘riad’ substitutes the
wrong letter ‘i’ for the letter ‘o’.

OMISSION ERROR RATE An omission error (or deletion error)
is one wherein a letter is completely omitted from a typed
sequence. For example, typing ‘commitee’ for ‘committee’
has an omission error: a ‘t’ is missing.

INSERTION ERROR RATE An insertion error occurs when an
extra letter not present in the correct text is typed in the tran-
scription text. For example, typing ‘string’ for ‘sting’ has an
extra (inserted) ‘r’ and therefore is an insertion error.

The software tool was not designed to analyse large quantities
of data, so we examine a stratified sample of 783 participants
who employ different typing behavior. See the section on
keystroke-level clustering for more details.

Differences between Hands
Our data does not include observations about which finger
presses which keys. Nevertheless, we can understand the per-
formance of individual hands by categorising the letter pairs
(bigrams) as left-/right-hand or hand-alternation bigrams. The
categorisation is based on the How-we-Type dataset from
Feit et al. [5], which contains data from 50 trained and
untrained typists, including information about which finger
presses which key. We define a left-handm, right-hand, or
hand-alternation bigram as one that for at least 90% of occur-
rences was typed with the left hand, right hand, or fingers of
different hands). In addition, only the most frequent bigrams
were included, occurring at least five times for the user. The
resulting categorisation is shown in Table 2. For each user and
each bigram, we first compute the bigram IKI, as the average
over all IKI observations of that bigram typed by the user. We
then use this categorisation to compute the following measures
for each user: Left IKI = the average of bigram IKIs typed by
the left hand, Right IKI = the average of bigram IKIs typed
by the right hand, Alternation IKI = the average of bigram
IKIs typed with fingers of different hands, Repetition IKI =
the average of bigram IKIs for letter repetitions.

Typist Groups
For further analysis, we categorise participants into slow ver-
sus fast and trained versus untrained typists as follows: Fast
Typists are the typists with speeds higher than that of 90% of
participants (above approx. 78 WPM in our data), Slow Typists
are those whose performance is among the slowest 10% (less
than approx. 26 WPM in our data), Trained Typists are the
ones reporting having had typing training, and Untrained Typ-
ists are those who reported not having taken a typing course
or had training in typing.

CHI 2018 Honourable Mention CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 646 Page 4



All WPM corr Fast Slow Trained Untrained
Measure X σ r X σ X σ Sign. d X σ X σ Sign. d
WPM 51.56 20.20 – 89.56 9.53 20.91 4.05 • 9.38 54.35 20.80 49.00 19.73 • 0.27
IKI (ms) 238.66 111.60 -0.84 121.70 11.96 481.03 123.36 • 4.10 223.55 107.78 245.34 112.60 • 0.20
Keypr. duration 116.25 23.88 -0.29 104.49 17.38 128.99 28.85 • 1.03 118.39 23.81 115.29 23.85 • 0.13
Unc. Error (%) 1.17 1.43 -0.21 0.71 0.92 1.78 1.94 • 0.70 1.02 1.31 1.23 1.48 • 0.10
Error Correct. (%) 6.31 4.48 -0.36 3.40 2.05 9.05 6.85 • 1.12 5.90 4.40 6.50 4.50 • 0.14
KSPC 1.17 0.09 -0.40 1.10 0.05 1.24 0.14 • 1.24 1.16 0.09 1.18 0.10 • 0.15
Substitutions* (%) 1.65 1.43 -0.45 0.84 0.64 3.72 2.69 • 1.57 1.49 1.37 1.75 1.46 • 0.19
Omissions* (%) 0.80 0.57 -0.33 0.49 0.41 1.29 0.75 • 1.36 0.75 0.58 0.83 0.57 ◦
Insertions* (%) 0.67 0.48 -0.15 0.50 0.33 0.80 0.46 • 0.76 0.64 0.49 0.69 0.47 ◦
Left IKI (ms) 215.23 96.80 -0.70 124.37 25.90 385.18 147.14 • 2.47 209.43 94.47 217.80 97.77 • 0.09
Right IKI (ms) 203.60 99.13 -0.68 117.24 25.03 379.81 162.40 • 2.26 195.90 97.21 207.02 99.78 • 0.11
Altern. IKI (ms) 198.26 103.95 -0.72 108.62 17.57 408.77 154.25 • 2.73 188.10 98.41 202.76 105.99 • 0.14
Repet. IKI (ms) 176.36 70.26 -0.32 144.79 27.46 230.76 126.21 • 0.94 175.64 66.20 176.68 71.98 • 0.02
Numb. fingers 6.95 2.95 0.34 8.40 2.20 5.30 3.20 • 1.16 8.00 2.46 6.50 3.00 • 0.54
Rollover ratio (%) 25.00 17.00 0.73 49.90 14.00 7.60 6.40 • 3.73 29.00 17.70 24.00 16.70 • 0.29

