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Figure 1: The five alternative interaction methods for text input correction in virtual reality that are investigated in this study.
The Caret and Touch methods are familiar interactions closely related to established conventions for text input correction on
a smartphone. Raycast, Gaze and Indirect are less familiar interactions but exploit the rich array of input available on modern
head-mounted displays.

ABSTRACT

The task of inputting text within virtual reality has attracted signifi-
cant research attention over the last five years. Less well explored
is the related task of correcting inputted text when errors are made.
This is despite the fact that considerable time and frustration stems
from efforts to correct text. In this paper, we bridge this gap in prior
research and explore efficient methods for supporting text input
correction in virtual reality. We present a characterization of the
types and frequencies of errors encountered when inputting text in
virtual reality and an analysis of effective editing strategies. We also
present the results of a user study evaluating the performance and
usability trade-offs for several interaction methods leveraging the
unique capabilities of modern head-mounted displays.

1 INTRODUCTION

Mistakes are common in text input, regardless of the means of entry.
Nevertheless, text entry research typically focuses on transcription
tasks and sometimes provides no mechanism for, or actively discour-
ages, error correction. Even more fundamentally, there is limited
prior work on the types and frequencies of errors committed by users
under different settings.

A wide range of text entry methods have been proposed and
studied for use in virtual reality [6]. Considerably less well explored,
however, are mechanisms compatible with these entry methods that
support efficient correction of errors. In this paper, we address this
gap by focusing on the task of correcting errors in text in a mid-air
setting within virtual reality. This is a relevant and timely problem
to investigate since recent work [10] has shown that entry rates for
mid-air typing in virtual reality are reduced by up to 30% when input
correction is required.

Text input systems on smartphones allow users to correct text
via various methods. One method is derived from computer-based
word processing applications and involves editing at a character
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level with a text caret. Another method involves interacting at the
word or phrase level, by indicating the erroneous word or phrase
and selecting corrections from a list of displayed alternatives. These
same approaches can, in theory, be ported to text input systems in
virtual reality to deliver a familiar interaction experience. However,
these derived approaches do not fully exploit the additional input
channels and display space afforded by modern virtual reality HMDs.
In response to this point, we investigate what alternative methods
are afforded by the unique capabilities of modern virtual reality
hardware, and how do these methods trade-off between performance
and usability in a mid-air interaction setting. We provide context
to this investigation by first presenting a structured description of
the text input correction task within virtual reality, and estimate
the frequency and impact of input errors. Our analysis suggests
that word-level error correction is likely to be more efficient than
character-level error correction in a mid-air interaction setting. This
motivates our primary focus on techniques that facilitate a word-
level correction strategy as we consider potential instantiations from
within the design space.

We implement and compare word-level correction interactions
by means of touch, raycast, gaze and an indirect cursor, but also
include a caret-based character-level correction interaction as an
alternative baseline. These five techniques are illustrated in Figure 1.
In a controlled user study with 20 participants, we find that word-
level correction via a touch-based interaction provides the fastest
method for correcting errors in a review correction task (where
the task is simply to correct pre-existing errors). However, in an
input correction task (where the task is to input text and correct any
errors that occur) the character-level caret-based interaction method
results in the shortest entry durations. In terms of overall participant
preferences, the touch-based and gaze-based interaction methods
were most preferred.

In summary, this paper makes the following contributions:

1. We characterize the types and frequencies of errors encoun-
tered when inputting text in virtual reality.

2. We evaluate and compare five alternative text input correction
methods to deliver insight on the design of effective mid-air
text input correction interactions in virtual reality.



2 RELATED WORK

There has been considerable research effort devoted to understanding
the principles for efficient and usable text entry within virtual reality
(VR) and augmented reality (AR). The topic of text input correction
in mid-air interaction settings is less-well explored in the literature.
In this section we first briefly review prior work focused on text input
in VR and AR, and then review work on text input error mitigation,
and text input correction more broadly.

2.1 Text Input in VR and AR

A wide variety of interaction methods for text input in VR and AR
have been proposed and studied [2, 9, 18, 25, 37, 43]. Dube et al. [6]
offer an informative review. Most relevant to this current work
are input methods that support efficient mid-air text entry on Qw-
erty layouts without the need for controllers [33–36]. The VISAR
keyboard [9] was one of the first studies to examine mid-air touch
typing on a Qwerty layout using integrated hand-tracking. Speicher
et al. [37] compared the use of tracked hands to five other alterna-
tive selection-based text input methods in VR. The use of tracked
hands was, however, outperformed by a ray-based method using two
tracked controllers. Frutos-Pascual et al. [13] demonstrated a func-
tional mid-air AR keyboard but their study focused on individual
character selections and no entry rates are reported.

