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Abstract
Accurately inferring the distance between the user and the
interface enables the design of a variety of proximity-aware
user interfaces. This paper reports our work-in-progress
on designing a toolkit called SpiderEyes that will enable
systems to accurately estimate the distance between the
user and the interface by fusing computer vision with
depth sensing. Potential advantages of this approach
include increased accuracy and the ability to reliably
estimate the user’s distance to the interface even when
the user is far from the sensor (up to five metres). We
evaluated the feasibility of this approach in a controlled
experiment and found that it is likely to yield distance
estimations with less than a 10 cm estimation error when
users are between 50 cm and 5 metres away from the
system.

Author Keywords
distance estimation, proxemics, sensor fusion

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g.,
HCI)]: Miscellaneous.

Introduction
Proxemics is defined as the interpretation of spatial
relationships [2]. Proximity-aware applications and devices
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use the distance between the user and the interface as an
interaction modality. This may take the form of
continuous interface changes (such as the system
Lean-And-Zoom [5]) and discrete interface changes (e.g.
using distance to change between explicit and implicit
interaction [8]).

There are a number of sensors capable of detecting the
distance between a person and a display. For instance, in
the past, systems have used WiFi and RFID for
coarse-grained distance detection [6] as well as computer
vision techniques utilising web cameras and markers [5] or
optical motion capture systems such as Vicon [8, 2]. The
major disadvantage of these approaches is that they
require user augmentation or careful configuration in order
to function accurately. Recently, depth sensors such as
Microsoft Kinect and readily available computer vision
(CV) algorithms have opened up the possibility of
designing markerless distance-estimators.

While proximity-aware user interfaces are slowly starting
to emerge, they are still difficult for non-specialists to
build. Further, while depth sensors such as the Microsoft
Kinect are becoming ubiquitous, depth sensing alone has
problems in robustly estimating the user’s distance to the
sensor if the user’s body is partially occluded or if the user
is outside a particular range (see the subsection on Kinect
below for details).

The SpiderEyes Toolkit
We have started building a toolkit called SpiderEyes1 that
will enable non-specialists to easily design and construct
accurate markerless proximity-aware user interfaces based
on inexpensive off-the-shelf hardware. As part of this

1After release, it will be accessible here: http://sachi.cs.
st-andrews.ac.uk/research/software/spidereyes/

toolkit, we are investigating how to best leverage and
combine depth sensing (via the Kinect sensor) and
computer vision to provide reliable distance estimations.

We believe that sensors requiring user augmentation have
many limitations for practical use beyond the controlled
environment of a research laboratory. It is technically
possible to use other sensors, such as sonar and IR
sensors, but these sensors may not be practical because
they are not capable of distinguishing between an object
and a person, unless deployed in dense grids (see Ward
et al. for an example [9]). For the purposes of this
work-in-progress paper, we focus on approaches that do
not rely on user augmentation or an a-priori configuration,
specifically computer vision and depth sensing.

Depth Sensing - Kinect
The Kinect sensor is an example of a depth-sensing
camera. Since it was introduced in 2010, the Kinect
sensor (based on PrimeSense sensors) has gathered
significant attention in the HCI research community. This
is due to the wide range of functionality the sensor offers -
including distance sensing, skeleton tracking, gesture
recognition and so on. As an example, the sensor has
been used by Clark et al. [3] to create a proximity-based
interface that allowed different types of interaction with a
display at various distances.

The Kinect sensor has a number of characteristics that
make it very attractive for research. It is low-cost and
offers relatively accurate distance-sensing as well as user
and skeleton tracking. The sampling rate is relatively fast
(20–30 fps) and the range of recognised distances is
practical (80-400 cm2). The sensor latency is circa 45 ms.

2source: http://msdn.microsoft.com/en-us/library/
hh973078.aspx#Depth_Ranges
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Computer Vision
The computer vision (CV) component of SpiderEyes
employs a distance-detector that uses consumer-level
cameras that we have developed. As a more advanced
version of a previously published algorithm [4], our
solution uses the OpenCV implementation of the
Viola-Jones feature tracking algorithm [7]. It employs
eye-pair and single eye classifiers and a custom tracking
algorithm to provide coarse-grained gaze and user
tracking. The basis for distance estimation is pupil
distance. Due to the minimum pixel size for an eye-pair to
be recognised, the maximum detected distance is limited
by the resolution of the camera images. The maximum
distance that can be detected depends on the pupil
distance of the tracked person. For a person with 60 mm
pupil distance, using a 5 megapixel (2592×1944 pixels)
image taken with a camera with a 62◦ horizontal field of
view, the maximum distance that can be detected is
approximately 684 cm.