◦ p>0.01 • p <0.01 • p�0.001 X : Mean value σ : Standard deviation d: Cohen’s d value * Results based on 783 participants
Table 3. Overview of results. At the left are the mean and SD for each measure, correlation of each measure with WPM, and indication of significance.
The middle and right part compare fast with slow and trained with untrained typists, respectively. Unless otherwise denoted, statistical significance of
tabulated results has been tested at the 1% level via the Mann–Whitney signed rank test.

Figure 2. Histogram and density estimate of WPM, uncorrected errors, IKI, and keypress duration.

RESULTS
The final dataset includes 136,857,600 keystrokes from
168,960 participants with, on average, about 810 keypresses
per participant. An overview of results is given in Table 3. It
shows mean and SD for each measure and compares them for
fast versus slow and trained versus untrained typists. As the
data are not normally distributed and sample sizes are unequal,
we use Mann–Whitney U tests to assess differences between
groups. Cohen’s d metric quantifies the size of the effects.

Performance Measures
Figure 2 shows the distribution of WPM, uncorrected error
rate, IKI, and keypress duration over all participants.

WORDS PER MINUTE The average WPM value for participants
is 51.56 (SD = 20.2). The fastest typists in the dataset reach
speeds of even 120 WPM or more. Standard deviation is
considerable even though these are self-selected participants.
The distribution is not a normal-form one; it shows slight
positive skewness, which is common for metrics of human
performance. The distribution has a skewness of 0.513 and
a kurtosis measure of -0.11. Trained typists in our sample
type, on average, 5 WPM faster than untrained typists, with a
similar SD, of about 20 WPM, for a relatively small difference
(d = 0.27).

INTER-KEY INTERVALS Average inter-key interval is 238.656 ms
(SD = 111.6). A lower bound of about 60 ms can be observed.
The IKI distribution shown in Figure 2 has a skewness of 1.98
and kurtosis measure of 7.1. The differences between typists
are remarkable. For fast typists, the average IKI is ∼120 ms,
with a standard deviation of only 11 ms, while slow typists
have an IKI of over 480 ms, sometimes as high as 900 ms,
with a large standard deviation: over 120 ms. The average IKI
of trained typists is only slightly less than that of untrained
typists (d = 0.2).

KEYPRESS DURATIONS In contrast, the average keypress dura-
tion is only 116.24 ms (SD = 23.88) and is not shown to vary
greatly even for slow typists (80–150 ms). The distribution has
a skewness of 0.8 and a kurtosis of 2.36, far less than the IKI
distribution has. There is a significant difference between fast
and slow typists, of about 20 ms (d=1.03). Between trained
and untrained typists the difference is only ∼3 ms (d = 0.13).
Similar keypress durations have been reported in prior work
(e.g. [21]). However, to our knowledge, the fact that keypress
duration is similar across slow and fast participants has not
been reported before. It is interesting, as it implies that most
advances in speed are achieved elsewhere.

ERRORS AND ERROR-CORRECTION BEHAVIOUR The average
uncorrected error rate of participants is 1.167% (SD = 1.43%).
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Figure 3. Self-reported number of fingers versus average WPM. The
numbers denote the percentage of participants reporting using that
many fingers. Error bars represent 95% confidence intervals.

The majority of participants corrected most of their mistakes,
with 90% of participants leaving under 2.66% errors in the
transcribed text. Slow typists leave significantly more errors
uncorrected, which could indicate that they are less able to
detect their mistakes. Also, trained typists leave fewer errors
uncorrected (x= 1.02%) than do untrained typists (x= 1.23%).
However, the difference is small (d = 0.1).

The average number of error corrections is 2.29 per sen-
tence (6.3%, SD = 4.5%), with some participants pressing
Backspace or Delete up to 8.5 times per sentence, on average
(99th percentile). Trained typists perform fewer error correc-
tions than untrained typists (5.9% versus 6.5%), with large
variations in both groups (SD ≈ 4.5) This results in an average
KSPC rate of 1.173 (SD = 0.094).