Using a simulated auto-correction functionality and high-
precision hand tracking, Dudley et al. [8] demonstrated that mid-air
entry rates without controllers could feasibly reach 40 wpm. In a
subsequent study, Dudley et al. [10] demonstrated that headset-based
hand tracking can enable users to achieve peak entry rates in the
range of 40 to 45 wpm. This recent work highlights the potential
of controller-free mid-air text input and the corresponding need for
input correction techniques that are consistent with these methods.

2.2 Mitigating Errors During Mid-Air Text Input in VR

Mid-air text input is generally associated with lower entry rates
and higher error rates than typing on a physical keyboard or smart-
phone [8,10,14,26]. This has motivated work exploring methods that
aim, in part, to reduce errors by giving better feedback to users or in-
telligently correcting errors. For example, the VISAR keyboard [9]
evaluated a method for allowing users to preemptively designate key
selections as unalterable by the auto-correction function in order to
help users avoid auto-correction errors. This method was found to
reduce error rates (although not significantly) but was associated
with a marginal reduction in entry rates. The work by Foy et al. [12]
sought to address an error type unique to mid-air typing caused
by spurious touches generated by involuntary movement of fingers
next to the finger intentionally performing a touch. Foy et al. [12]
developed a component able to recognize such spurious touches
that could be integrated with the keyboard input decoder in order to
reduce error rates.

Offering better feedback is another way to potentially help users
to regulate their behaviors in order to reduce errors. Gupta et al. [15]
investigated different means of providing vibrotactile feedback in
mid-air text entry and observed reduced, although not significantly
so, error rates with an on-finger vibrotactile feedback configuration.
To support efficient touch typing in a mid-air setting, a separate body
of work by Gupta et al. [16] also investigated the use of ‘squeeze
haptics’ to reinforce correct posture. The squeeze feedback provided
by a band worn on each wrist was found to significantly reduce
the need for expert typists to look at the keyboard, without any
significant detrimental effect in terms of error rates. Dube et al. [7]
evaluated the potential benefit of mid-air ultrasonic feedback and
observed a significant effect associated with haptic feedback, both
for increasing entry rates and reducing error rates. Frutos-Pascual
et al. [13] investigated different visual feedback settings to assist
with touching virtual keys in mid-air such as glow, a guiding ray and

combining glow with a guiding ray but found no significant benefits
in terms of improving the accuracy of key presses.

The various efforts reviewed above can be classed as preemptive
or design focused efforts aimed at reducing errors during entry.
Despite such efforts, error rates remain above zero highlighting the
need for consideration of reactive methods for correcting errors
when they occur. This is the focus of our current paper.

2.3 Text Input Correction

There has been some scattered work examining various aspects of
text input correction, both in an immersive setting as well as on
more conventional devices. Wobbrock’s review [42] of text entry
performance measures includes two measures directly related to the
efficiency of error correction methods. Adhikary and Vertanen [1]
and Vertanen and Kristensson [39] have a similar focus and approach
in presenting methods to facilitate the correction of errors in speech-
to-text input. Both works allow the user to interact with the word
confusion network output by the speech recognition system, with
Adhikary and Vertanen [1] presenting this interface in VR and Verta-
nen and Kristensson [39] using a smartphone. The user is presented
with likely alternatives for the recognized words in the transcribed
utterance and they can make corrections by directly selecting from
these alternatives.

Hu et al. [17] and Li et al. [27] both examine caret navigation for
error correction in AR and VR respectively. Hu et al. [17] evaluate
different methods for navigating the caret within a body of text,
including direct and indirect touch, raycast and gaze as well as
leveraging a magnifier to assist with positioning. The task evaluated
by Hu et al. [17] simply involved placing the caret at an indicated
target location, and no actual edits were made. Li et al. [27] instead
focus on interactions supported by a controller but do also examine
these interactions within the context of a text correction task. The
best performing interaction method allowed users to backspace at the
word-level and move the caret in a continuous rather than discrete
manner.

The majority of recent work on enhancing correction interactions
has focused on text error correction on smartphones. Cui et al. [4]
demonstrates the concept of simply retyping an erroneous word
and relying on an inference step to determine which word in the
previously typed text should be replaced. Zhao et al. [45] exploit
gaze and speech-to-text to allow users to look at an erroneous word
and then re-speak this word to insert a correction. This builds on
prior work from Zhao et al. [44] where the approximate error location
is indicated by touching on the screen. Proactive approaches seeking
to fuse speech and keyboard input to reduce error rates at input time
have also been explored [23], as well as speech only solutions [30,
38, 40]. These various methods could conceivably be readily ported
to an immersive interaction setting. Even if effective, however, it is
likely that such methods would still need to be paired with an explicit
error correction interaction to overcome circumstances where the
inference step or re-speaking does not deliver the desired outcome.

