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A Review of User Interface Design for

Interactive Machine Learning
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Interactive Machine Learning (IML) seeks to complement human perception and intelligence by tightly in-
tegrating these strengths with the computational power and speed of computers. The interactive process is
designed to involve input from the user but does not require the background knowledge or experience that
might be necessary to work with more traditional machine learning techniques. Under the IML process, non-
experts can apply their domain knowledge and insight over otherwise unwieldy datasets to find patterns
of interest or develop complex data-driven applications. This process is co-adaptive in nature and relies on
careful management of the interaction between human and machine. User interface design is fundamental
to the success of this approach, yet there is a lack of consolidated principles on how such an interface should
be implemented. This article presents a detailed review and characterisation of Interactive Machine Learn-
ing from an interactive systems perspective. We propose and describe a structural and behavioural model
of a generalised IML system and identify solution principles for building effective interfaces for IML. Where
possible, these emergent solution principles are contextualised by reference to the broader human-computer
interaction literature. Finally, we identify strands of user interface research key to unlocking more efficient
and productive non-expert interactive machine learning applications.
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1 INTRODUCTION

Machine Learning (ML) supports the construction of mathematical models that can describe and
exhibit complex behaviour without the need for explicit programming. These techniques have
demonstrated advanced functionality in a wide variety of tasks such as recognising speech, clas-
sifying images, and playing games. This functionality is built through a process of training that is
not dissimilar from the human process of learning. In general terms, the algorithm learns to recog-
nise or represent a concept through repeated exposure to samples of that concept. A mathematical
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model that accurately represents a concept for some functional purpose is the goal product of a
machine learning algorithm.

Despite the success of these techniques, their use as a development tool remains largely con-
fined to expert practitioners. However, the ability of these approaches to deliver functionality
without explicit programming makes them attractive to a broad group of potential users. The re-
cent explosion in broad interest in machine learning further exacerbates the shortfall in intuitive
systems that allow non-experts to apply these techniques. Interactive Machine Learning (IML) has
attracted interest among human-computer interaction (HCI) researchers due to the unique aspects
of establishing effective human interactions under this paradigm.

IML (defined in detail in Section 2) makes machine learning techniques more accessible by care-
ful framing of the training process as an HCI task. The IML process involves the user in the training
process by, at the simplest level, using human input in the example selection, creation, and labelling
process. A machine learning practitioner may be required to deploy the underlying algorithm for
use in the IML system but is not essential to the training process. In an ideal implementation,
the machine learning-naïve end user can construct their own learned concepts by creating or col-
lecting training data according to their need. In practice, constructing such a system is a major
challenge for both the machine learning practitioner and for the user interface designer. This ar-
ticle focuses primarily on the interface design challenge but does highlight points of intersection
with the technical challenges for the machine learning practitioner.

Early efforts by Ware et al. (2001) and Fails and Olsen (2003) demonstrated that typical machine-
learning tasks could be framed to take advantage of human input, and over the past decade and a
half the IML process has seen increasing attention within the HCI community. The user provid-
ing input to the IML system need not possess any deep understanding of the models with which
they are interacting. The value of the approach is perhaps most evident when one considers the
potential to allow a domain expert to train a model. Researchers have demonstrated IML systems
that leverage domain expertise in a range of specific applications including animal behaviour an-
notation (Kabra et al. 2013), insurance claims auditing (Ghani and Kumar 2011), and conducting
systematic reviews of published medical evidence (Wallace et al. 2012). In these applications, the
effort required by the user is significantly reduced as the model improves its understanding of
the concept being trained. Wallace et al. (2012) achieved a reduction in user workload of approxi-
mately 40% by exploiting the predictions of the trained model to mark particular research papers as
irrelevant. In this way, IML seeks to apply the complementary strengths of humans and computers.

The IML workflow is inherently co-adaptive in that the user and the target model directly in-
fluence each other’s behaviour. It is important to recognise that it is in fact the interactions, as
an emergent property of the interface, that must actually accommodate the changing behaviour
of the user in response to the model. Appropriate design of the interface is critical to the success
of such systems and this presents a unique user interface design challenge. The approach relies
on the transformation of the data inspection and correction task into an intuitive and productive
dialog between human and machine. Achieving this is non-trivial.

Designing the interface for an Interactive Machine Learning application exposes four key chal-
lenges. First, users can be imprecise and inconsistent. A user may not strictly adhere to a concept
during the training process or may introduce their own errors and biases into the learning process.
Poor training leads to poor models but unless users perceive their own deficiencies, this failure is
attributed to the system.

Second, there is a degree of uncertainty when relating user input and user intent. Users may
assign training data based on features that they perceive in an example that the system does not
or cannot model. In addition, the fact that a user did not assign an example to a concept does not
necessarily imply that it is a counterexample.
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Third, interacting with a model is not like interacting with a conventional information structure
through a user interface. The machine learning model evolves in response to user input but not
necessarily in a way that is perceived as intuitive or predictable by the user.

Fourth, training is open ended. For example, if a user is designing a part in a Computer-Aided
Design (CAD) system, then the state of completion is more or less binary: the task is complete
when the part is fully specified. By contrast, training a model to be 100% accurate may be both
undesirable and impossible. Furthermore, IML has seen extensive use in exploratory and creative
applications where the actual model is perhaps of secondary importance to the process itself.

These four key challenges in aggregate make human-centred machine learning, and the IML
process specifically, a design challenge that is far more complicated than simply integrating the
relevant components.

1.1 Guidance for the Designer

This article consolidates research findings related to interface design for IML with the objective
of providing guidance to designers. It seeks to bring a binocular perspective to the challenge of
building an effective Interactive Machine Learning system: a unified consideration of the applica-
tion of intelligent algorithms and the design of the user interface. We present both a structural and
behavioural breakdown of an IML system based on our synthesis of the literature. The structural
breakdown divides the system into its constituent components (the user, the interface, the data,
and the model) with the objective of helping designers think about how they might architect such
a system. The IML interface is further decomposed into four distinct interface elements that serve
different functions within the broader procedure. Awareness of these distinct interface elements
can help designers think about how they present information to users and what interactions they
promote.

The behavioural breakdown separates the process of interactively building a model into sub-
tasks. It is important to note, however, that these tasks may overlap and/or be performed iter-
atively. The structural and behavioural breakdowns are not intended to serve as blueprints but
rather to support rich discussion of design considerations with clearly defined terminology. This
formalisation of the design space will contribute to a better foundation for exchange of concepts
in this emerging field.

A further contribution of this article is the identification of emergent solution principles that
can help guide IML interface designers more generally. The six solution principles identified and
described in detail in Section 6 are as follows:

(1) Make task goals and constraints explicit
(2) Support user understanding of model uncertainty and confidence
(3) Capture intent rather than input
(4) Provide effective data representations
(5) Exploit interactivity and promote rich interactions
(6) Engage the user

1.2 Outline

The remainder of the article is organised as follows. Section 2 provides a detailed definition of
Interactive Machine Learning and seeks to highlight its similarities and distinctions from related
techniques. An overview of prominent efforts at making machine learning techniques and ad-
vanced analytics more accessible to non-experts is presented in Section 3, categorised by under-
lying data type. Section 4 presents a structural characterisation of the key interface elements of
a generalised IML system. An abstracted description of the typical IML process is presented in
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Section 5. Section 6 is an attempt to consolidate recent efforts by identifying a number of common
solution principles. We highlight that tackling user interface design challenges and advancing the
state of the art requires further research in several key areas. We therefore propose four distinct
strands of research in Section 7 for enhancing the performance of Interactive Machine Learning
applications from a user interaction perspective. Finally, we summarise the key findings in this
article in Section 8.

2 CONTEXT AND DEFINITIONS

This article examines Interactive Machine Learning from a user interface design perspective. De-
veloping an effective IML system is an interdisciplinary effort that draws on both the machine
learning and HCI domains. To meet the objectives of this article, we concentrate primarily on IML
studies that present user evaluations and offer suggestions for design of the interaction compo-
nent. Limited attention is given to the underlying technical requirements for the machine learning
component of the system beyond their implications for user interaction. In this section, we first
seek to establish clear definitions for the terminology used throughout this article.

2.1 Interactive Machine Learning Definition

Interactive Machine Learning is an interaction paradigm in which a user or user group iteratively
builds and refines a mathematical model to describe a concept through iterative cycles of input
and review. Model refinement is driven by user input that may come in many forms, such as pro-
viding indicative samples, describing indicative features, or otherwise selecting high-level model
parameters. Interactive Machine Learning is distinct from classical machine learning in that hu-
man intelligence is applied through iterative teaching and model refinement in a relatively tight
loop of “set-and-check.” In other words, the user provides additional information to the system
to update the model, and the change in the model is reviewed against the user’s design objective.
Under this workflow, the change in the model at each iteration may be relatively small. This is in
contrast to more traditional machine learning approaches where the workflow requires wholesale
pre-selection of training data and significant changes in the model per execution step. Amershi
et al. (2014) present a detailed discussion of the distinction between IML and classical machine
learning as well as a series of cases studies that highlight the value of the technique. The IML
process is characterised by the user being the principle driver of the interaction to deliver desired
behaviour in the system. This does not mean that the computer has no influence on the process or
does not make independent decisions. Indeed, the application may, for example, intelligently select
a subset of data for review. The notion of the user being the principle driver is more reflected in the
fact that the IML application seeks to provide the user with control over the high-level behaviour
of the system. This may or may not necessarily be exercised in each discrete interaction.

Fails and Olsen (2003) introduced the concept of IML in the interactive image processing tool
Crayons, as being chiefly focused on the review and correction of classifier errors. Crayons allows
the user to draw directly on images to guide the training of an image classifier. The user reviews
the current classifier performance based on its classification of image regions and provides more
feedback by drawing on the image if necessary. ReGroup (Amershi et al. 2012) is a tool leveraging
the Interactive Machine Learning paradigm to assist users in creating custom contact groups in a
social network context. The system trains a model to classify contacts according to their likelihood
of membership to the contact group being created. The system takes a selection of a contact for
inclusion as a positive sample and the skipping of a contact in an ordered list as an implied nega-
tive sample. The user receives feedback in the form of an ordered list of suggested contacts after
each selection. Just like Crayons, the user refines the behaviour of the model with incremental
improvements derived through iteratively applied user input.
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Fig. 1. The user plays a central role in Interactive Machine Learning by actively training the model in an

iterative fashion. The user interface is a critical component of this interaction.

The at-completion model behaviour in the Crayons and ReGroup systems described above could
of course be replicated using a standard machine learning approach that takes the collection of
user inputs as a batch of labelled data. However, in the applications discussed, it is the process of
refining the model itself that helps elicit the user input. These two examples help highlight the
fact that the benefit of Interactive Machine Learning is observable in situations where the precise
design objectives of the user are unclear and/or data labels cannot be obtained a priori.

More recent work extends the application of the interactive component beyond just review and
correction of classifier errors to other stages of the model construction exercise, i.e., the choice
of features, the choice of models, debugging and the evaluation of performance. In the context of
this article, we refer to a comprehensive IML process as one in which the system delivers all of the
necessary functionality to allow a user to configure then train a model on their data and deploy it
in the target application (this full generalised workflow is described in detail in Section 5).