Detailed Error Measures
We observe that substitution errors (1.65%) are more frequent
than omission (0.8%) or insertion (0.67%) errors. Comparing
fast with slow typists, we can see that there is a particularly
large difference in substitution error rate, with large variation
among slow typists (d = 1.57), while trained and untrained
typists are similar in errors. We hypothesise that substitution
errors are common when participants are less consistent in
typing and have a poor mental representation of the fingers’
position. This result stands in contrast to prior studies in which
insertion errors were commonly found to be the most frequent
error type [12, 16, 33].

Differences between Hands
We found the left hand to be slightly slower than the right
across all participants (average: ∼7–15 ms). Generally, bi-
grams typed by alternating hands were about 5–20 ms faster
than those typed by only the left or right hand for fast, trained,
and untrained typists. Interestingly, slow typists show the
opposite effect: hand alternation is ∼20–28 ms slower. In
contrast, typing the same letter twice is over 150 ms faster for
slow typists, while it is 20–40 ms slower for fast typists. For
both trained and untrained typists, letter repetition is faster
on average and has less variation than typing other bigrams.
Mann–Whitney U tests found these differences to be signifi-
cant (with p � 0.001 for all comparisons).

Prior work supports the finding that the left hand is slower than
the right (e.g. [4]), although a recent motion-capture study
found the left hand to generally employ more fingers and move
less on the keyboard in comparison to the right hand [5]. The
hand-alternation benefit is found to be smaller than the 30–
60 ms reported in many typewriter studies [34]. This is in line
with prior studies of modern typists [5]. Note that the left, right,
alternation, and repetition IKI values are generally smaller
than the overall average IKI, since their analysis excludes
many slower bigrams, such as a letter following a space (word-
initiation effect [34]).

Predictors of Typing Speed
We report bivariate analyses to better understand how
keystroking is related to typing speed. Pearson correlation
coefficient (r) is used. Detailed results are shown in Table 3.
Here, we only discuss the most important findings. In addition,
we compare keystroke patterns of fast versus slow and trained
versus untrained typists for frequent letter pairs (bigrams) and
show that certain bigrams are more predictive of performance
than others, depending on how they are typed by the hands.

Typing speed versus number of fingers
We observe a positive correlation between the number of fin-
gers used for typing (self reported) and typing speed. Partici-
pants reported using any number of fingers from 1 and 2 to 9
and 10, with an average of 6.95 fingers (SD = 2.95); 47.6% of
participants stated they used 9–10 fingers. The bivariate analy-
sis in Figure 3 shows that the larger the self-reported number
of fingers, the higher the typing speed (r = 0.38, p < 0.001).
This relationship is non-linear. In addition, we observe fast
typists to use more fingers than slow typists (averaging 8.4
versus 5.3), similarly to trained relative to untrained typists
(on average, 8 versus 6.5). These results suggest that self-
reported number of fingers is a predictive factor for speed and
differentiates typists.

Typing speed versus errors
Not surprisingly, participants who make fewer mistakes are
generally faster. We find a negative correlation between WPM
and uncorrected errors (r = −0.21), error corrections (r =
−0.36), and KSPC (r =−0.4), the last reflecting the ratio of
error corrections per transcribed character. Substitution and

Figure 4. WPM versus keystrokes per character with 95% confidence
region. Typists making and correcting fewer errors are generally faster.
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Figure 5. IKI distribution of example bigrams typed with one hand (left), hand alternation (middle), and repetition (right). Distributions differ greatly
between fast and slow typists for one hand and hand alternation but are similar for repetition. Trained and untrained typists show similar distributions.

omission errors are found to correlate more with performance
than do insertion errors (r = −0.45 and r = −0.33 versus
r = −0.15), indicating that the number of insertion errors
changes little with higher performance. That faster typists
make fewer mistakes has been reported before (e.g. [12]).

The relation between WPM and KSPC is shown in more detail
in Figure 4. Very slow typists (< 25 WPM) make and correct
many mistakes, which results in a generally low speed (steep
slope of graph). At a rate of about 25–30 WPM, the curve
flattens, suggesting a group of typists who, though similar
in the numbers of errors made and corrected, differ in how
quickly they press keys. From about 30 WPM on, we see
a linear correlation between WPM and KSPC: the faster the
typists, the fewer keystrokes per character they perform; that is,
they make and correct fewer mistakes. In addition to pressing
additional keys, correcting errors requires locating them in
the transcribed text. Therefore, as the figure shows, reducing
errors by a small margin can contribute to a large gain in speed.