Also relevant to the broader understanding of text input correction
behaviors is the work by Du et al. [5]. Du et al. [5] compile and
analyze a dataset of human text revisions of Wikipedia, ArXiv and
Wikinews text. Du et al. [5] present a taxonomy of different types of
edits, e.g. for fluency, style or clarity, and their relative frequency
within the dataset.

In summary, although there has been some work seeking to under-
stand and facilitate text input correction, the general principles that
make it effective or ineffective remain unclear. The work presented
in this paper serves to advance our understanding in this regard.

3 TEXT INPUT CORRECTION IN VR

In this section we seek to establish common terminology and struc-
ture for describing the design and evaluation of text input correction
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Figure 2: A function model for text input correction.

methods in virtual reality. Also relevant to this goal is an approxi-
mate understanding of the frequency and impact of errors encoun-
tered within this setting.

First, we make an important distinction between error correction
and the less well constrained task of editing. As Robertson and
Black [32] observe, text editing is a, “complex cognitive skill that
requires significant planning.” Error correction is more tightly con-
strained to the task of correcting errors in a body of text. The more
clearly defined task of error correction is the most sensible starting
point for evaluating alternative interaction methods for use in virtual
reality

Also relevant to the evaluation of interactions methods for error
correction is the point in time at which errors are identified and cor-
rected. This timing may influence the strategies employed by users,
and correspondingly, the most appropriate interface and interactions
to provide. We therefore make a distinction between input correction
and review correction. Input corrections are those occurring at the
time of entry, e.g. selecting a word alternative or backspacing to
correct a typographical error. Review corrections are those occurring
after initial entry, e.g. discovering a typographical error in a word
then fixing it.

Finally, corrections can be performed at various levels in the
textual hierarchy. The level at which corrective actions are performed
may also dictate which is the most appropriate interaction to provide.
We define two edit levels in line with Arif and Stuerzlinger [3].
Character-level corrections are made to characters within a word.
Word-level corrections are made to words within a phrase/sentence
Some interaction techniques may be better suited to operating at the
word-level as opposed to the character-level. There are also potential
implications in terms of the most efficient strategy as analyzed later
within this section.

3.1 A Generic Function Model for Text Input Correction
We can further describe the text input correction task in abstract
terms by means of a generic function model [20–22]. Figure 2
presents a function model with three key functions: Indicate, Edit
and Confirm. Indicate refers to the function of designating the

location of the error to be corrected. Edit refers to the function of ex-
pressing the change to be made in order to correct the error. Confirm
refers to the function of committing the change. Arif and Stuer-
zlinger [3] introduce a similar decomposition of the error correction
task into a sequence of steps and decisions. By contrast, however,
the function model in Figure 2 is focused on the generic functions
that should be supported by the interface in order to allow the user
to correct identified errors. As we will show later in Section 4, this
generic function model provides a helpful conceptual framework
for considering alternative interaction methods for delivering these
specific functions.

3.2 Characterization of Errors and their Impact

Also critical to understanding the design considerations relevant to
supporting text input correction in a mid-air setting within VR is
an awareness of the frequency of different types of errors and their
impact on performance. There are several important factors that
distinguish text input correction in a controller-free mid-air setting
from conventional 2D interaction settings and correction in VR with
controllers. These factors primarily relate to the frequency at which
errors occur, and the precision with which one can control the cursor
or articulate the error location. We analyzed the dataset collected
by Dudley et al. [10] of 16 participants performing a transcription-
based text input task using both gesture and single character typing
modalities. This analysis highlighted the fact that the majority
of input and review corrections in the dataset relate to word-level
corrections where the current and target text differ by only one or
two characters.

For example, Figure 3a plots the relative frequency of different
word edit distance counts for the entered phrases in the dataset. This
plot suggests that there is a power law distribution describing the
frequency of word errors in an entered phrase. The majority of
phrases contain no errors, while approximately 20% contain one
error, and less than 10% contain two errors. If we now examine the
type of edit required to address single word errors (i.e. word edit
distance of 1), we see in Figure 3b that the vast majority of these
errors require a substitution to complete the correction, i.e. there are
the correct number of words in the phrase but one of the words is
incorrect. Figure 3c plots the character edit distance for these words
requiring a substitution. This plot also suggests there is a power law
distribution describing the frequency of character errors in a word,
with the vast majority of word errors containing one or two character
errors.

The three plots of Figure 3 viewed in combination highlight the
fact that the vast majority of phrases containing a single word error
can be resolved by a word substitution, and that the incorrect word
is in most cases only one or two characters away from the desired
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Figure 3: Degree, frequency and type of text input errors in the dataset collected by Dudley et al. [10].
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Figure 4: Analytical comparison of a character-level and word-level
correction strategy as the probability of character substitution errors
increases.

word. The fact that the erroneous word and correct word differ by
only one or two characters suggest that there may be opportunities
to exploit this similarity to infer the correct replacement word.