During the iterative refinement stage, the user drives the IML process in a tightly coupled ar-
rangement between human and machine. The key elements and flow of information under this
methodology are illustrated in Figure 1. The user’s interaction may be viewed as a form of pseudo-
programming in that the user builds functionality through demonstration and labelling samples
rather than by directly writing code (Gillies et al. 2016). As an interaction paradigm, Interactive
Machine Learning exists at the overlap between computer-as-tool and computer-as-partner as de-
scribed by Beaudouin-Lafon (2004). An IML application certainly provides a tool in that it supports
the user in building a model fit for their purposes. At the same time, the user and computer en-
gage in an interaction that is a partnership where both sides must respond to input and to some
extent, infer desired actions. The metaphor of moving an object with high and/or variable inertia
along a desired trajectory provides a very high level interaction model for IML. This interaction
model captures the fact that inputs may produce marginal or no response in the object and that a
sequence of inputs is required to drive change.

The Interactive Machine Learning approach is likely to see initial adoption at the two extremes
of user-data interaction tasks: at the lower complexity end, users selecting examples of things that
they do and do not like; and at the higher complexity end, users (and even developers) applying
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Fig. 2. Structural breakdown of a generic IML system. The user steers the model towards a desired concept

by assigning or creating training data. The interface may also support direct interaction with the model by ex-

posing parameters, editable structures, and choice in alternative techniques. Not independently represented

in this figure but encompassed by the interface component, is the conceptual model for the system that

frequently provides an abstraction layer between the user and the manipulated objects.

their domain expertise to refine a classifier or build some other intelligent functionality (Groce
et al. 2014).

From a structural perspective, we separate an IML system into four key components: (1) the user,
(2) the model, (3) the data, and (4) the interface. These components are summarised in Figure 2.
The user drives the process by providing feedback and steering model training. The model is the
component being trained. The data are a collection of the pre-existing and newly created points
on which the model is trained. The interface is the bridge between the user and the model and data
and provides the basis for interaction. The interface component is the primary focus of this article
and will be dissected further in Section 4. We briefly define the role of each of these components
within the IML process below.

2.1.1 User. As has been reiterated several times, the user is the main driver of the IML process.
An assumption is made that the user possesses no deep understanding of machine learning tech-
niques. Furthermore, it is unreasonable to expect a typical end-user to appreciate the subtleties of
probabilistic inference. The user may possess significant domain expertise relevant to interpreta-
tion of the data and evaluation of model outputs. It is also worthwhile highlighting that the “user”
may in fact be multiple users interacting with the system serially or in parallel.

The user is a dynamic and potentially unreliable component of the process. A single user’s
concept may drift over time (Kulesza et al. 2014) and inter-user variability in subjective annotations
may be high (Curran et al. 2012). Unaddressed, these deficiencies are likely to have a negative
effect on trained model quality. Fortunately, careful design of the interface, both in terms of the
information presented and the guidance provided, can help to improve the consistency of users.

2.1.2 Model. The model is the component of the system that takes inputs and determines
appropriate outputs based on its current understanding of the concept/process the user is seeking
to capture. The high-level goal in machine learning generally is to build a model that accurately
describes the relationship between input and output for a given concept based on data indicative
of that concept. In machine learning, this model may be implemented using a wide variety of
different algorithms and architectures. In Interactive Machine Learning, it is the model that the
user is ultimately seeking to refine through their interactions. The user may manipulate the model
directly, i.e., by adjusting parameters, or indirectly, i.e., by relabelling or adding new data. The
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machine learning community provides an extensive range of modelling techniques, each with
their corresponding advantages and disadvantages. It is important to note, too, that certain models,
like certain users, may be unreliable in that their behaviour is not necessarily deterministic.

Model/algorithmic agnosticism is a design objective for IML systems but not readily achievable.
An IML system that allows the user to switch between different model structures and algorithms
while maintaining the same or similar interfaces and interactions provides greater flexibility with-
out a significant re-familiarisation cost. Certain machine learning techniques are more suited to
direct interaction and partial inspection than others. The machine learning community is hard
at work developing new and more powerful techniques. There is growing interest in probabilistic
machine learning methods that better capture and represent uncertainty (Ghahramani 2015). How-
ever, techniques such as deep neural networks (which have recently made significant advances)
deliver functionality without any clear way to support inspection or interaction.

An IML process may also leverage multiple models, either to deliver ensembled functionality or
for comparative evaluation purposes. An ideal IML system architecture would allow for state-of-
the-art techniques to be introduced with minimal adjustment.

2.1.3 Data. The data component in an IML system is analogous to the source code in a con-
ventional program. The user selects, describes or generates data to indicate how the model should
behave in response to certain inputs. It can be useful to think of such a labelled data point as a
training sample. Unlabelled data may also contribute to the construction of a model by inferring
its association with other data points. Data type agnosticism is also a design objective for IML sys-
tems but similarly difficult to achieve. Users are likely to value the ability to apply a familiar IML
system to whatever data type is dictated by the problem domain. IML systems have been devel-
oped targeting a range of data types including images, text, and motion data. Section 3 provides a
survey of IML applications across different data types. The features relevant to each data type may
vary considerably. Early studies in IML typically avoided user involvement at the feature level but
there has been a recent shift towards greater transparency and even user involvement in feature
selection. It does indeed seem desirable to apply domain expertise at the feature selection level in
certain circumstances provided effective interfaces and interaction methods exist.

2.1.4 Interface. The user interface and its interplay with the user is the central focus of this
article. A further decomposition of the interface into its potential sub-elements is presented in
Section 4. Although this section presents a structural breakdown of an IML system, it is useful
to highlight the distinction between the interface component and the actual interactions that it
supports. The interactions available to a user are dictated by the interface, but as a designer, it
is of course useful to think in terms of interactions when building an interface. Our discussion
of the user interface design for IML thus encompasses the design of corresponding interaction
techniques, and these two aspects are distinguished where possible.

The interface component is responsible for the bidirectional feedback between the user and
the model/data. It must support both the input and output mechanisms necessary to provide
this functionality. Constraints imposed on the richness of the labelling or demonstration process
represent an efferent filter on the user’s intent that may have negative consequences for user
satisfaction and model quality. Limitations of the visual representation of sample points for
review represent an afferent filter on the user’s perception and understanding that may also
degrade performance and satisfaction.

A central argument in this article is that the interface design is critical to the success of the
IML process. Careful management of the user workflow and interactions can address the four key
challenges raised in Section 1: (i) users can be imprecise and inconsistent, (ii) there is typically a
degree of uncertainty in the relation between user input and user intent, (iii) interacting with a
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model is not like interacting with a conventional information structure through an interface, and
(iv) training is open ended.

2.2 Related Domains

The machine learning community has sought to make its techniques more accessible to end users.
There are a growing number of packaged toolkits (e.g., WEKA (Hall et al. 2009) and Scikit-learn
(Pedregosa et al. 2011)) and automated functionality (e.g., The Automatic Statistician (Lloyd et al.
2014)). Fiebrink’s thesis introduces Wekinator (Fiebrink 2011), a stand-alone application for ap-
plying supervised machine learning to real-time data streams and particularly suited to music
composition and performance.

The concept of “Machine Learning as a Service” (MLaaS) has also recently emerged in response
to the demand for advanced analytics and data-driven applications within industry (Ribeiro et al.
2015). Many service-oriented machine learning platforms now exist including those offered by
major companies such as Google, Microsoft, Amazon, and IBM. While these services do provide
access to machine learning functionality paired with powerful computing back-ends, they still
require familiarity with the techniques for their effective use.

Exposure of machine learning techniques to non-experts has occurred only more recently
through applications such as email filters and recommender systems. Recommender systems are
a form of Interactive Machine Learning in that the model of the user’s preferences is iteratively
constructed through interpreting their actions such as liking, disliking, purchasing, and reviewing.
However, in many of these applications the user may be unaware that they are interacting with
an algorithm that is learning in response to their inputs. Some recommender systems do explicitly
inform users that they can influence the behaviour of their preference model and/or provide an
interface to do so, but even in these cases, the interaction typically focusses more on data capture
than on a bipartite process of closed-loop model refinement. In this article, we specifically focus on
Interactive Machine Learning from an interface design perspective. While the algorithmic back-
ends of recommender systems and their considered approach to implicit and explicit user input
is certainly relevant to understanding Interactive Machine Learning more generally, the lack of
focus given to the process excludes them from broader discussion in Section 3.

It is useful to explicitly highlight the distinction between Interactive Machine Learning and the
related concept of Active Learning. Active Learning is a machine learning technique that focuses
on selecting new points for labelling by the user. The key distinction from IML is that point se-
lection is driven by the learner rather than the user. IML may also leverage learner-driven point
selection strategies but not to the exclusion of user-driven input. For a survey of Active Learn-
ing, see Settles (2010). Reinforcement Learning is a machine learning technique that guides the
learner towards a desired behaviour based on simple reward feedback. Research has examined the
potential for humans to be positioned inside this loop as a means to steering the Reinforcement
Learning algorithm. Knox and Stone (2015) provide a detailed overview of a series of experiments
on reinforcement learning based on human derived reward feedback.

Beyond human–computer interactions, IML related concepts have also been explored in
human–robot interaction research (Losing et al. 2015; Javdani et al. 2016; Gopinath et al. 2017).
Gopinath et al. (2017) are motivated by the need to adjust levels of robotic assistance to accommo-
date the user’s requirements. A motor impairment injury or illness may result in dynamic levels
of capability even among a single user through the stages of recovery or degeneration. Support-
ing user-driven customisation of the level of assistance is a prime application for IML. There is
also some overlap between IML and aspects of Knowledge Discovery in Databases (KDD) (see
Holzinger (2013)) and Interactive Optimisation (see Meignan et al. (2015)). IML differs from these
fields in the emphasis given to the role of the user and the process rather than the end goal.
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3 SURVEY OF IML APPLICATIONS

Interactive Machine Learning has been applied over a diverse range of data types for a variety
of end use applications. In this section, we present a survey of existing approaches and applica-
tions in Interactive Machine Learning. This article does not claim to provide an exhaustive survey
of research in Interactive Machine Learning or its applications. The literature discussed herein is
that which (i) helps to illustrate the different dimensions of the IML paradigm and/or (ii) gives
special emphasis to the interface design considerations of IML systems. A provisional list of liter-
ature was obtained by performing a Scopus search on the quote-enclosed phrase Interactive Ma-

chine Learning. The full set of search results was reviewed and culled based on its contribution to
(i) and/or (ii) above. Literature referenced by that in the result set is also included where relevant.

The categorisation employed here is based on the underlying data type explored in the applica-
tion. It is important to note, however, that many of the interface features and algorithmic methods
used are common across data types. An effort is made to highlight the unique requirements of de-
veloping an IML system for each data type while extracting the common features that generalise
across application areas.

3.1 Text

Machine learning techniques are well suited to application on textual data. Text in specific domains
can typically be obtained in high volumes and often already incorporates some degree of manual
labelling. Modern spam filters are one example of effective machine learning based on textual data
to improve the user experience.

Interactive Machine Learning systems have been developed to target use cases where a more
constrained or custom categorisation is desired. Such categorisations and the features that char-
acterise them may be difficult to tease out from domain experts and/or may be difficult to express
programmatically. Wallace et al. (2012) present abstrackr, an online tool to support screening for
systematic reviews of published medical evidence. The system can iteratively improve its classi-
fication of relevant citations as the user works through the provisional list, starting their manual
evaluation with publications of highest relevance. In pilot evaluations, the system was able to re-
duce workload by approximately 40% by successfully reclassifying publications in the provisional
list as irrelevant.