Typing speed versus bigram-level IKIs
We found that the IKI of letter repetitions has a lower corre-
lation (-0.32) with WPM than that of bigrams typed by hand
alternation or one hand (∼-0.7), as shown in Table 3. We
further explore this phenomenon by looking at the IKI dis-
tribution of specific bigrams across participants, shown in
Figure 5. In the top part, we compare IKI distributions of
fast and slow typists. For letter repetitions, their distributions
are similarly narrow (but shifted). Variation in left-hand and
alternation bigram IKIs is smaller for fast than slow typists,
suggesting that they are not consistent with these bigrams.

The bottom in Figure 5 shows a similar comparison for trained
versus untrained typists. We can see that for all three cate-

gories, the IKI distributions are very similar for the two groups.
This indicates that variations in performance cannot be suffi-
ciently explained by differences in which finger presses which
key (e.g. touch typing systems versus using only 6 fingers).
Instead, we must assess cognitive differences and differences
in motor skill that prevent slow typists from pressing distant
letter pairs as consistently as letter repetitions.

Rollover Behaviour
We report on a new phenomenon, rollover, where consecutive
keypresses overlap, allowing high-performance input. While
this technique is well known among keyboard manufacturers
and e-sport practitioners, it has not been recognised in text
entry research as a phenomenon of fast typing.

Definition of rollover ratio
Rollover refers to the technique of typing consecutive keys
without releasing the earlier key. Consider, for example, the
letter pair t-h. When using rollover, the typist first presses
down t, then, without releasing the key, presses h; only then
does she release t, and after that she releases h. This technique
is well known to keyboard manufacturers, who have to ensure
that pressing multiple keys at once is correctly sensed by the
keyboard, and a keyboard supporting any number of multiple
keypresses has ‘n-key rollover’ [1]. However, rollover has not
been studied as a typing behaviour that affects performance
and was not possible on mechanical typewriters.

To quantify the percentage of keystrokes performed with
rollover, we propose a new measure called rollover ratio. It
computes the number of keystrokes typed with rollover (where
the previous key is still held down at the time of the keypress)
divided by the total number of keystrokes.
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Figure 6. Distribution of rollover ratios across participants for fast and
slow typists. Slow typists use nearly no rollover, whereas the majority of
fast typists use rollover for 40–70% of keystrokes.

Results
The average rollover ratio is 25% (SD = 17%), with most
typists performing at least a small percentage of keystrokes
by means of rollover. Rollover ratio is found to have a high
correlation with performance (r = 0.73, p < 0.001). Figure 6
compares the distribution of rollover ratios across fast and
slow typists. While slow typists use almost no rollover, the
majority of fast typists use rollover for 40–70% of keypresses.
Trained typists average ∼5% more rollover than untrained
typists. When rollover is used, keystrokes overlap by 30 ms,
on average, and up to 100 ms. The prevalence of this behaviour
was surprising. To further validate it, we looked at high-
speed videos of fast typists from the How-we-Type dataset,
whereupon we made the same observation [5].

KEYSTROKE-LEVEL CLUSTERING OF PARTICIPANTS
Many factors predict typing performance, among them
rollover, KSPC, and error rate. In biometric authentication,
keystroke dynamics are used to identify users. We wanted to
do the opposite: see whether one can reliably cluster typists
on the basis of similarities in their keystroke dynamics, to find
groups of typists employing similar typing behaviour.

Our goal is to summarise the major patterns of keystroking
by using unsupervised clustering. Clustering refers to the
identification of patterns whose distributions in feature space
(here, normalised IKIs) are distinct. The challenge is that
we have no ground truth for validating the correctness of the
grouping of typists identified. We use unsupervised clustering
as a tool to explore typing strategies, taking clusters’ isolation
as a measure for how well they can separate typing behaviour
patterns of participants. Clusters are meaningful if we can
interpret each group’s typing behaviour.

Our clustering process revealed eight clusters. Further anal-
ysis uncovered clear differences between them with regard
to performance, errors, rollover, and hand usage. This ap-
proach allows us to identify strengths and weaknesses in the
participants’ input strategy from keystroke data alone.