Our analysis of the dataset also provides rough estimates of the
time required to perform edit actions such as entering a character,
pressing the backspace key or selecting word alternatives. This
facilitates estimation of the approximate frequency and impact of
the different types of correction subtasks as detailed in the following
subsection.

3.3 Analytical Evaluation of Correction Strategies

We built a simple interactive tool1 in MATLAB to help examine the
consequential effect of different input correction strategies under
different operating assumptions. The tool allows us to examine the
estimated effect of uncontrollable parameters such as how prone the
input technique is to character selection errors, and how likely the
user is to notice these errors. Our analysis using this tool suggests
that a strategy based around word-level edits is likely to be more effi-
cient than a strategy based around character-level edits. Furthermore,
the benefit of the word-level edit strategy becomes more pronounced
as the underlying input method becomes more error prone (i.e. more
character-level errors are likely to be encountered). By a word-level
strategy in this context, we mean waiting until after each word has
been typed, and potentially auto-corrected, before correcting any
errors. By a character-level strategy in this context, we mean fix-
ing any incorrect characters immediately after they are entered by
pressing backspace and then re-typing the correct character.

To illustrate this effect of strategy, we estimate the mean time to

1https://github.com/Jojadud/EditStrategyAnalysisTool

enter a set of 500 phrases taken from the Enron dataset [41], each
repeated 10 times. We consider a range of variables that contribute
to performance and strategy. Most critically for the purpose of this
example, we consider: (i) the amount of time it takes to enter a single
character; (ii) the amount of time it takes to press the backspace key
to remove a character; (iii) the probability of making a substitution
error; (iv) the probability that a word with a substitution error is
auto-corrected; and (v) the amount of time it takes to substitute a
word using some form of input correction interaction. In practice,
we have varying levels of influence or control over these different
variables but this does not prevent us from investigating their impact.
A very similar approach was used by Kristensson and Müllners [22]
in their analytical investigation of the impact of strategy on the
performance benefit provided by word completions. Where possible
we use values estimated from the previously mentioned dataset [10]
but the interactive tool allows for these values to be freely adjusted
to evaluate different hypotheses. Figure 4 shows the influence on
mean phrase entry time under both a character-level and word-level
correction strategy as the probability of making a substitution error
increases. We can observe that the rate of increase in entry time, as
the input method becomes more error prone, is considerably greater
under the character-level strategy than under the word-level strategy.
The intuitive explanation for this is that the word-level strategy can
benefit from auto-corrections of word errors that would otherwise be
fixed in-place in the character-level strategy. Additionally, the total
time spent on a given word due to repeated cycles of pressing the
backspace key and re-entering the desired character may approach
and eventually exceed the amount of time required to interact at
the word-level and replace the whole word. This analysis motivates
prioritization of input correction methods that facilitate word-level
correction.

4 TEXT CORRECTION SYSTEM

We developed an application to facilitate experimentation with differ-
ent correction tasks and different interaction methods. The interface,
shown in Figure 5, was designed to approximately replicate the
visual appearance of the Messenger application on Meta Quest de-
vices. The primary components of the interface relevant to this work
are the instruction and stimulus text fields (blue background), the
input field (dark gray background), and the keyboard. The keyboard
implemented in this study supports ‘touch’ typing with the index
finger of each hand. The keyboard was placed in the world frame
and did not move automatically with the user. However, the user
could choose to reposition the keyboard for comfort if they wished.
By default, the keyboard was placed at a distance of 25 cm from the
user, had a tilt of 45◦ relative to the vertical plane, and had a width
of approximately 30 cm.

An input decoder is incorporated into the keyboard to provide
auto-corrections. Selectable alternative auto-corrections are dis-

Table 1: Five alternative interaction designs to support mid-air text input correction in VR.

Interaction Indicate Edit Confirm
CARET Directly touch point in

word/sentence to place caret
Press keys on keyboard

TOUCH Directly touch word to display word
alternatives

Directly touch on desired word alternative

RAYCAST Point ray at word, then pinch to dis-
play word alternatives

Point ray at desired word alternative Pinch to insert

GAZE Gaze at word, then pinch to display
word alternatives

Gaze at desired word alternative Pinch to insert

INDIRECT Point indirect cursor at word, then
pinch to display word alternatives

Point indirect cursor at desired word
alternative

Pinch to insert

https://github.com/Jojadud/EditStrategyAnalysisTool


(a) CARET (b) TOUCH (c) RAYCAST

(d) GAZE (e) INDIRECT (f) Context menu detail

Figure 5: Interaction conditions as viewed in the headset.

played above the keyboard as on a typical smartphone keyboard.
The input decoder is also leveraged to provide word alternatives dur-
ing the correction interactions described later in this section. Note
that the keyboard does provide a backspace key and this can be used
at any time to remove the previously entered character.