The similarly laborious task of statutory analysis is targeted by Šavelka et al. (2015). Šavelka
et al. deploy an IML system to facilitate the process of reviewing regulatory frameworks to identify
provisions relevant to a given topic (preparedness and response to public health emergencies in
the case of the study). The user is presented with a classification of provisions and can modify the
label assigned. They may also suggest terms that are important to this classification. At any time,
the user may request that the model be re-trained based on their most recent feedback iteration.
Interestingly, Šavelka et al. demonstrate that the model trained in one jurisdiction, i.e., Kansas,
can be advantageously reused in another jurisdiction, i.e., Alaska, for the same topic analysis.
This system is a prime example of the potential for IML to assist the user in completing a highly
problem-specific task while also allowing the expended effort to be leveraged on related datasets.

Kim et al. (2015a) demonstrate an interactive interface for building and editing classifications
of student code submissions. The approach was successfully applied to grading of coding tasks
by allowing teachers to choose class exemplars and thereby generate a classification of different
student answer types. Yimam et al. (2015) apply an interactive-learning process to the task of
annotating medical abstracts. Huang et al. (2013) show the potential of IML to assist restaurant
review authoring and reading. Through an interactive process, the system can learn to highlight
and suggest summary sentiment in the three categories of food, service, and price. The study
found that providing these suggestions during authoring can motivate users to correct erroneous
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predictions. Endert et al. (2012) introduce the concept of semantic interaction in text analytics.
They make use of the information embedded in interactions such as word search, highlighting,
annotations, and adjustment of document pin locations to iteratively refine a model of document
associations. This information is used to update a spatial visualisation of document associations.

Applying an IML process to textual data is challenged by the difficulty of providing succinct rep-
resentations of documents that facilitate rapid user review. Kim et al. (2015b) compare a variety of
machine learning techniques to the task of document feature compression. Their aim is to iden-
tify representations that improve the speed of categorisation assessment by users. Several of the
discussed studies exploit term highlighting that indicates features relevant to the categorisation
result. Giving salience to indicative keywords is hypothesised to speed up the assessment process.
In terms of feature labelling, Raghavan et al. (2006) observe that users take up to five times longer
to label one document, i.e., assign a document to a topic, than to label one feature, i.e., assign a
word as an important term for a topic.

3.2 Images

The categorisation of images is a very popular application area within the machine learning com-
munity. The availability of suitable techniques for image based classification has encouraged the
examination of the potential pairing of user input through IML. As for the application of IML
to textual data, the usefulness of the technique is seen when more subtle concept discrimination
capabilities are desired.

At the inter-image level, applications have sought to allow users to train models to understand
their own, sometimes obscure, concepts. Fogarty et al. (2008) introduce CueFlik, an interactive ap-
plication that allows users to create their own concepts to incorporate into image search. The user
may define a new search rule by assigning a collection of images to describe a desired concept,
e.g., scenic. The user may then apply this rule to their search so that only results consistent with
that concept are provided. Fogarty et al. (2008) found that providing a visualisation of both the
most-confident positive and most-confident negative samples led to higher quality and faster con-
cept learning than providing the full ranking of images. Amershi et al. (2011a) extend CueFlik by
adding features to the interface that better allow users to model changes and visualise the current
model state. Amershi et al. also introduced a visualisation of historical model quality (expressed in
terms of model reliability and snapshots in time of ranked images) and the ability to revert back to
previous model states. Guo et al. (2016) present an IML system for clustering medical images based
on the underlying condition and attempt to specifically incorporate expert constraints. Users can
drag images apart to indicate that they should be disconnected in the model.

Other applications of IML have sought to train systems to recognise specific objects at the intra-
image level. Crayons (Fails and Olsen 2003) is the often cited formative paper in IML that demon-
strates an interface whereby users can incrementally train a classifier by directly drawing on an
image. This approach has also been leveraged by Tsutsumi and Tateda (2009) to help measure the
amount of leaf debris flowing on a river as well as for analysis of satellite, medical, and material
science images (Porter et al. 2011, 2013; Harvey and Porter 2016; Kreshuk et al. 2011).

IML is well suited to use with images as there is a rich repository of features that have already
been established, and the user can quickly review a large number of images. The ability to pro-
vide pixel or region level feedback by directly sketching on images is an interaction technique
successfully exploited in several applications.

3.3 Time Series Data: Speech, Audio, Video, and Motion

The transcription of speech into text can be a laborious task when performed manually but there
are an increasing number of systems that can autonomously perform this task at very low error
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rates. Sanchez-Cortina et al. (2012) pair an automatic speech recogniser system with an IML inter-
face that facilitates error correction. The acceptable word error rate can be adjusted to vary how
many uncertain cases are shown to the user.

Kabra et al. (2013) employ an Interactive Machine Learning approach to allow non expert users
to build classifiers for recognising distinct animal behaviours. The user reviews video footage of the
animal and assigns behaviour labels to segments of the video. When a label is added, the user may
initiate re-training of the model, and the classifier will be applied over the duration of the video.
Upon encountering a behaviour that has been incorrectly classified, the user may correct the sam-
ple to incrementally improve model quality. The classifiers constructed through this process then
allow for rapid and accurate annotation of animal behaviour in recorded datasets: a task that is
very slow if performed manually and highly error prone if performed autonomously using less ad-
vanced methods. Versino and Lombardi (2011) apply an IML process to the filtering of surveillance
streams for safeguarding a nuclear processing facility. Users assign positive and negative samples
of safeguard-relevant events and the trained model can thus help identify potential hazards.

The challenging task of separating individual sources from a recorded audio track is explored
by Bryan et al. (2014). Bryan et al. use a paint on approach (similar to that employed by Fails
and Olsen (2003) on images) to train a classifier to recognise the desired source from within an
audio file. The user “paints” on regions of a time-frequency visualisation of an audio recording to
separate out sources.

BeatBox (Hipke et al. 2014) allows users to train a system to recognise different percussive vo-
calisations. Having established a custom vocabulary of vocalisations, users can then create a track
that recognises and labels the vocalisations employed. The interface separates distinct vocalisa-
tion classes into different virtual pads and colour codes recorded vocalisations for a pad according
to their recognised class. This colour coding provides a simple to interpret sense of the quality
of a particular vocalisation class. A pad that contains recorded samples that are not accurately
classified quickly attracts the attention of the user. They can then target a new class with greater
discriminative power.

Motivated by relieving the prohibitive challenges people with disabilities face when playing
conventional musical instruments, Katan et al. (2015) apply Interactive Machine Learning to the
creation of gesture controlled instruments. Katan et al. enabled users to build a gesture vocabu-
lary and customise the relationship between gestures and sounds. Sarasua et al. (2016) show the
potential for customised gesture recognition to control music articulations, as a conductor might
control an orchestra with a baton. Similar approaches have demonstrated the potential for IML
to support unique forms of music composition (Fiebrink et al. 2011; Tsandilas et al. 2009) and in-
teractive experiences (Kleinsmith and Gillies 2013; Brenton et al. 2014; Gillies et al. 2015). These
studies highlight that the goal in IML is not necessarily just about making a task more efficient or
productive but potentially about extending human creativity.

Others have sought to produce intelligent functionality in response to data streams such as for
seizure detection (Chua et al. 2011) and for office task automation (Dey et al. 2004). IML has also
been applied in training of brain computer interfaces (Kosmyna et al. 2015).

Gesture Script (Lü et al. 2014) is an interactive tool for creating two-dimensional gesture recog-
nisers. The application allows users to generate feature level descriptions and combine these to-
gether to supplement training data. Hartmann et al. (2007) present an interaction authoring tool
based on recognising patterns in generic sensor data.

As with textual data, the application of IML to time-series data can also be challenging in terms
of providing summative representations of sample points: it can be difficult to succinctly represent
the dynamic contents of an image stream or the temporal relationship between time and position
that represents a gesture. There is a risk that the requirement for serial review of samples leads to
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a highly serialised process that does not scale well. Interfaces designed for this purpose must find
ways to allow users to quickly inspect and review samples.

3.4 Assisted Processing of Structured Information

The IML systems discussed in this section exploit structured data to train models that enhance
user capabilities. These examples in particular highlight the application of domain or user-specific
expertise to the training process. Amershi et al. (2012) present a social networking assistance tool
based on the Interactive Machine Learning paradigm. The system builds a probabilistic model
based on a Naïve Bayes classifier of contacts likely to be relevant to a particular group and makes
suggestions and provides new filters for identifying new members.

Ghani and Kumar (2011) apply an IML process to greatly assist the work of auditors processing
health insurance claims. In addition to learning to highlight fields of likely interest to support the
auditor, the classification method can also help by grouping similar claims in the processing queue
to reduce inefficiencies of context switching. This latter strategy is estimated to reduce time spent
per claim by 27%.

CueT (Amershi et al. 2011b, 2011c) is an IML system that supports network alarm triage. The
system can learn from the actions of operators to suggest alarm groupings. Kose et al. (2015) apply
IML to facilitate the process of fraud detection in electronic claims data. The dynamic nature of the
underlying data, and the potentially subtle relations that must be identified, motivate the use of a
human-in-the-loop approach. AppGrouper (Chang et al. 2016) assists in the process of delivering
topically coherent application clusters in an online application store. Users may directly edit clus-
ters and encourage more or fewer clusters to be generated. In evaluation, the approach was shown
to improve the quality of clustering results over algorithm-generated clusters. AppGrouper high-
lights the potential value in pairing human judgement with computational intelligence through a
carefully designed interface. Human input is applied only at the stages where it is most useful.

The assisted processing applications discussed here highlight that certain domains will require
highly specialised interface design. In many cases, however, the system level architecture may not
require modification. Similarly, we hypothesise that the interaction and task level strategies that
are effective are likely to remain consistent.

3.5 Raw Numerical Data

In an effort to demonstrate complete data type agnosticism, several studies have applied the IML
process to numerical data that is abstracted from any particular application. There are parallels that
can be drawn between Interactive Machine Learning and the uptake of spreadsheet applications
that placed basic statistical and data representation tools in the hands of non-expert users. Indeed,
Sarkar et al. (2015) have even demonstrated the capabilities of BrainCel, which adds machine-
learning functionality to a typical spreadsheet type interface. The user can select rows as training
data then click a “guess” button to make model predictions based on those rows.

Holzinger et al. (2016) incorporate human feedback with an Ant Colony Optimisation (ACO)
framework to solve a traveling salesman problem. Users can select the path joining two cities
and adjust the pheromone levels assigned using a slider. Ware et al. (2001) present an interactive
tree-based classification application targeted at non-experts. Users create decision branches to
build their own classifiers. Brown et al. (2012) present an iterative approach for learning user-
preferred distance functions in a multidimensional scaling projection visualisation interface. The
user may drag one or many points within a scatterplot visualisation window and then initiate
the learning step to identify a new distance function that better reflects the user’s desired data
arrangement. This process can be performed iteratively, while preserving the user’s interaction
history, to incrementally find the most suitable distance function.
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Fig. 3. Distinct interface elements in the IML process.

These studies illustrate that data independent IML systems can be developed and effectively
used. This is not to say that abstracting data to a simplified representation is a preferable strategy,
and in many cases this approach may be undesirable as it can limit the application of domain
expertise. Nevertheless, what these approaches lose in terms of domain relevance they gain in
flexibility.