Figure 1: The CV algorithm. 1-
finds eye-pairs. 2 - defines search
areas for single eyes. 3,4 - finds
left and right eye. The pupil
distance is the distance between
the centres of the bounding
rectangles for left and right eyes.
Pupil distance is calibrated on a
per person basis.

The distance detector algorithm is scalable. When
processing a 5 megapixel image, the sampling rate is up to
25 fps for every single CPU core used once the user is
tracked. The sensor latency depends purely on the
amount of image processing work, with a latency of circa
800 ms when no user is tracked and a latency of
approximately 40 ms once a user acquisition is made
(using a single CPU core). When using four CPU cores,
the latency decreases to approximately 200 ms with no
tracking and approximately 12 ms with tracking. It is
important to understand that these are the characteristics
of the software part of the system. Actual performance
will depend on the camera that is to utilised for tracking.
For example, the camera used in our evaluation, Logitech
C910, is not able to provide images at more than 10 fps at
the 5 megapixel resolution.

Benefits of Computer Vision
The Kinect sensor has many attractive properties as a
distance sensor. The distance of the head can be easily
extracted from the skeleton data. However, the sensor
also has a number of limitations. First of all, it is severely
range limited. The skeleton data can only be provided
within the 80-400cm range. In addition, the skeleton data
is provided only when the sensor has an unrestricted view
of most of the body of a person. Therefore, body
occlusion is a serious problem.

In contrast, the SpiderEyes toolkit does not suffer from
these limitations to the same extent. Occlusion is
generally not a problem because only the eyes need to be
visible for the system to work and when a person is
looking at a display (and thus at the camera attached to
it), the line of sight tends to be maintained. Moreover,
SpiderEyes has one characteristic that cannot be matched
by the Kinect. Since it detects the eyes when they are
looking at the camera, it provides us with information on
the direction of gaze as well. In contrast, while the Kinect
detects the distance of the head, it is reported as a single
point without any indication of directionality.

Fusing Computer Vision and Depth Sensing
The two sensors use different approaches to distance
estimation. The Kinect employs an IR camera to capture
reflections of a projected IR pattern to estimate distance.
SpiderEyes applies computer vision algorithms to ordinary
RGB camera images to track the eyes and uses pupil
distance to estimate distance.

Even though the two sensors are based on different
technologies some of the limitations of the sensors are
identical. For both sensors, the spatial resolution decreases
exponentially with increasing distance. This is due to the
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(a) Computer Vision Only (b) Kinect-CV Fusion (c) Kinect-CV Fusion–Corrected

Figure 2: Mean distance estimation error for computer vision only, computer vision-guided Kinect, and computer vision-guided Kinect
with a pre-computed correction made using a linear regression model. The error bars show standard error.

increasing spread of the IR pattern for the Kinect and the
decreasing pupil distance (from the viewpoint of the
camera) for SpiderEyes’ computer vision algorithms.

The SpiderEyes’s Kinect-CV fusion algorithm combines
Kinect and Computer Vision data by turning them into a
single complex sensor, which overcomes some of the
limitations of both of the underlying sensing technologies.
We use the CV component to identify the position of the
eye-pair. We identify a point in the Kinect depth map and
read the depth information from that point to estimate

the distance between the user’s eyes and the interface.
We perform a translation between the coordinate spaces
of the two sensors to determine which point in the depth
map to read. Using the position of the eye-pair to process
raw Kinect depth data, we can make a more specific and
more accurate distance estimation, while increasing the
possible range of detections compared to the skeleton
tracking’s maximum range of 4 m (the spatial resolution
of the Kinect depth data at 8 metres is still < 20 cm [1]).
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As we will see in the next section, the above process
results in acceptable accuracies. However, we noticed an
exponential over-estimation of this Kinect-CV Fusion
technique (Figure 2b). We therefore complement the
above fusion strategy with a pre-computed offset
correction model that adjusts the overestimation error
using a linear regression model. The linear regression
correction model is: y = 0.9005x+ 48.411. Using our
experimental data we found that this correction model
explains 99% of the variance of the overestimation error
(R2 = 0.99). The result of using this correction model on
our Kinect-CV Fusion data can be seen in Figure 2c.