Feature Construction
Our goal was to cluster participants on the basis of their
keystroke patterns, abstracting from absolute performance

Figure 7. Isolation values for different numbers of clusters obtained by
the PAM clustering method. N = 8 clusters yields the best value while
giving a low number of meaningful clusters.

but capturing the typing behaviour. For each user, we con-
structed 38 features representing the normalised IKI for the
most frequently typed bigrams, following two steps:

1. Bigram selection: Since participants typed different sen-
tences, the dataset did not contain observations for each user
and each bigram. Given the bigrams in Table 2 extended with
frequent bigrams ending with a spacebar press, we chose the
maximum set of bigrams and participants such that the data
contained observations from at least 90% of participants. This
resulted in 38 bigrams for 97.8% of participants (the rest were
excluded from clustering).

2. Normalisation: For each user and each of the 38 bigrams,
we constructed 38 normalised features by dividing the average
IKI of each bigram by the average IKI across all 38 bigrams.
This gives us a measure for how quickly a user types a bigram
relative to the other bigrams. The normalisation abstracts from
absolute performance, making it comparable across partici-
pants, and captures aspects of the typing behaviour.

WPM and other measures of participants’ performance were
not used as features, to focus on keystroke dynamics and to
prevent explicit clusters based solely on speed groups.

k-Medoids Clustering
We chose k-medoids-based partitioning, specifically PAM (Par-
titioning around Medoids) [19], as the clustering method. Each
user is represented by a data point defined by the normalised
IKIs in a high dimensional space. In this space, the Euclidean
distance between participants quantifies how much they differ
in their keystroke dynamics in typing of different bigrams. We
specifically use unsupervised clustering – it is unclear whether,
and how, participants’ typing behaviour differs, so we have
no validation model and hence carry out clustering and then
interpret the resulting groups. Since interpreting clusters was
important, the median partitioning approach, more specifically
R’s clara PAM implementation [27], was used, because it pro-
duces cluster centres from among the given data points (rather
than k-means, which converges to a set of values that may not
correspond to any particular user) and is efficient enough to
be used for so large a dataset.

To explore various ways of grouping participants, we ran clus-
tering with different numbers of clusters and selected the one
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Numb. of Rollover Left Right Alternation Error rate (%)
Cl. # particip. WPM ratio (%) IKI (ms) IKI (ms) IKI (ms) IKI (ms) Uncorrected

(%)
Omission Insertion Subst. KSPC

1 38,012 46.5 19.98 245.8 221.9 218.5 202.1 1.260 0.70 0.59 1.7 1.177
2 12,930 48.12 19.29 235.3 217.0 216.2 185.3 1.313 0.90 0.77 2.0 1.179
3 13,397 52.36 24.44 214.9 205.3 203.8 175.4 1.263 0.92 0.81 1.7 1.186
4 15,498 53.12 26.23 212.3 204.6 192.7 174.5 1.187 0.80 0.76 1.6 1.175
5 7,731 53.87 21.17 205.3 205.9 199.9 159.3 1.220 0.90 0.64 1.8 1.185
6 22,980 56.50 27.20 197.8 180.5 179.8 161.2 1.147 0.81 0.67 1.7 1.176
7 19,757 64.59 35.75 181.9 173.1 163.2 153.9 1.094 0.71 0.63 1.6 1.162
8 35,068 68.35 37.76 161.9 159.5 150.1 138.2 0.969 0.61 0.64 1.1 1.158

Table 4. Overview of the analysed measures differing between clusters, showing that differences in keystroke patterns affect typing performance.

that resulted in maximum isolation of clusters for further in-
terpretation. Here, isolation refers to the measure of how
compact a cluster is (that is, the average distance of any clus-
ter member from the cluster centre) and how well-separated
different clusters are (that is, the minimum distance between a
cluster centre and any member of another cluster). Formally:

isolationi =
diameter of cluster i

argmin j(distance from xi to y j)
(1)

where y j is any member of cluster j , i. The isolation value
ranges from zero to infinity; the lower the better; zero means
that points in the same cluster have zero distance to each other.
Figure 7 compares the weighted average of the isolation values
of each cluster (weighted by resulting cluster sizes) for various
numbers of clusters. Eight clusters was found to result in the
smallest weighted isolation value while yielding a low number
of balanced and interpretable clusters.