4 COMPOSITION OF AN IML INTERFACE

In this section we describe the structural composition of a generalised Interactive Machine Learn-
ing interface. The design of an IML system may, of course, vary considerably depending on the
nature of the data, the intended application of the model, and the user experience desired, as well
as many other factors. Nevertheless, an understanding of the commonality can help inform the
establishment of design principles.

The interface elements presented are based on an identification of the commonality among
the broad range of IML systems reviewed. We are also guided by the requirements and desired
attributes suggested by others. Amershi et al. (2011a) highlight three important aspects of an IML
process that can be thought of as desired attributes of the interface: (1) illustrating the current state
of the learned concept, (2) guiding the user to provide input that improves concept quality, and
(3) providing revision mechanisms that allow the user to explore the model space. Stumpf et al.
(2009) identify three activities relevant to the productive integration of the human user and
machine learning techniques: (1) conveying system reasoning to the user, (2) conveying user
reasoning to the system, and (3) ensuring both system and user profit from this feedback cycle.
We split the third activity identified by Stumpf et al. into inspecting the model and reviewing task
progress. The four key interface elements are then as follows: sample review, feedback assignment,
model inspection, and task overview. These four interface elements are summarised in Figure 3.
We do not suggest that these elements are necessarily visually distinct or indeed necessary in
all applications of IML. For example, the sample review and feedback assignment interfaces may
often be merged as in Crayons (Fails and Olsen 2003), and ad hoc implementations contrived for a
one-time only custom task may have limited or no use for the model inspection or task overview
interfaces. Rather, these elements represent distinct functionality that the interface must typically
support to deliver a comprehensive IML workflow. Each of these interface elements are discussed
in detail below.
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4.1 Sample Review

The sample review interface is the channel on which individual or collections of model outputs
are presented for review by the user. Sample instances may be requested manually by the user or
chosen automatically based on model properties. Automatic selection of samples for review does
not negate the principle of the user being in control. Ultimately, it is the user feedback provided
on these samples (whether they are chosen manually or suggested) that will influence subsequent
changes in the model. The literature highlights a challenge in managing the competing objectives
of eliciting the necessary information to enhance the learner while avoiding excessive querying of
the user. Users are unwilling to judge large numbers of test cases and this has been the motivation
behind efforts that select representative and non-redundant samples for review (Ribeiro et al. 2016;
Groce et al. 2014). In addition, the human input required, while of potential value to the model,
may not be deemed worthwhile by the user (Amershi et al. 2014). Wong et al. (2011) observe that
labelling data is a tedious exercise and that users may need to invest significant effort before a
change in the learned model is noticeable.

Presenting samples or posing queries to the user such that they promote understanding rather
than distrust is also difficult to achieve. The challenge of appropriately framing input requests is
thus also dependent on the level of understanding possessed by the user.

The timing of user input requests is also critical as revealed by Losing et al. (2015) in their ap-
plication of online user-in-the-loop labelling of obstacles encountered by a robot. The study high-
lights challenges around capturing training instances when they are relevant to the user versus
the impact this may have on violating independent and identically distributed (i.i.d.) assumptions
in the model.

The most appropriate means of succinctly displaying output samples for review may vary based
both on data and application type. For example, the interface in an inter-image classification sys-
tem might show the best and worst samples for a given classification. Alternatively, an intra-image
classification system might show the regions of the image that belong to a given classification.

A guiding principle for the design of the sample review interface is that representations should,
to the extent possible, allow the user to assess the current state of the learned concept. There is a
distinction here between assessing the performance as reflected in a specific sample instance ver-
sus the generalised model performance as a whole. This latter assessment of the model as a whole
is described in Section 4.3. Evaluating concept performance on an individual sample instance may
require the provision of additional information on the reasoning behind the state shown. Kulesza
et al. (2015) present an intuitive interface for model debugging involving generated explanations
for the basis of particular predictions that are human readable with accompanying explanatory
plots. For example, the classification of a particular message as being related to the topic “hockey”
might be accompanied by the text, “This message has more important words about Hockey than
about Baseball” (Kulesza et al. 2015). As Lü et al. (2014) observe, people want to understand why
specific instances fail. Understanding why the model fails for a given sample may help the user
determine the most appropriate feedback strategy, independent of broader model performance
considerations. This suggests avoiding overly abstract or condensed representations of output
samples.

4.2 Feedback Assignment

The feedback assignment interface is the channel employed by the user to assign labels, select
features, and/or generate new samples. It is this interface that perhaps requires the most careful
design in terms of both the interface elements and the interaction techniques provided. User
interaction at the point of describing a classification or performing a demonstration can take many
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forms. Porter et al. (2013) make a useful distinction between training vocabulary and training

dialog. Porter et al. suggest that the training vocabulary in IML has expanded from just being
labels to include constraints and structures. Similarly, the training dialog is no longer exclusively
a batch process but can be highly interactive and dynamic. Generally, the preference from the
user’s point of view is for more complete and more specific feedback assignment methods. There
is, however, an inevitable tradeoff as Hartmann et al. (2007) note in terms of balancing the desire
for user control over behaviour versus overwhelming users with machine-centric “knobs.”

BrainCel (Sarkar et al. 2015) obtains user input through standard spreadsheet paradigms while
other studies have captured raw gestures inputs (Katan et al. 2015; Sarasua et al. 2016). Kim et al.
(2015a) found that users wish to describe high-level attributes (such as code structure) that are
difficult to encode as features. Constraining the labelling or demonstration process may have a fil-
tering effect on the user’s intent that may ultimately be detrimental to user satisfaction and model
quality. Similarly, subjecting users to poorly implemented or confusing interaction techniques is
likely to degrade overall performance.

One difficulty faced in the collection of input from users is the fact that the concept they are
trying to train may shift over time (Kulesza et al. 2014). This has motivated efforts to improve
the structure and guidance provided around how people are requested for and supply input.
Rosenthal and Dey (2010) investigate what information can be provided to improve quality of
labels (amounts of context, level of context, uncertainty, prediction, and requests for user feed-
back). Certain constructions can also make it more engaging for the user and promote higher
quality input. For example, Huang et al. (2013) motivate users to fix errors in sentiment analysis
of restaurant reviews by providing current predictions of the categories that their reviews cover.

Shilman et al. (2006) introduce five design principles for correction interfaces: (1) minimise de-
cision points by choosing appropriate operators, (2) design seamless transitions between modes,
(3) provide reachability of all states, (4) appropriately scope cascading changes, and (5) promote
clear user models. Shilman et al. (2006) also summarise possible correction strategies: n-best se-
lection, transformation, user-driven hints, and user-driven constraints.

Amershi et al. (2012) note that the ability to model a concept is dependent on the quality of the
data. Various studies have sought novel methods for transforming both explicit and implicit user
input into data for consumption by the learner. The system described in Amershi et al. (2012) takes
advantage of users skipping instances (contacts in a social network) as an indicator for labelling
negative samples. Javdani et al. (2016) seek to make use of user resistance to robot actions under
shared autonomy as a means for identifying undesirable actions. The potential for feature labelling
rather than just instance labelling is also being exploited in IML studies (e.g., Wong et al. (2011)) but
does require that the learning algorithm can exploit these identified distinctions among features.
In some applications, however, the features themselves may be too abstract for users to interpret
or exploit effectively (Gillies et al. 2015).

4.3 Model Inspection

In addition to review of individual sample instances, a comprehensive IML process will typically
also support some form of inspection at the model level. This summative view of model quality is
referred to here as the model inspection interface. The assessment of model quality is not neces-
sarily limited to prediction accuracy and may also incorporate other metrics such as coverage and
confidence. Several studies have shown the potential for user interaction with parameters (e.g.,
Kapoor et al. (2010)) and/or emergent structures (e.g., Chang et al. (2016)) as part of the model
inspection interface. GaussBox (Françoise et al. 2016) provides a tangible and interactive tool for
inspecting HMMs trained for gesture recognition.
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The quality of predictions is ultimately dependent on the quality of the constructed model. Var-
ious sources of error may affect model quality. Amershi et al. (2015) identify three main causes
of model errors: (1) mislabelled data, (2) feature deficiencies, and (3) insufficient data. Mislabelled
data are data the user incorrectly assigned some value. Feature deficiency errors result when the
model does not have sufficient samples of a given feature to make a distinction. Insufficient data
errors result when there are gaps in the data in areas relevant to model prediction. A comprehen-
sive model inspection interface should thus support the user in identifying such errors to facilitate
debugging and improve model quality.

Receiver Operating Characteristic (ROC) and cost curves are commonly used in the machine-
learning community to support evaluation of model performance and have been incorporated
into IML systems. Alternatively, model performance may be assessed in a more involved manner
through targeted testing. Groce et al. (2014) suggest three requirements for test methods: algorith-
mic agnosticism, sufficiently fast to run in an interactive environment, and able to support effective
detection of failures using comparatively small test suites. However, constructing tests to obtain
an encompassing metric of model quality is not a simple task, especially for end users. Fiebrink
et al. (2011) highlight that evaluating based on training set partitioning may not be meaningful and
end users in IML may be particularly ill suited to choosing a test set that represents anticipated
future data.

Recent work has given more attention to the quality assessment and debugging task in Inter-
active Machine Learning. While rapid visual inspection of model performance may be possible in
certain applications, such as with image data, doing so with other data formats (e.g., documents) is
more complicated. This difficulty grows with increasing dataset size. Amershi et al. (2015) present
ModelTracker, a concise visual representation of model performance for use in debugging exer-
cises. The representation allows for the rapid assessment of where labelled samples are correctly
or incorrectly predicted and the relative confidence of that prediction.

The model inspection interface provides user visibility of the global task, i.e., typically minimis-
ing prediction error. This interface allows users to apply strategies that iteratively work towards
desired levels of model quality. We argue later, however, that framing task completion criteria
purely in terms of model quality is undesirable. Focusing an end user on model prediction accu-
racy alone is likely to promote overfitting. For this reason, we make a distinction between the
model inspection and task overview interfaces.

4.4 Task Overview

A self-contained IML system may additionally require information advising the user on task status
and termination conditions. In most experimental IML systems, this interface is not included as
the interaction is managed through other means such as timed exercises or constrained datasets.
In reality, however, there are non-trivial task related decisions that users require guidance on that
may be independent of instantaneous model quality.

Yimam et al. (2015) highlight the fact that a text classification system is likely to reach a point
of diminishing returns for user annotations. Ghani and Kumar (2011) also argue for a distinction
between system performance and classification accuracy. The task overview interface should pro-
vide visibility of the global objectives but also contextualise these with other information relevant
to the task such as the target application of the model and the availability of training data.