Figure 3: An image of the
glasses with highly reflective
lenses used. The thin rimmed
glasses are shown above the
medium rimmed glasses.

Experiment
To evaluate the potential of fusing computer vision and
depth sensing we conducted an experiment. We recruited
eight participants (three female, ages ranged between 21
and 39) from our university campus. The experiment was
a within-subjects experiment with two factors: glasses
(participants wearing no glasses, participants wearing
glasses with a thin frame, and participants wearing glasses
with a thick frame) and sensor (Computer Vision Only,
Kinect-CV Fusion, and Kinect-CV Fusion Corrected).
Figure 3 shows the two pairs of glasses used in the study.

We positioned the Logitech C910 camera on top of the
Kinect sensor. We also marked the floor with distance
markers at 50 cm intervals at a range from 50 cm to 5
metres. Each participant was asked to stand with their
feet aligned with each of the distance markers, while the
study administrator manually read the distance value from
each of the sensors. We repeated the process for each
participant three times. Each time the participant either
wore glasses with thin or thick frames or no glasses.

Figures 2a, 2b and 2c show the distance estimation error
for Computer Vision Only, Kinect-CV Fusion, and
Kinect-CV Fusion Corrected respectively. In each case,
the perfect performance would be represented by a
constant error of approximately 5 cm (due to the
difference in the position between the tips of the feet of
the participants and their eyes).

The estimation profile of Computer Vision Only follows a
distinctly different curve to the Kinect. At distances closer
than four metres, Computer Vision overestimates the
distance, while beyond four metres, SpiderEyes starts to
severely underestimate the distance. This behaviour is
consistent with the underlying algorithm, where up to four
metres, the algorithm achieves high confidence detection
using a combination of three different classifiers (the
eye-pair, and the left and right eye). Beyond the four
metre point, the algorithm can only rely on lower
confidence single classifier detection (the eye-pair)
because too few pixels capture the individual eyes for the
single eye classifiers to work. The accuracy decreases
because the precise location of the eyes can no longer be
established and the location is instead estimated from the
bounding rectangle of the eye-pair.

The Kinect-CV Fusion data was collected by manually
reading a distance value from the Kinect depth map. The
chosen point was always the pixel in the middle of the
nose ridge of each participant. The resulting distance
estimation is very stable whether participants are wearing
glasses or not. However, there is a clear increase in
inaccuracy as the distance increases. While this is partially
due to the decrease in spatial resolution, there seems to
be a bias towards overestimation that increases with
distance. As can be seen in Figure 2c, correcting the
Kinect-CV Fusion model using a pre-computed linear
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regression model substantially reduces estimation errors
and results in highly accurate distance estimation. The
linear regression model also corrects for the approximately
5 cm constant offset between the tips of the feet when
participants stood aligned with the distance marker and
the actual distance of the eyes.

Conclusions and Future Work
This paper has reported our work-in-progress on designing
a toolkit called SpiderEyes that that fuses computer vision
and Kinect depth sensing to accurately estimate
user-interface distance. The system uses computer cision
to identify the centre between the user’s eyes and then
reads depth information via a depth map provided by the
Kinect. The system then uses a pre-computed linear
regression correction model to correct for an exponential
increase in over-estimation by the depth sensor as the user
is farther away from the sensor. We evaluated the
feasibility of this approach in a controlled experiment and
found that it is likely to yield distance estimations with
less than a 10 cm estimation error when users are between
50 cm and 5 metres away from the system. Further,
SpiderEyes appears to be robust for users who do not
wear glasses as well as users who wear glasses with thin or
thick frames.

The fusion approach described in this paper has not yet
been fully implemented. We are currently implementing
several versions of the fusion algorithm and working on
providing useful programming abstractions that enable
non-specialists to easily create proximity-aware user
interfaces that can a) reliably sense when users are
engaging with an interface and b) determine the user’s
position from 50 cm to 5 metres away from the sensor
with an estimation error that is always less than 10 cm.
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