Interpretation of Clusters
We assess the clusters by comparing differences in WPM, IKI,
rollover ratio, bigram-level IKI (typed by left hand, right hand,
or hand alternation), uncorrected error rate, KSPC, and errors
(omission, insertion, and substitution errors). For detailed error
analysis, we sampled the 783 participants who were closest to
the cluster centres (within 60% of maximum distance), which
best allowed interpreting differences between clusters.

An overview of the results for each cluster is given in Table 4.
We can see clear differences between groups of typists for most
of these measures. Note, again, that we used only keystroke
dynamics (normalised IKIs) for clustering. Differences in
performance are a result of differences in typing behaviour.
We identified the following groups of typists:

1: SLOW, CAREFUL TYPISTS The largest and slowest group of
typists (∼46 WPM). The hands are equally slow, and hand
alternation is leveraged less than by others (15–20 ms faster).
Only 20% of bigrams are typed with rollover. Omission and
insertion errors for letters are very few in comparison to all
other groups, indicating that these typists are more careful.

2: SLOW, CARELESS HAND ALTERNATORS Less than half the
size of the previous group, composed of slow typists (∼48
WPM) with similar characteristics. The main difference from
group 1 is that they make and correct more errors and have the
highest uncorrected- and substitution-error rates. They exhibit
a lower IKI by better leveraging hand alternation (∼30 ms
benefit compared with either hand).

3: AVERAGE-BUT-ERROR-PRONE Average typists (∼52 WPM)
who, similarly to cluster 2, make and correct many errors.
They have the highest KSPC (1.186) and make the most omis-
sion and insertion errors. They compensate with a higher
rollover ratio and lower IKI than groups 1 and 2 but show a
hand-alternation benefit similar to group 2’s.

4: AVERAGE RIGHT-HAND TYPISTS A group of average typists
(∼53 WPM). The main difference from the above groups is
that their right hand is much faster (∼11 ms).

5: AVERAGE HAND ALTERNATORS The smallest group of typists,
with average performance (∼53 WPM). They leverage hand
alternation better than even the fastest typists (40–46 ms).
However, their rollover ratio is low (21%) and they make
and correct many errors (KSPC=1.185), which results in only
average performance.

6: AVERAGE TYPISTS Average typists with slightly higher per-
formance (∼56 WPM), achieved through higher rollover ratio
and lower IKI, with similar error rates and slightly better
rollover relative to cluster 1. The hands are similarly fast, and
hand-alternation benefit is comparably low ( ∼20 ms).

7: FAST, ERROR-PRONE TYPISTS Faster-than-average typists
(∼65 WPM) with a high rollover ratio (36%). The hand-
alternation benefit is comparatively low (9–19 ms), and the
left hand is slightly slower than the right (∼10 ms). However,
they show only slightly better error rates when compared to
the groups above.

8: FAST ROLLOVERS The second-largest group, with the fastest
typists (∼68 WPM) and very low IKIs (avg ∼160 ms). They
show high rollover behaviour (38%) and the lowest error rates
(i.e., for uncorrected and substitution errors). Similar to group
7, the left hand is slightly slower than the right.

SUMMARY
We have reported extensive statistical analysis for over 168,000
volunteer participants and more than 136 million keystrokes.
The findings shed new light on typing with modern keyboards:

• The average speed is 52 WPM, but values exhibit large
variance and a skewed distribution.

• While there is a large variation in IKI, keypress duration is
uniformly small across typist groups: on average, 116 ms.

• Fast typists make fewer mistakes. In particular, they make
fewer substitution errors, whereas insertion errors correlate
less with performance.
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• Rollover key-pressing is surprisingly prevalent, particularly
among fast typists (40–70%), and is a strong predictor of
typing speed (r = 0.73).

• Number of fingers (self-reported) predicts performance.
• Letter repetitions are less predictive of performance than

other bigrams, indicating efficient use of hand- and finger-
alternation strategy.

• Though there is considerable individual-level variation in
keystroke patterns, participants can be clustered into 8 main
groups, characterised by differences in typing behaviour,
such as hand usage, accuracy, and error corrections.