We implemented five alternative interaction methods leverag-
ing the different input channels available on modern virtual reality
HMDs. For the study reported in this paper, we used the Meta Quest
Pro. All five methods are hand-based. This choice reflects the widen-
ing support of controller-free interactions on mixed reality devices
and the need to provide input correction methods that are consistent
with the input method under use. The five designs are summarized
in Table 1 and described with reference to the function model in-
troduced in Section 3.1. Each method is now briefly described
below. Please also refer to the video figure for demonstrations of the
interactions.

4.1 CARET

The CARET method replicates the character-level correction tech-
nique available on smartphones. The user directly touches the input
field with their index finger to place the caret as shown in Figure 5a.
Character-level edits can then be made using the keyboard. The
caret can be dragged across the input field or placed using discrete
touches.

4.2 TOUCH

The TOUCH method involves touching on a word to display possible
corrections for that word. The context menu containing the possible
corrections appears above the indicated word as shown in Figure 5b.
If present, the user can touch the correct word which will then replace
the erroneous word in the input field. If no suitable corrections are

available, the user may also delete, by pressing the backspace button
on the top left of the context menu, and then re-enter the word using
the keyboard.

4.3 RAYCAST

The RAYCAST method involves indicating a word for correction
by pointing the raycast cursor at the word, and then performing a
pinch gesture to display word alternatives. The desired replacement
is inserted by pointing the raycast cursor at the word in the context
menu, and using the pinch gesture to confirm insertion. The source
of the raycast is the PointerPose transform that is attached to, and
rotates with, the hand, as per Meta Quest developer guidance2. This
interaction is shown in Figure 5c.

4.4 GAZE

The GAZE method involves focusing the eyes on the word to be
corrected, and then performing a pinch gesture to display alternatives.
The core of this method is based on the Gaze + Pinch interaction
technique described by Pfeuffer et al. [31]. The replacement word is
inserted by looking at the desired word, and using the pinch gesture
again to confirm insertion. We sought to incorporate emerging
guidance3 on gaze-based interaction when implementing the GAZE
method. Specifically, we: (1) used a rounded visual style to help
avoid user’s eyes being involuntarily drawn to corners; (2) placed
visual elements at a comfortable viewing distance with separation
between interactive elements; and (3) used subtle visualizations to
provide feedback on highlighted and selected elements. The gaze

2https://developer.oculus.com/documentation/unity/
unity-handtracking/

3https://developer.apple.com/design/
human-interface-guidelines/eyes

https://developer.oculus.com/documentation/unity/unity-handtracking/
https://developer.oculus.com/documentation/unity/unity-handtracking/
https://developer.apple.com/design/human-interface-guidelines/eyes
https://developer.apple.com/design/human-interface-guidelines/eyes


cursor (see Figure 5d) was implemented as a spot light with soft
edges rather than a distinct visual cursor. Gaze hover events triggered
subtle visual highlighting of UI elements.

The Quest SDK gives two independent vectors for the eye gaze.
We cast these vectors onto the UI elements and take the average of
the two intersection points over the 10 most recent observations (at
72 Hz). This buffer size was chosen to balance between responsive-
ness and jitter. The Quest system eye gaze calibration was performed
by all participants prior to launch of the experiment application.

4.5 INDIRECT

The INDIRECT method introduces a temporary indirect cursor that
is controlled by hand movements. To trigger display of the indirect
cursor, the user must first turn over their hand such that the palm is
facing up. Rotating the hand back to a neutral posture will hide the
cursor. Each time the indirect cursor is triggered, it is initialized to
be at the center of the input field. The initial position of the hand
when the indirect cursor is triggered then serves as the reference
point for controlling the cursor.

Otherwise, the interactions with the word correction context menu
are the same. The word in need of correction is indicated by pointing
the indirect cursor and pinching. The replacement word is then
selected and confirmed by pointing the indirect cursor and pinching.

5 USER STUDY: COMPARING CORRECTION METHODS

We now describe our user study designed to evaluate the perfor-
mance and usability trade-offs for the five alternative interactions
introduced in Section 4. We examine performance by means of task
completion time and usage rates. We capture usability by means
of a questionnaire in which users rate the different interactions in
terms of speed, accuracy and comfort. These quantitative metrics are
complemented by user feedback and observations collected during
the study.