For commercial applications of IML in particular, the goal of the exercise is typically to increase
the efficiency of expert users. Investing significant time to improve classification accuracy may not
always correlate well with this goal. The task overview interface should help guide the machine-
learning-naïve user in making these task-level assessments.
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5 A GENERALISED WORKFLOW FOR A COMPREHENSIVE IML PROCESS

The previous section presents a structural breakdown of a generalised IML interface. Here we
present a discussion of the task related behaviours associated with a generalised Interactive Ma-
chine Learning workflow. The workflow proposed by Fails and Olsen (2003) attaches a feedback
loop to the training stage of the algorithm. In this workflow, the user interprets the feedback pro-
vided and then applies a correction. This workflow model is satisfactory if one constrains the scope
of an IML system to just the training stage, but has its limitations if one is interested in developing
a comprehensive IML process. Aodha et al. (2014) propose a 15 step “data understanding pipeline”
motivated by supporting scientists in capitalising on advances in machine learning. This pipeline
begins with “hypothesis formation” and ends with “publicizing of results” and provides a thorough
breakdown of the intermediary tasks. The 15 step pipeline offered by Aodha et al. is comprehen-
sive and informative but includes steps that occur both before and after the actual interaction with
an IML application. Therefore, it is not particularly well aligned to the key interaction stages of
the IML process that have distinct interface requirements. Girardi et al. (2015) presents a process
model for domain-expert-in-the-loop knowledge discovery in biomedical research that removes
the understanding the domain and understanding the data from the generic knowledge discovery
process model. It includes six stages: (1) data modelling, (2) data acquisition, (3) data validation,
(4) data preparation, (5) data analysis, and (6) evaluation. This process model highlights the key
stages relevant to the knowledge discovery domain but does not adequately capture the interactive
nature of IML.

We propose a generalised workflow that extends on the model of Fails and Olsen (2003) but is
more concise than Aodha et al.’s “pipeline.” We take some inspiration from Chang et al. (2016),
who make a distinction between the types of user input captured at the early (initialising the
algorithm), mid (steering the algorithm), and late (cluster editing) stages of the process. The six
workflow activities we propose are as follows: (1) feature selection, (2) model selection, (3) model
steering, (4) quality assessment, (5) termination assessment, and (6) transfer. This workflow is
intended to serve as a useful reference for designers as they consider the task transitions and
distinct interactions relevant to interface design for IML. It is formulated to be closely aligned with
the key interaction stages and to be interpreted in combination with the structural breakdown of
the IML interface presented in Section 4. This workflow is illustrated in Figure 4.

The model steering task is the core activity and where the user is likely to spend the majority of
their time. The sub-tasks that occur inside this activity are essentially those described in Figure 1.
The majority of studies in IML focus on this task alone, eliminating the need to examine the outer
activities by appropriately initialising the system and constraining the scope of the experimental
task. Indeed, certain application types may render some of these outer activities unnecessary. The
workflow activities are not necessarily undertaken in a serial or ordered fashion. For example,
model or feature selection may typically occur early in the process though not necessarily. Sim-
ilarly, quality and termination assessment may typically occur only after several cycles of model
steering have been completed. The transfer activity, however, will only occur on completion of all
previous activities. We discuss each of the workflow activities in the remainder of this section.

5.1 Feature Selection

Fails and Olsen (2003) suggest that the need for explicit feature selection can be removed thanks
to the IML process by incorporating a very large number of features and allowing the classifier to
indirectly perform the filtering. While the feature selection activity may indeed be unnecessary in
many applications where an appropriate repository of features exist, a more generalised workflow
model for IML benefits from its inclusion.
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Fig. 4. The IML workflow as a behavioural breakdown into distinct user activities. The model steering activity

is the iterative feedback-and-review cycle most commonly associated with the pure IML process. The user

may initialise or reconfigure the process by engaging in model selection and feature selection. Quality assess-

ment and termination assessment are depicted beside the main loop rather than within it. The intent here is

to highlight that model steering is the primary activity but that this loop may be suspended temporarily, at

any time, to undertake quality assessment and termination assessment. On successfully training the model

to represent their desired concept, the user engages in transfer to deploy the developed model into the target

application.

Allowing users to select features has been found to deliver both efficiency (Raghavan et al. 2006)
and quality (Brooks et al. 2015) gains. Patel et al. (2008) suggest there is value in integrating data
collection and feature creation tools. Kim et al. (2015a) observe a desire among users to introduce
higher level features (such as code structure). The fact that human curated features are, by nature,
more interpretable (Brooks et al. 2015) may also serve to improve user understanding in other
activities in the process.

For other reasons, too, the features themselves may be more relevant to users than the classi-
fication they produce (Calderon et al. 2015). For example, rather than identifying how sentiment
towards an administration is clustered, it may be more important to explore where and for what
reasons this sentiment occurs.

Recent research has given more focus to the potential for human involvement in feature
selection and construction. With Flock, Cheng and Bernstein (2015) show the potential for
crowdsourcing to facilitate novel feature generation. Aggregating crowd features achieved better
performance than just asking the crowd for a prediction or using a standard set of typical machine
learning features. The Flock interface prompts users to think of discriminatory features by
presenting contrasting samples. FeatureInsight (Brooks et al. 2015) is a tool that enables feature
selection in website classification. Users are prompted to consider new dictionary features by
being shown misclassified documents.

The studies discussed above suggest that end users are capable of, and indeed enjoy, identifying
useful features for incorporation in the training process. Designing the IML system and interface
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to accommodate the feature selection activity may thus be desirable, though not always practical.
Certain data types and applications are better suited to end-user feature selection than others.

5.2 Model Selection

Studies in IML typically demonstrate the procedure using a machine learning technique specifi-
cally chosen by the authors for its applicability to the target data. This approach is entirely rea-
sonable for application areas where the data and feature structures are known a priori or can be
determined. However, in instances where an IML process is sought but the ideal machine learning
technique is undetermined, it may be useful to allow the user to make this selection or perform a
comparative evaluation. Furthermore, if one credits the proposition that an ideal IML system be
agnostic to the underlying model and algorithm then there is value in considering model selection
as an activity the user may perform.

The combination of multiple models through ensemble methods has also proven an effective
strategy for the machine learning community. EnsembleMatrix (Talbot et al. 2009) demonstrates
an interface that allows users to create combinations of classifiers trained on different features.
It is not unreasonable to expect the user to weigh up the potential benefits and disadvantages of
different models provided these can be concisely expressed for a given domain.

The selection of the most appropriate model (or their parameters) may also be influenced by the
target application. For example, Fiebrink et al. (2011) comment in the context of gesture based mu-
sic generation that the shape and smoothness of the decision boundaries may be more important
to the user than their specific location.

It is perhaps overly optimistic to imagine an IML architecture in which the underlying learning
techniques are completely modular and easily changed. Nevertheless, supporting the model selec-
tion activity by allowing the model to be configured by the user, even to a limited extent, can help
to reduce the burden on machine learning practitioners. If the user can experiment with multiple
different machine learning techniques within the same IML application, then the user can develop
their own, albeit potentially naïve, sense of the relative advantages and disadvantages without the
involvement of a practitioner.

5.3 Model Steering

The model steering activity is the stage in the workflow where most user effort is expended and
with which the concept of IML is most traditionally associated. The majority of user focused re-
search in IML examines this particular activity. While engaged in the steering task, the user is
seeking to train the model to understand a given concept by iteratively refining the training data.
This interaction will typically involve some combination of correcting existing erroneous samples,
assigning labels to new samples or generating completely new samples. The emphasis, however, is
generally on providing just enough feedback per iteration to push the model in the right direction.
Fails and Olsen (2003) hypothesise that “having a very fast training algorithm is more important
than strong induction.” This is based on the assumption that users will apply an iterative strategy
that will eventually deliver the necessary predictive power.

Fogarty et al. (2008) observe that users first focus on getting their classifier working and then
seek to improve robustness by introducing more corner cases to the training. This is comparable
to the approach followed by teachers in terms of first introducing the basic concept and then later
exploring the extensions of this concept. Porter et al. (2013) refers to the exchange between the
model and user that occurs during the model steering activity as the training dialog. The richness
and flexibility of this dialog is directly influenced by the design of the interface and the interaction
methods available. The Gesture Script application (Lü et al. 2014) provides an excellent example of
a compelling and engaging dialog that shows how user intelligence can be applied to more than
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just assigning or correcting labels. In addition to improving gesture recognition performance by
providing new samples, Gesture Script allows users to create rendering scripts that describe the
underlying structure of a gesture. For example, the user can specify that an arrow is composed
of a line and a tringle-shaped head. This approach supports the synthesis of new gesture samples
that help to introduce more variation and thus greater discriminative power. The model steering
activity in Gesture Script thus incorporates multiple sub-tasks with which the user can engage
and provide input where the greatest benefit is anticipated.

While the model steering activity is normally assumed to be iterative, Kleinsmith and Gillies
(2013) found that users will not necessarily follow an iterative strategy. A portion of the par-
ticipants in Kleinsmith and Gillies’ study performed only one or two iterations in training their
character behaviour model and preferred to expend their effort in carefully labelling samples. This
observation highlights the fact that users may require high-level guidance on the strategy they
should apply in the task of model steering (e.g., follow an iterative approach), and indeed, it is un-
reasonable to expect non-expert users to know what strategy is most appropriate. As Kleinsmith
and Gillies suggest, the interface should promote this strategy through the interaction techniques
available and the visual feedback presented.

Unfortunately users also suffer from inconsistency and boredom and this can result in changes
in their task behaviour over time. Unavoidably, the user’s perception of a concept may drift over
the duration of a task. For example, what the user might consider to be a “scenic” image or a “local
news” article can evolve as they are exposed to more samples. Similarly, the level of expressiveness
that a user invests in the first articulation of a gesture may be radically different from their hun-
dredth articulation. Structured Labeling (Kulesza et al. 2014) is an attempt to address concept drift
during the training process. Kulesza et al. found that people labelling the same websites in two
different sessions separated by 4 weeks were only 81% consistent. Providing more structure to the
labelling task produced more consistent labelling. Cakmak and Thomaz (2014) demonstrate that
automatic or heuristic-based teaching guidance can also improve the efficiency and quality of user
feedback. In Cakmak and Thomaz’s study, text-based instructions were presented to help guide the
user in selecting positive and negative samples when training their model. In applications where
an optimal training strategy can be described, these instructions can be generated algorithmically
and in response to the model state. However, even heuristic-based teaching guidance was shown
to improve user performance. For example, in the experimental application of teaching a facial ex-
pression recogniser, a heuristic for teaching an angry face might be “When you show examples of
Angry face vary them as much as possible” (Cakmak and Thomaz 2014). This finding suggests that
appropriate framing of the task and even relatively simple guidance in the interface can positively
influence user performance and model quality.

Tsandilas et al. (2009) introduce the concept of “semi-structured delayed interpretation” of ges-
tures. This approach encourages gestural annotations without having to specify their meaning.
This preserves freedom of expression at gesturing time but still allows semantic meaning to be at-
tached later. This approach may be very useful in situations where users experience concept drift
by only requiring formal specification of meaning once the concept has solidified in the user’s
mind.

Ambiguity in subjective or interpreted concepts can also be problematic. Curran et al. (2012)
observe that inter-user variation can be high when annotators are associating subjective attributes
with images. Sarkar et al. (2016) achieve more consistent labelling by constructing the feedback
task as a setwise comparison.

The model steering activity is the stage in the IML process at which most user effort and time
is likely to be spent. Improving the speed and concept growth at each iteration step is thus likely
to have the greatest impact on the overall efficiency and usability of the process.
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5.4 Quality Assessment

The Interactive Machine Learning process can be alternatively viewed as a user-driven error min-
imisation loop placed around the model. The user seeks to train the model to some level of accept-
able accuracy. The quality assessment task represents the activity of evaluating the trained system
performance. Early in the process, the user may not execute this activity based on the assumption
that the concept is unlikely to have been sufficiently captured. Indeed, the feedback provided in
the sample review interface provides a proxy for system accuracy at this early stage. After suffi-
cient training, the user may periodically check the model quality and compare this against some
desired or pre-established threshold.