In some respects, modern typing behaviour was found to
be similar to typewriting, but we can see many differences
too, particularly for hand usage. While average performance
is slower, uncorrected error rates are in the same range (1–
3.2%) [33, 12]. In contrast to studies of professional typ-
ists, substitution errors were more frequent than insertion and
omission errors [12, 33]. We found a lower bound for IKI
at 60 ms; the same was found by Hiraga et al. for profes-
sional typists [14]. The left hand was generally considered
to be slower than the right [4]. Although present, this effect
is small for modern typists (7–15 ms difference). Similarly,
the hand-alternation benefit is less pronounced than reported
in typewriting studies (5–20 ms versus 30–60 ms), which is
in line with a prior study of modern typists [5]. On modern
keyboards, using different fingers of the same hand allows for
a benefit similar to that with fingers of different hands.

We find the prevalence of rollover behaviour surprising. The
effect cannot be explained by our logging instrument. Rollover
behaviour has a high correlation with speed (r = 0.73), and
fast participants used rollover for 40–70% of keypresses. For
fast typists it was observed irrespective of whether they were
touch typists and of whether they reported using all fingers
or only a few. We are not aware of previous work analysing
this behaviour. Rollover behaviour needs more attention as
a strategy that is not possible with traditional typewriters (it
would jam the keys). Another new observation is that certain
bigrams typed with different hands are more predictive than
for example letter repetitions. Making use of hand alterna-
tion and finger alternation is a strategy that can be used to
enter keystrokes rapidly but is not efficiently employed by
slow typists. In contrast, letter repetitions are quickly typed
independent of performance and show less variation in IKI.

Trained and untrained typists showed very similar typing be-
haviour. Slow typists make more errors, of which the majority
are substitution errors. Trained and untrained typists show
only small or no differences in errors. For slow typists, let-
ter repetitions are much faster (at >150 ms) than any other
bigrams, while hand alternation is not efficiently employed
and can even be slower than using the same hand. We see the
opposite for fast typists, for whom letter repetitions are slower
(20–40 ms) and bigrams typed by hand alternation are slightly
faster (10–30 ms). Slow typists use less rollover (8% versus
50%). They rely more on visual search [5, 32] and use fewer
fingers, which restricts the use of rollover.

Unsupervised clustering showed that typing behaviour can be
characterised via keystroke dynamics. The eight clusters differ

in speed, errors, use of hand alternation, and rollover. The
main difference among slow typists is in the number of errors,
where careless typists demonstrate a smaller IKI and better
hand alternation. Average typists differ in how they use their
hands: one group is particularly fast with the right hand, and
others better leverage hand alternation though their rollover
ratio is lower. Fast typists gain less from hand alternation than
other groups but use rollover better and make fewer errors.

Implications
The findings have high-level implications in several areas of
HCI research. Modelling assumptions behind the design of
text entry methods must be updated, since they have been
based on a view of typing styles as rather uniform. Also,
training should reconsider individuals’ ways of pressing keys.
Training procedures have been based mostly on the assumption
of touch typing and ignored individual-specific ways of typing.
Exercises could explicitly train in rollover and be personalised
for typists’ deficits in line with the cluster they belong to. We
found that untrained typists can be as fast as trained typists,
but trained typists in general are faster than untrained ones. It
is possible that individualised training could help non-touch
typists boost their performance. This implies that designers
should be sensitive to the different ways people type – that is,
design sensing pipelines and text entry techniques that enable
rollover also on multitouch surfaces.

Limitations and Future Work
We acknowledge limitations to the generalisability of these
results. The observations come from a group of self-selected
participants, and 68% were from the US. Most were younger
and interested in typing, with over 70% having taken a typing
course, in contrast to only 43% in a prior, lab study [5]. The
dropout rate is similar to other online studies’ [28, 31]. Dif-
ferences in sampling may explain why we found an effect for
the number of fingers and speed differences between trained
and untrained typists while a previous study did not [5]. We
estimate our instrumentation to reach precision of about 10–
15 ms per keypress. This means that all findings reported in
the paper, except the left–right hand difference (7–15 ms) are
likely to hold. The left–right effect should be replicated with
other measurement instruments. Although edit operations (for
deletion) were not limited to backspaces and deletion keys (e.g.
mouse/keyboard multiple selection and deletion was permit-
ted), the error analysis did not take these into account, as there
was no way to track such operations. We note the need to de-
velop instrumentation, sampling methodology, and statistical
analysis methods for online typing tests.

THE 136M KEYSTROKES DATASET
The dataset (N > 168,000) and the code for the test are released
at http://userinterfaces.aalto.fi/136Mkeystrokes. A subset
is given in Supplementary Material.
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