5.1 Protocol
Participants were exposed to each interaction condition in sequence
and performed corrections in two stages. Stage 1 was a review
correction task and required the participant to correct a pre-existing
phrase containing errors. Stage 2 was an input correction task and
required the participant to transcribe a stimulus phrase and correct
any errors that occurred. Text entry was always performed using
the mid-air keyboard described in Section 4. There were 3 practice
phrases and 10 test phrases in each stage, giving a total of 30 practice
phrases and 100 test phrases across the two stages and five conditions.
The sequence of conditions was balanced over participants using a
fully balanced Latin square (10 possible order permutations with
five conditions). The Quest system eye gaze tracking calibration was
completed by all participants before the experimental application
was launched.

Participants were required to correct all errors in the phrase in
order to proceed to the next phrase. This was enforced by preventing
submission and playing an error tone if the participant tried to submit
the phrase with errors remaining. The error tone prompted the
participant to identify and correct any remaining errors.

5.2 Stimulus Phrases
The phrases for the review correction task were taken from real erro-
neous submissions collected in the mid-air typing study conducted
by Dudley et al. [10]. The original source of these phrases was the
MacKenzie phrase set [29]. The three practice phrases remained
the same throughout the study but all test phrases were unique and
randomly assigned to conditions based on a stratified allocation of
the number of errors in each phrase. To approximate the relative
frequency of word edit distance shown in Figure 3a, we allocate: (i)
seven phrases with a single word error, (ii) two phrases with two
word errors, and (iii) a single phrase with three word errors. The

Figure 6: Mean correction time per error in the review correction
task. The ‘*’ symbol indicates a significant difference between
conditions.

ordering of phrases within a condition was such that all single word
error phrases would appear before two word error phrases and the
single phrase with three word errors would appear last. The 50
unique stimulus phrases used in the input correction task were taken
from the Enron mobile message dataset [41] after filtering based on
phrases containing four words or more, and 40 characters or less.

5.3 Participants
20 participants were recruited for the study by convenience sam-
pling and poster-based advertisement. The recruited participant
group was comprised of 5 females and 15 males with a mean age of
26.5 years [19,55]. All participants were right handed (this was not
a criteria for participation). When completing the pre-study demo-
graphics questionnaire, participants also rated their prior experience
with VR on a scale from 1 (Very Inexperienced: I have only ever
used VR once or twice before, if at all.) to 5 (Very Experienced: I use
VR several times a month). The median response was 3, suggesting
a good mix of participants with varying levels of familiarity.

6 RESULTS

6.1 Stage 1: Review Correction
As described in Section 5.2, the review correction task stimulus
phrases were selected to contain a set number of word errors within
each phrase. To understand the correction efficiency of each interac-
tion method, we compute the mean correction time per error. The
correction time per error is simply the total time taken to fix all
errors in a phrase divided by the number of initial word errors.

Figure 6 plots the distribution of mean correction time per error
over the participant group. The mean correction times per error
were CARET: 11.02 s, TOUCH: 7.82 s, RAYCAST: 9.55 s, GAZE:
10.55 s, and INDIRECT: 13.94 s. A repeated measures analysis of
variance shows a significant effect for the interaction method on
correction time (F4,76 = 9.729, η2

p = 0.339, p < 0.001). A multiple
comparisons test with Bonferroni correction finds that TOUCH is
significantly faster than CARET (p = 0.024) and INDIRECT (p <
0.001) but there is no significant difference between TOUCH and
RAYCAST or TOUCH and GAZE.

This result suggests that the TOUCH method is more efficient at
correcting errors than CARET. This finding is consistent with the
analytical results from Section 3.2 which suggests that word-level
correction is likely to be more efficient that character-level correction.
Although correction time per error was lower in RAYCAST and
GAZE compared with CARET, this difference was not significant.
The INDIRECT interaction method performed worst which may stem
from the lack of user familiarity with such an interaction method in
a VR setting.



Figure 7: Mean entry duration in the input correction task. The ‘*’
symbol indicates a significant difference between conditions.
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Figure 8: Count of phrases (out of 10) where the primary input
correction interaction was used.

6.2 Stage 2: Input Correction
In the input correction task, the participant must both enter the
phrase and correct any errors that occur. The entry duration there-
fore reflects the combined impact of text entry and correction actions.
Figure 7 plots the distribution of entry durations over the participant
group. The mean entry durations were CARET: 24.82 s, TOUCH:
26.47 s, RAYCAST: 27.06 s, GAZE: 30.09 s, and INDIRECT: 30.54 s.
A repeated measures analysis of variance shows a significant ef-
fect for the interaction method on entry duration (F4,76 = 4.058,
η2

p = 0.176, p = 0.005). A multiple comparisons test with Bonfer-
roni correction finds that CARET is significantly faster than GAZE
(p = 0.030) and INDIRECT (p = 0.013) but there is no significant
difference between the other conditions.