Amershi et al. (2011a) demonstrate visualisation of the current model accuracy as an interface
element present during the standard model steering task. Amershi et al. suggest that this visualisa-
tion, coupled with an ability to undo actions, allows users to experiment with different strategies
and evaluate their impact on accuracy. The quality assessment task may be interactive such as in
the method proposed by Kapoor et al. (2010). ManiMatrix (Kapoor et al. 2010) provides a method for
visualising and controlling classification behaviour. The user can directly interact with the confu-
sion matrix and express preferred classification behaviour. Kapoor et al. suggest that this approach
is superior to manual tuning of numerical parameters in terms of both speed and quality.

There is, however, a risk that users may focus too much on the quality assessment activity.
Fiebrink et al. (2011) observe that users can inadvertently fall into a workflow that focuses on
optimising cross-validation accuracy as an end in itself, rather than just using it as feedback to help
refine their broader strategy. Supporting users in selecting the appropriate strategy and avoiding
overfitting in the model requires careful framing of the quality assessment activity.

5.5 Termination Assessment

Limited attention has been given to the task of determining when to terminate the IML process.
While the system may provide advice on termination conditions, it seems most fitting that the user
ultimately decides when to end the process. This suggests inclusion of the termination assessment
activity within the generic workflow.

There is potentially some overlap between termination and quality assessment activities. Cer-
tainly, in some cases the termination criteria may be entirely based on accuracy targets. However,
Amershi et al. (2011a) observe that there is typically a degree of model decay between when peak
performance is achieved and when users choose to stop. Supporting the identification of this in-
flection point may deliver improved performance in a comprehensive IML process.

There may, however, be alternative conditions for ending the process, such as further labelling
will deliver negligible gain, there is already sufficient confidence in the particular classifications of
value, and there is an increasing risk of overfitting. Sanchez-Cortina et al. (2012) describe a unique
approach to allowing for dynamic adjustment of the user’s workload by changing the acceptable
word error rate in speech-to-text transcription. This approach allows the user to find an acceptable
balance between supervision effort and recognition error. While allowing the user to configure an
acceptable word error rate does not in itself set a termination condition per se, it does offer an
interactive tool for exploration of whether further effort will yield worthwhile benefit.

Determining when to stop training under the IML process requires considerable judgment. The
user’s decision can, however, be informed by improved contextualisation of the various objectives
and constraints relevant to the given application.

5.6 Transfer

The activity of deploying the trained model in the target domain is described here as transfer. In
certain applications, this task may be as trivial as pointing to a test dataset. In other applications,
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however, the transfer of model functionality into practical use may be considerably more compli-
cated. While the IML workflow should endeavour to achieve good generalisability from the outset,
this activity recognises the fact that tools are often applied in ways that cannot be predicted at de-
sign time. Packaging the model for end use and ensuring that it generalises is important to actually
delivering an application that is useful.

Importantly, some applications such as abstrackr (Wallace et al. 2012) and the assisted claims
processing system of Ghani and Kumar (2011) make no real distinction between training and de-
ployment. The model learns and becomes more helpful as its predictive power increases. Never-
theless, it is useful to consider how one might subsequently transfer such developed models to the
next context. This is indeed what Šavelka et al. (2015) explored in their reuse of their statute clas-
sifier trained in one jurisdiction in another jurisdiction. Talbot et al. (2009) observed that a model
trained by a participant that achieved the highest accuracy on the training set did not generalise
well to the test set due to overfitting. Arguably the transfer activity should be supported by tools
that aid in identifying and correcting such situations.

The IML system demonstrated by Ghani and Kumar (2011) highlights the fact that deployment
considerations can have significant effects on the efficiency of the process. For example, in the
claims processing system, auditors were presented the next case based on similarity rather than
confidence. This decision delivered a performance improvement by reducing the time lost to con-
text switching.

The transfer activity has received limited attention in the literature on IML but should be recog-
nised as a necessary stage in a comprehensive IML process. At the same time, it is important to note
that not all applications require a transfer activity. Several of the applications reviewed in Section 3
do not involve an end-point or target dataset but rather focus on the process itself. Nevertheless,
it is useful to consider the end use of trained models where appropriate and the implications this
may have on the design of the interface.

6 EMERGENT SOLUTION PRINCIPLES

While the value of placing machine learning functionality in the hands of non-experts is gaining
recognition, and emerging applications are enhancing user capability, there has been limited atten-
tion given to the generalised user interface design principles for such systems. This section seeks
to consolidate observations from user studies in IML and synthesise these with relevant recognised
HCI theory to establish some basic solution principles for interface design in IML. The solution
principles are intended to serve as guidance to interface designers tasked with constructing effec-
tive interfaces for IML systems.

The specific interpretation and relative importance of the solution principles are likely to vary
depending on the level of involvement expected of the user and on the complexity of the required
functionality. Compare, for example, a user seeking to instruct a content suggestion service to
obtain better recommendations, versus a user seeking to train a robot to perform some function
in response to a given input. This across-application variability frustrates efforts to obtain concise
and generalisable solution principles. Nevertheless, it is perhaps useful to view interactions of this
type as being a kind of pseudo-programming task. This level of abstraction provides a useful frame
for identifying the commonality.

We propose six key solution principles for the design of the IML interface:

(1) Make task goals and constraints explicit
(2) Support user understanding of model uncertainty and confidence
(3) Capture intent rather than input
(4) Provide effective data representations
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(5) Exploit interactivity and promote rich interactions
(6) Engage the user

These principles cover multiple aspects across the different activities performed in the IML
workflow. They also have specific implications for the interface components described in Section 4.
Each is discussed in detail in the remainder of this section.

6.1 Make Task Goals and Constraints Explicit

Establishing clear task goals is an important part of Interactive Machine Learning for non-experts
given that the process is largely user driven. Similarly important is an understanding of what is
not possible, i.e., the constraints in the process. The iterative model refinement paradigm implies
that users work in pursuit of some desired goal state. For users to construct effective strategies in
pursuit of this goal state, it is necessary that they understand their task and its constraints.

This solution principle is largely a response to two of the key challenges for IML introduced
in Section 1: users can be imprecise and inconsistent, and training is open ended. In terms of the
first challenge, constructing explicit task goals and constraints can aid in focusing user efforts and
improving consistency. Many recommender systems exploit user input for dual purposes, i.e., a
like provides a signal of interest to a social group but may also inform predicted recommendations.
While dual-purpose input with unclear objectives may be suitable for recommender system, we
hypothesise that being explicit when requesting user input, whether singular, or multi-purpose, is
preferable. It stands to reason that when asking a user to serve as a component in a closed feedback
loop, understanding the information presented and actions required is paramount. However, too
much information can also be confusing and detrimental to performance.

If user effort and attention is considered as a resource with limited supply, then it is sensible
to ensure that all expended effort is in pursuit of the goal state. However, this goal state must be
clearly defined. For example, Amershi et al. (2011a) observed that when a model reliability metric
plot was introduced to the CueFlik interface to provide feedback on quality, users began to focus
on maximising this quantity as their primary objective. Careful framing of the task goals and
awareness of the interface features that may promote or hinder this understanding is required.
The literature has explored and discussed the role that model and prediction explanations may
have on the understanding and mental models of users (Kulesza et al. 2013; Sarkar 2015), but there
has been less attention given to the effect that prior framing of the task may have on users. It is
not unreasonable to hypothesise that supporting user perception of the global task and constraints
may improve their ability to select model refinement actions although this should be investigated.

The second challenge revisited above (i.e., the fact that training is open ended) can also be mit-
igated in part through improved user understanding of goals and constraints. Interaction with
machine learning models differs from more conventional computer interactions in that the user
may have limited direct control over the behaviour exhibited. A key limitation of machine learn-
ing is that false positives/negatives produced are typically difficult to eradicate. For example, a
user may identify a suggested movie as being completely outside their category of interest de-
spite it possessing many attributes consistent with other favoured content. Amershi et al. (2012)
note that “this problem occurs in all machine learning systems when the hypothesis language is
insufficiently expressive to model the true concept.” In other cases, numerous user actions may
be required before the learning model reflects a desired change (Wong et al. 2011). An application
that does not respond in a timely manner to user input is in violation of the principles of direct
manipulation and is a potential cause of significant frustration. The degree to which a user under-
stands their limitations in addressing such model failings may have a significant impact on their
satisfaction with the interface and the refinement actions with which they proceed.
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Without user understanding of the limitations of machine learning techniques, the process also
exposes the potential risk of overfitting. Overfitting is the construction of a model that, although
it matches to the data available, does not truly represent the phenomenon. Avoiding overfitting
while supporting continued model refinement poses a unique challenge for supporting non-expert
interaction. Expert machine learning practitioners are aware of this risk but naïve users may be
prone to over-specification. The interactive tree-based classifier demonstrated in Ware et al. (2001)
framed the task goal in a very clear and intuitive form but lead to some users expending significant
effort to maximise classification accuracy with little real gain.

The user may in many cases not require an understanding of the global objective they are work-
ing towards provided they understand their role in the immediate interaction task. It is unclear
what impact understanding the global task may have on user performance; however, we would
argue it is essential to effective performance in the termination assessment and transfer activities.

6.2 Support User Understanding of Model Uncertainty and Confidence

Uncertainty is an inevitable feature of data-driven models in most real-world applications. Corre-
spondingly, the concepts of uncertainty and confidence cannot be removed from the IML process.
This solution principle seeks to address the fact that interacting with a model is not like interact-
ing with a conventional information structure (one of the key challenges highlighted in Section
1). Both the task of steering the model as well as the ultimate application of the model to a target
dataset involve uncertainty. It is important that users are aware of this uncertainty for two rea-
sons: (1) to manage their expectations during interaction and (2) to manage their expectations of
final system performance.

The concept of a probabilistic model and its limitations can be difficult to convey to non-experts
and so many applications of IML are likely to rely on simplified explanations. Users without expe-
rience in machine learning are unlikely to comprehend the implications of working with a prob-
abilistic model. User studies have found that even a single outlier in a classifier can result in sig-
nificant confusion for users (Kim et al. 2015a). Users will calibrate their trust in the model both
through individual predictions as well as the performance of the model as a whole (Ribeiro et al.
2016). Furthermore, IML is a co-adaptive process in that both the user and model will respond to
the behaviour of the other (Gillies et al. 2016). Establishing the right level of understanding among
users and framing the task appropriately is critical and non-trivial.