The primary correction interaction method was fixed for a given
condition within the input correction task, however, it was not un-
common for participants to fallback on using backspace to correct
errors or indeed to enter the phrase without making any errors. Fig-
ure 8 is a boxplot of the number of phrases in which the primary
correction interaction method was used by participants out of the
10 test phrases in the input correction task. We can observe that the
primary correction interactions were typically used in less than half
of the entered phrases. It is interesting to note that the median usage
counts for TOUCH and GAZE are marginally higher than CARET
while the usage counts for RAYCAST and INDIRECT are marginally
lower.

6.3 Post-Study Questionnaire Responses
At the conclusion of the study, participants completed a question-
naire examining their experience of the five interaction conditions
and their preferences. Participants responded to three statements re-
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Figure 9: Participant responses to statement, “The technique made
it easy to edit text quickly.” on a five-point Likert scale from 1-
Strongly Disagree (SD) to 5-Strongly Agree (SA).
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Figure 10: Participant responses to statement, “The technique made
it easy to edit text accurately.” on a five-point Likert scale from
1-Strongly Disagree (SD) to 5-Strongly Agree (SA).
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Figure 11: Participant responses to statement, “The technique was
comfortable to use.” on a five-point Likert scale from 1-Strongly
Disagree (SD) to 5-Strongly Agree (SA).

lating to their experience of the interaction methods in terms of speed,
accuracy and comfort. Responses were collected on a five-point Lik-
ert scale (1-Strongly Disagree (SD), 2-Disagree (D), 3-Neutral (N),
4-Agree (A), 5-Strongly Agree (SA)). Figures 9 to 11 show the dis-
tribution of responses for speed, accuracy and comfort respectively.
A Friedman’s test shows a significant effect for interaction method in
terms of speed (χ2(4) = 16.46, p = 0.0025) and accuracy (χ2(4) =
10.29, p = 0.0358). Running multiple comparisons with Bonferroni
correction reveals that responses are significantly more positive in
terms of speed for TOUCH (p = 0.0034) and GAZE (p = 0.0405)
relative to CARET. For accuracy, a significant difference was only
found between TOUCH and RAYCAST (p = 0.0213).

Participants were also asked to indicate their most preferred inter-
action condition for the review correction task, the input correction
task, and overall. The captured responses are summarized in Table 2.
The most preferred method in the review correction task was Gaze
(10) followed by Touch (7). For input correction, however, Caret (9)
was the most preferred method. Overall, the Gaze (8) and Touch (8)
methods were equally preferred.



Table 2: Interaction method preferences for the review and input
correction tasks, as well as overall.

Condition Review Input Overall
CARET 0 9 0
TOUCH 7 4 8
RAYCAST 3 2 2
GAZE 10 5 8
INDIRECT 0 0 2

6.3.1 Qualitative Feedback and Observations
Participants were provided with space to write comments reflect-
ing on the positive and negative aspects of each method. Two of
the most prominent themes common to these comments were the
familiarity of the CARET method (“Similar to mobile phone so very
familiar” (P6); “Similar experience to phone” (P9); “Same as smart-
phone” (P14); “Similar to everyday typing on the phone” (P15);
“Follows the design of the smartphone interaction” (P18)) and the
reduced physical effort required by the GAZE method (“Super fast
and accurate compared to physical movement of hand” (P4); “Does
not require physical access to text” (P8); “Felt an extension to the
brain” (P13); “Least physical movement involved” (P16); “Less
effort to edit” (P20)). The CARET method is indeed very similar to
the interaction provided on most smartphones. The importance of fa-
miliarity is a critical factor for the success of text entry methods [19]
and it seems reasonable to expect that this may extend to aspects
of the supported input correction interactions. The feedback on the
GAZE method is positive and corroborates the preference results
and ratings in terms of speed. A key challenge that we observed for
participants in the GAZE condition, however, was that experienced
accuracy of the gaze tracking varied from person to person. When
tracking issues were encountered during the experiment, we did run
the eye gaze tracking calibration process again for the participant.
This resolved most cases but three participants in the study had
persistent issues.

7 DISCUSSION

This paper has presented an investigation of interaction design for
text input correction in VR. We observed that word-level error cor-
rection is more efficient than character-level error correction when
fixing errors in previously inputted phrases, but that this efficiency
does not necessarily translate to fixing errors at input time. Our re-
sults suggest that a comprehensive text input system for VR should
provide both word-level and character-level interaction methods.
Fortunately, the interaction methods evaluated in this study could in
fact be delivered in combination. For example, CARET and TOUCH
could be distinguished by dwell or double-tap during the indicate
phase of the interaction. The preference results presented in Ta-
ble 2 also suggest that users may appreciate the seamless integration
of complementary interaction methods. For example, TOUCH and
GAZE could be delivered in a complementary manner by toggling
between modes depending on whether the hand is in a preparatory
posture for performing the pinch gesture. Similarly, although the
Raycast method was generally found to be less efficient than Touch,
Gaze and Caret, there may be value in supporting Raycast-based
error correction if the text input method also employs a Raycast
interaction. This as an example of the more general anticipated
requirement for consistency between input and correction methods.