Non-experts unfamiliar with the internal behaviours of a computer program will construct their
own mental model to aid their formulation of interaction strategies. This model will be derived
in part from their past experience and knowledge. While the mental model constructed does not
have to be accurate, a poor model may have a highly detrimental effect on user performance and
thus, their perception of the effectiveness of the program (Norman 2014). It is perhaps useful to
make the distinction between functional models that allow one to use a system versus structural
models that allow one to comprehend how and why it works. Gillies et al. (2015) argue that users
should be aided in their construction of conceptual models to enhance their debugging capabil-
ities. As Fogarty et al. (2008) observe, evolution of the predictive model can result in seemingly
unpredictable behaviour from the user’s perspective. Kulesza et al. (2013) investigate the impact
that different explanations have on the fidelity of the mental models constructed by end-users.
The results indicate that more detailed explanations about intelligent agents are useful if added
understanding can be leveraged by the user to improve outcomes. Sarkar (2015) proposes to exploit
metamodels for confidence (is an output correct?), command (is the understanding complete?), and
complexity (how simple was it to arrive at the output?) to augment machine learning models. Such
metamodels would capture the information that is more intuitive and relevant for communication
to end-users to support their understanding.
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A number of strategies have been explored as a means to simplify the interpretation of model
behaviour. ManiMatrix (Kapoor et al. 2010) allows users to interact directly with the classifier’s
confusion matrix and thereby steer classification behaviour. Ribeiro et al. (2016) present explana-
tions that are locally faithful representations of considerably more complex models. This approach
supports interpretation while hiding the potentially confusing complexity underneath. Vidulin
et al. (2014), referencing constructivist learning theory, propose constraining the construction of
decision trees to only represent relationships that are credible to the user. The use of exemplars to
support understanding of classes appears to be a promising solution that resonates with users (Kim
et al. 2015a). As a summative view of model quality, presenting best and worst matching samples
has been shown to support more efficient model evaluation than ranking of the n best (Fogarty
et al. 2008). ReGroup, the social network group creation tool introduced in Amershi et al. (2012),
presents filters that were generated based on features in the model. Participants noted that these
filters provided insight on the patterns that were being exploited by the model and thus served the
dual purpose of explaining the model as well as their intended function as an interaction element.

Uncertainty can be difficult to represent succinctly in a user interface. Sarkar et al. (2015)
demonstrated the potential for colouration to represent confidence within their BrainCel appli-
cation; however, representing confidence through colouration in a speech recognition application
(Vertanen and Kristensson 2008) did not yield an improvement in user performance. Within the
field of information visualisation, the representation of uncertainty is a key area of investigation.
In general, the objective of uncertainty visualisation is to provide representations that aid data
analysis and decisions making (Pang et al. 1997). It can be useful to distinguish between different
forms of uncertainty. Pang et al. (1997) describe three types of uncertainty: statistical (distribution
of the data), error (delta compared to datum), and range (interval of possible values).

Within the machine learning community there is also keen interest in representing model qual-
ity in ways that support human understanding. The technique known as t-Distributed Stochastic
Neighbour Embedding (t-SNE) enables the visual representation of clustering models (Van der
Maaten and Hinton 2008). Such representations are easily queried and support non-expert reason-
ing on the level of confidence in the underlying model. Micallef et al. (2012) present an investigation
of explanatory methods for supporting Bayesian reasoning. The observations of this study reveal
the difficulty of the design problem in that text without numbers paired with visual aids yielded
higher performance than text with numbers and visuals.

The literature suggests that there is likely to be a close relationship between user tolerance of
error and the level of clarity in system uncertainty (Sacha et al. 2016). The degree of error a user will
tolerate in an application is task specific (e.g., compare an error encountered while withdrawing
money from an ATM versus an erroneous turn instruction given by a navigation system (Fogg and
Tseng 1999)). If the user understands that they are in part responsible for an erroneous output, then
they may be more forgiving in their perception of the system. Users will calibrate their trust of
a system based on an understanding of the system properties. Muir and Moray (1996) argue that
behaviours must be observable for trust to grow.

Making informed predictions represents a key challenge for Interactive Machine Learning. This
is in contrast to more traditional programming tasks where systems are predictable and repeat-
able by nature. The uncertainty in the model is of fundamental interest to expert practitioners of
machine learning. However, effectively interpreting model accuracy can be very difficult and a
learned skill in itself.

6.3 Capture Intent Rather Than Input

Careful design of the interface may help to extract user intent from potentially noisy input actions.
This solution principle is a response to the challenge raised in Section 1 that there is uncertainty

ACM Transactions on Interactive Intelligent Systems, Vol. 8, No. 2, Article 8. Publication date: June 2018.



8:26 J. J. Dudley and P. O. Kristensson

in the relationship between user intent and user input. Reducing this uncertainty is obviously an
objective in HCI more generally, but the specifics of IML mean that confusion about user input is
particularly detrimental to the process of training a model.

Fogarty et al. (2008) note that it is impossible for an algorithm to distinguish between what the
user deems highly relevant samples versus what are perhaps only minor inconsistencies. CueFlik
(Fogarty et al. 2008) helped mitigate this issue by displaying only the best and worst matches so
that less certain training samples were typically out of view. The user is therefore guided towards
focusing on samples that are definitely “good” or definitely “bad.”

The study performed by Amershi et al. (2012) provides a number of potentially useful insights
related to interactivity in terms of explicit and implicit user input. The Interactive Machine Learn-
ing application developed for building custom social networks exploits both explicit and implicit
user action. For example, a user skipping past contacts is used as an indicator that these contacts
should be labelled as negative samples. Ritter and Basu (2009) applies similar assumptions to ex-
tract implied user intent from cursor pass over behaviour in a file selection IML application. Self
et al. (2016) present an informative study of how careful interaction design can assist in making
better inferences about user intent from user actions. For example, Self et al. demonstrate how
adding a circular selection tool when dragging a data point primes users to think about and select
other points with which that point should be clustered.

As Porter et al. (2013) observes, “users are quite good at finding creative ways to use a small
set of (inadequate) tools to reach their objectives, and so computers must learn to exploit a more
unstructured dialog.” In other words, in circumstances where the user cannot explicitly express
their intent, they may still be able to achieve their goal by exploiting a sequence of actions. An
example of this is Gesture Script (Lü et al. 2014), which allows users to synthesise gesture samples
by drawing sub-segments and then programmatically describing how they combine together to
form a complete gesture. To accommodate the “creative” ways the user may come to steer the
process, the interface designer should thus consider avoiding overly constrained functionality or
workflows.

6.4 Provide Efficient Data Representations

An effective IML interface will enhance user perception or at least make best use of human percep-
tion capabilities. The sub-task of reviewing sample outputs within the model steering activity in
the IML process is largely a comprehension task. Improving the speed and quality of this operation
has high impact given the iterative nature of the model steering activity. The adaptive interaction
framework (Payne and Howes 2013) further suggests that the strategy employed by a user will
be dictated by their experience, their task level goals, and their ability to process information rel-
evant to the task. From a user interaction perspective then, this third factor suggests a potential
lever in terms of amplifying the cognitive ability of the user that might be activated to improve
performance and hence model quality.

Extracting information from small or simple datasets is typically achievable with standard
analytic techniques. Machine learning comes into its own when the complexity and size of the
target data would frustrate more established approaches. Consequently, end-user interaction
with machine learning must also provide ways for viewing and interacting with voluminous,
multi-dimensional and multi-modal data. Some interfaces support rapid understanding of
model outputs such as the visualisation of image regions associated with different classification
predictions (Ribeiro et al. 2016). Text classification applications may highlight words or n-grams
to help the user perceive what features are being exploited by the model (Wallace et al. 2012).
The general design objective would appear to be to maximise user perception of the features
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relevant to understanding the function of the model and any of its deficiencies so that appropriate
refinement actions can then be selected.

Interfaces designed to support interaction with complex data will typically aim to present a
simplification of the data (e.g., clustered, hierarchically organised, subset, etc.) and/or amplify the
user’s cognitive ability (e.g., highlight relevant regions, support interaction, provide useful tools,
etc.). Visualising multidimensional data in a sensible manner can be extremely difficult and the pre-
ferred representations may be highly data specific. This complicates efforts to generalise design
principles for representation techniques in end-user applications. Parallel coordinates is one tech-
nique for transforming high-dimensional data into a representation with reduced dimensionality.
However, collapsing dimensions typically degrades the visual information available and prevents
more subtle patterns from being perceived. The presentation of multidimensional data may also
introduce new obstacles to user cognition such as disorientation and occlusion. Researchers in in-
formation visualisation seek to enhance user cognition by making patterns, trends, relationships,
outliers, and other correlations more immediately observable (Card et al. 1999). Interfaces for In-
teractive Machine Learning must also exploit these techniques. Stolper et al. (2014) offers four
design guidelines for dynamic visualisations in progressive analysis: (1) avoid distractions due to
excessive view changes, (2) highlight where new results have appeared, (3) provide a refresh ca-
pability to add new results, and (4) allow users to designate regions of interest and parts of the
problem space to ignore.

6.5 Exploit Interactivity and Promote Rich Interactions

The user’s interactions during the IML process are what drive model development. The model
development process can thus be made more efficient by enabling users to fully express their
intent and apply their insight. This solution principle suggests that the IML interface should be
maximally interactive and should exploit rich forms of interaction where possible, for example,
direct sketching on images, constructing explanations, and editing of samples.

6.5.1 Interaction for Understanding. Supporting user interaction with machine learning algo-
rithms and complex datasets introduces new dimensions to the typical user interface design task.
The interaction with a model rather than a distinct object makes it difficult to apply many of the
user interface design principles that are known to be effective. The principles of direct manipu-
lation proposed by Shneiderman (1982) are well recognised among interface designers. However,
the nature of the task of building and interacting with a machine learning model may prohibit
application of such heuristics, especially for non-expert users. In response, it is necessary to foster
the construction of appropriate mental models among users that help frame this non-traditional
interaction experience. Shneiderman (1996) presents a type by task taxonomy (TTT) that describes
seven basic tasks performed by users on seven data types. The framework provides guidance on
what features either help or hinder in performing different tasks on different forms of data. As an
example, the application of filters to remove uninteresting data from view must be rapidly reflected
in the display. However, as studies in IML have shown, it may take many user actions before an ef-
fect in the model is observable (Wong et al. 2011). Horvitz (1999) sought to bridge the principles of
direct manipulation and enhanced computer autonomy through what he termed mixed-initiative
interfaces. Horvitz identified 12 critical factors in ensuring effective collaboration with intelligent
services. Importantly, Horvitz cautions against patching poor interface design by overusing ma-
chine intelligence and highlights the requirement to consider the design of both components in
combination.

Interactivity may also be important at the point of understanding the sample data or inspec-
tion of whole datasets involved in the IML process. It is widely observed that interaction supports
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understanding (Card et al. 1999; Chi and Riedl 1998) and so interactive data exploration tools are
likely to be of value. This is particularly true for multidimensional or very large datasets that are
difficult to visualise in a single view. Carpendale (2008) provides a summary of different tasks
relevant to information visualisation and makes a distinction between low-level, detail-oriented
tasks such as associating, ranking, clustering versus high-level, cognitive tasks such as identify-
ing trends, causal relationships, and understanding uncertainty. Various data characteristics may
frustrate simplistic approaches to visualisation, for instance, data properties such as non-linearity,
holoarchy, and internal causality.

Inevitably there will be a coupling between the data type and the most suitable representation
and interaction methods. A unique aspect of the model training task is the potential overlap in the
sample review and feedback assignment interfaces. Creating a meaningful and productive interface
that serves these dual functions requires careful design.

6.5.2 Make the Most of the User. The ability to reverse actions appears to be a highly valued
interaction feature in IML. This observation is consistent with the “user control and freedom”
usability heuristic proposed by Nielsen (1995). In constructing and refining a model, users require
the ability to retrace steps in the event that recent actions have resulted in an undesired outcome
(Talbot et al. 2009; Kapoor et al. 2010; Amershi et al. 2010). Related to the ability to “undo” is the
provision of a visualisation of the history of model quality. Amershi et al. (2010) demonstrated
that visualisation of model improvement or degradation is useful in guiding the non-expert user’s
efforts to refine the model.

Another interesting aspect of end-user interaction with machine learning is perception of rel-
evance. Users want to feel like they are contributing value and that their inputs are utilised. A
number of IML interfaces have attempted to address this issue by allowing users to label features
rather than instances, such as allowing users to select words considered representative of a docu-
ment class rather than just assigning documents to categories. This approach better exploits human
insight and appears to promote user engagement. Sun and DeJong (2005) present an augmenta-
tion of a Support Vector Machine (SVM) that can incorporate domain knowledge to improve SVM
learning. The study does not apply domain knowledge directly extracted from domain experts but
does provide a suitable framework. The difficulty lies in elucidating that domain knowledge and
transforming it into a format that is useful to the learner.

Users do not enjoy being repeatedly asked “yes” or “no” questions and so frustration and inter-
ruptability needs to be carefully managed. Cakmak et al. (2010) highlight that an ignorant learner
asking many questions can be perceived as annoying. To reduce user annoyance, there are a num-
ber of potential strategies for minimising the frequency of interaction requests or minimising the
impact of individual interruptions. For example, it may be possible to reduce the frequency of
interaction requests by ensuring only questions of high relevance are posed to the user.

A novel approach suggested by Wallace et al. (2012), in seeking to exploit the knowledge and
experience of domain experts, is to allocate classification labelling to different users depending on
the confidence of the learner. The probabilistic measures generated for a particular instance may
be useful in deciding whether to present that instance for review by a highly experienced user
versus a less experienced user.

The importance of interactivity in IML is further emphasised by the fact that many applications
in IML may only be feasibly evaluated by the end-users themselves (Groce et al. 2014). A user
training a learner for a specific task must be provided with the tools to understand how well it
performs. No external methods or testing can be applied to evaluate their specific use case on
their specific dataset.

ACM Transactions on Interactive Intelligent Systems, Vol. 8, No. 2, Article 8. Publication date: June 2018.



A Review of User Interface Design for Interactive Machine Learning 8:29

The execution speed of the learning algorithm may also have implications for interactivity.
Fails and Olsen (2003) hypothesise that fast algorithms are more important than inductive power.
Versino and Lombardi (2011) express this attribute in another way as the need to ensure computa-
tion time at each iteration stays within human acceptable levels. These observations are consistent
with the direct manipulation concept of “rapid incremental reversible operations whose impact
on the object of interest is immediately visible” (Shneiderman 1982). However, certain machine-
learning techniques applied on large volumes of data may unavoidably have very large execution
times. Careful design of the interface can help to mitigate the imposition on interactivity under
these circumstances.

6.6 Engage the User

An effective system will engage the user in the task being performed so that they are motivated
to achieve the desired outcomes of the IML application. This engagement, however, should not
come at the expense of excessive mental load. Early et al. (2016) suggest that presenting partial
predictions can keep users engaged by encouraging them to actively improve prediction quality.
Such feedback, even though incomplete, can be helpful in reminding the user that they are a critical
component in the process and that their activities are having an effect.

Porter et al. (2013) suggest a distinction between users of IML operating in domains where they
must be enticed for feedback versus applications such as those in science, engineering, health and
defence in which users will be inherently motivated to train a high quality model. In the latter case,
users may seek to employ highly sophisticated strategies whereas in the former case, the objective
may be to minimise imposition on the user. Although dependent on the application, users typically
do not enjoy performing trivial labelling tasks or responding to repeated yes/no type questions
(Cakmak et al. 2010) and do seek to provide insight where it exists (Kim et al. 2015a). Nevertheless,
users exhibit bounded rationality and will satisfice based on perceived gains versus effort (Pirolli
and Card 1995). Promoting engagement may increase the time users are willing to invest in the
refinement process with corresponding benefits in trained model quality.

Reducing the effort to both interpret outputs (see Section 6.4) and express feedback (see
Section 6.5) may enhance user engagement. Summative views such as those typical in image fo-
cussed IML systems are likely far more engaging than the comparable view in a textual data IML
system. Similarly the level of interactivity supported in the task may also serve to promote user
engagement. Interfaces such as those introduced in Katan et al. (2015) and Sarasua et al. (2016)
allow users to generate and demonstrate samples through physical activity.

Providing intuitive representations of progress in training a classifier, such as ModelTracker
(Amershi et al. 2015), are another potential way to allow users to engage in the task. Huang et al.
(2013) found that users who could visualise the current predictions related to their restaurant
reviews were motivated to fix any issues.

7 OPEN RESEARCH PROBLEMS

There are emerging areas of investigation in Interactive Machine Learning that promise many
new and powerful applications. Many other valuable avenues of research also require attention
from a user interaction perspective. The following research strands are proposed based on the
gaps identified in the literature and also gaps identified through the consolidation and synthesis
process applied in preparing this article.

7.1 Priming and Guiding the User

The role of the user’s mental model in the IML process has received some recent attention
(Kulesza et al. 2013; Sarkar et al. 2015) as has the potential for improved task guidance during
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training (Cakmak and Thomaz 2014; Kulesza et al. 2014). These studies show that relatively
simple strategies can be applied to improve user consistency and understanding. In addition to
extending this work on guiding task level strategies at execution, further research should examine
the initial instructions and framing given to users. An improved understanding of appropriate
user priming is perhaps more likely to be generalisable across IML applications than execution
related guidance. This in turn may help highlight more concrete solution principles related to the
formation of user mental models in IML.

As more comprehensive IML processes covering the full range of activities described in Section 5
emerge, there is value in investigating the user guidance required to inform decisions on switching
between the global task activities. It is necessary that users can build effective strategies that in
some way relate the model steering activity to the broader task goals and related activities such
as model configuration and deployment.

7.2 Capturing, Representing, and Reasoning with Uncertainty

As highlighted earlier, a key aspect of prediction using a model is uncertainty. The concept of data
and prediction uncertainty is not always well understood by end users who traditionally associate
computers with precision and repeatability. Furthermore, uncertainty can be difficult to succinctly
represent visually. Micallef et al. (2012) show that non-experts struggle in probabilistic reasoning
tasks, even when concise visual and textual guidance is provided. While the most appropriate
approach may differ depending on the data and application, Bayesian machine learning methods
provide a distinct advantage in their ability to incorporate the notion of uncertainty (Ghahramani
2015).

There is value in studies investigating the application of these approaches coupled with in-
tuitive uncertainty visualisation techniques. Horvitz’s early work on mixed-initiative interfaces
applied probabilistic models of user intention to support selection of different interface modes.
Similar methods may be appropriate for capturing uncertainty in user input. The specific advan-
tage of a Bayesian framework is to embed the estimation of uncertainty from the outset as well as
throughout the model components. Allowing users to view model uncertainty and its evolution
may support improved understanding and performance but care must be taken to ensure such
feedback provides genuine insight without adverse secondary effects, such as becoming a distrac-
tion or attracting attention away from other critical aspects of the interface.

7.3 Enhancing Perception, Interaction, and Engagement via Immersive Environments

Holzinger and Jurisica (2014) argue for tools that are interactive and representations that support
high dimensions and multiple modalities. The recent advancement in augmented and virtual re-
ality head mounted displays presents new opportunities for users to interact with and explore
complex multidimensional datasets. It is reasonable to propose that more natural interaction may
thus support improved understanding and reduced perceived cost of model refinement.

The placement of a user into an immersive environment can also facilitate more natural mecha-
nisms of discovery and learning. Gillies et al. (2015) show the potential of full bodied interaction as
part of an IML process. The placement of users within an immersive environment is likely to have
particular relevance to IML processes applied in gesture and motion recognition applications. Im-
mersive three-dimensional interfaces also offer additional data representation opportunities over
conventional two-dimensional displays. A further ancillary benefit is that an enjoyable immer-
sive experience may also improve user engagement. However, as the mass of research effort in
the field of information visualisation shows, the construction of intuitive and informative multi-
dimensional data representations is non-trivial.
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7.4 Evaluating Interfaces and User Performance in IML

The task of evaluating user interfaces for Interactive Machine Learning requires careful consider-
ation given the various characteristics that distinguish them from more traditional user interfaces.
In the case of a user training a model to capture their own personal concept, Groce et al. (2014)
highlight that potentially only that particular individual can properly evaluate the quality of their
model.

Additionally, interfaces designed for cognitively intense tasks can be difficult to evaluate due to
the longitudinal nature of analysis and learning. A key challenge for evaluating information visu-
alisations designed to provide enhanced cognition is the fact that insight is “temporally elusive”
in that a stimulus may trigger a response long after exposure (Carpendale 2008).

Gillies et al. (2016) point to different traditions for evaluation of developed methods between the
HCI and machine learning communities (i.e., user studies versus benchmark testing). Regrettably,
unlike in traditional machine learning research where alternate techniques may be repeatably
evaluated on a single dataset, a human user, once exposed to a problem as part of an IML evaluation,
cannot unlearn their experience and be retested. The HCI community may do well to establish
representative datasets, and perhaps even representative structured tasks, relevant to the specific
challenges introduced by Interactive Machine Learning. This may foster better engagement from
the broader machine learning community while at the same time support the identification of
generalisable requirements and enable comparative evaluation of interfaces.

8 CONCLUSIONS

Machine learning techniques are slowly creeping into the lives of non-expert users. Enabling users
to efficiently interact with such algorithms is likely to be a key design challenge in the coming
decade. Interactive Machine Learning promises new opportunities for assisting users in data in-
tensive processing tasks, enhancing outcomes in analytic tasks, and supporting the development
of comparatively complex functionality without explicit programming. IML is a co-adaptive pro-
cess, driven by the user, but inherently dynamic in nature as the model and user evolve together
during training. The user may adjust their strategy in response to the observed behaviour in the
model, and the model correspondingly changes but in ways that are not entirely predictable.

There are aspects of the task of training a model that make the interaction requirements dis-
tinct from more conventional human–computer interfaces. It is important that the application of
new and exciting machine intelligence is accompanied by careful design of the user interfaces for
such applications. Research is beginning to focus more on the interface features that make such
applications effective and enjoyable to use. Studies have shown that even non-expert users want
to understand more about the models they are interacting with and how they can refine their
accuracy.

This article has presented a survey of prominent efforts to apply the IML process in a range
of applications. The survey illustrates that the IML approach has utility on a range of underlying
data types. Furthermore, there is a degree of commonality across implementations. A synthesis
of the literature forms the basis for the structural and behavioural IML models presented. The
interface elements identified in Section 4 provide a generalised perspective on the interface design
problem. The workflow described in Section 5 covers the activities involved in the IML process
from feature and model selection up to transfer of the learned model into the target application. A
consolidation of user interface related findings from the literature is presented as a set of emergent
solution principles for IML. It is hoped that this set of solution principles will provide guidance to
the interface designer in terms of both framing the IML process and developing productive and
enjoyable functionality. The preparation of this article also led to the identification of several open
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problems for the field of IML. We propose four strands of investigation for advancing the state of
the art.

As users are increasingly attempting to gain insights from ever larger volumes of data and more
and more user interfaces become driven by machine learning algorithms, Interactive Machine
Learning is likely to become a more central theme in user interface design. We believe that there
is value in establishing a generic model and provisional set of solution principles relevant to the
Interactive Machine Learning process. This article is an attempt to provide that foundation and it
is hoped that further efforts will refine and expand on these concepts.
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