As reviewed in Section 2, Li et al. [27] focused on caret-based
correction using a controller. The fastest controller-based method
(WBs-CCc) in Li et al.’s study produced a mean correction time of
7.98 s. This is faster than the mean correction time for the Caret
method (11.02 s) in our study leveraging the headset hand tracking,
but comparable to the Touch method (7.82 s). This suggests that,
with careful design, correction methods leveraging hand tracking can

achieve efficiency comparable to controller-based methods focused
on caret control.

The results of the user study also provide some preliminary evi-
dence of the potential for gaze in delivering efficient text correction
interactions. In a review correction scenario, the task of locating
word errors in a phrase requires sequential fixation on each word.
In the ideal case, the user can then simply pinch to display the con-
text menu when they encounter an erroneous word. This is a more
implicit use of gaze input than, for example, the task of forcibly
moving one’s eyes to each key in a Qwerty layout to enter characters
with a gaze-based dwell timeout.

The five methods examined differ in terms of the hand and arm
posture that they require the user to maintain. Figure 11 suggests
that Raycast, Gaze and Indirect were generally perceived as less
comfortable which is consistent with the observation that all three
methods required the arm to be held cantilevered out from the body
with the hand in a posture ready to pinch. By comparison, the
Caret and Touch methods allowed the hand and arm to be placed
in the user’s preferred posture in between interaction events. As
briefly reviewed in Section 2, there may also be opportunities for
incorporating haptic feedback to promote more relaxed or effective
postures [16] and to improve user feedback to limit unnecessary
motions [7].

8 LIMITATIONS AND FUTURE WORK

We acknowledge several limitations of this work that should be
considered when interpreting the findings. First, the typing and error
correction behavior analyzed in Subsection 3.2 is based on data
from a transcription task. This does not necessarily represent typical
input or correction behavior. Second, due to the number of methods
examined, the sample size per method per stage is relatively small
and should be expanded in future work. Nevertheless, this current
work does inform prioritization of methods for further examination,
and also offers some insight regarding immediate efficacy given
short exposure and limited training. Third, the participants in our
study were mostly young and male and so the efficiency measures
reported may not generalize to the wider population.

Finally, the gaze-based interaction method described in Subsec-
tion 4.4 represents a relatively simple implementation that may have
been negatively impacted by complex considerations around the
design of gaze-based interactions. Our approach to filtering the gaze
signal will have introduced some lag that can be detrimental to user
performance [11] and exacerbate late-trigger errors [24]. Further,
although our visual representation of the gaze intersection point was
designed to avoid drawing focus, it remains possible that participants
experienced the ‘fleeing cursor’ problem if the eye gaze calibration
was ineffective of drifted over time. Future work involving eye
gaze interactions in this setting should consider follow up testing
post-calibration and at intervals to assess the accuracy experienced
by participants [28].

This work also highlights three key avenues requiring further
research. First, we have chiefly focused in this paper on character
and word-level correction. Supporting sentence and paragraph-level
edits, demanding selection and context commands like copy, cut
and paste, is likely to require other forms of interaction. Second,
there are likely opportunities for improving the efficiency of caret
control in a mid-air setting, building upon work such as that by Hu
et al. [17]. Third, the study presented in this paper intentionally
avoided highlighting potential errors in the input field. In practice,
highlighting very likely errors can be helpful to the user and may
provide the basis for modulating the behavior of the correction
interactions. For example, a very likely error fixated on with gaze
might bring up the context menu without the need for performing
the pinch gesture.



9 CONCLUSIONS

In comparison with the considerable research that has introduced
and evaluated diverse methods for inputting text in VR, the task of
correcting text input errors has received very limited attention. In
this work, we seek to address this gap in several key ways. First,
we describe the task of designing and evaluating a text input correc-
tion system for use within VR, defining standard terminology and
characterizing the frequency and impact of text input errors in VR.
This analysis suggests that a word-based correction strategy is likely
to outperform caret-based text correction in a mid-air setting. We
then present an empirical investigation of five alternative interaction
methods for correcting errors in VR. We find that word-level touch
based error correction provides the most efficient way to correct
pre-existing errors. However, when performing input correction dur-
ing text entry then a character-level caret-based may be preferable.
These contributions and findings advance our understanding of the
requirements for efficient and usable mid-air text input correction
methods in VR.
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