4140

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 11, NOVEMBER 2021

Complex Interaction as Emergent Behaviour: Simulating Mid-Air
Virtual Keyboard Typing using Reinforcement Learning

Lorenz Hetzel* John Dudley'
University of Cambridge

ETH Zurich

University of Cambridge

Per Ola Kristensson®
University of Cambridge

Anna Maria Feit?
Saarland University

Abstract— Accurately modelling user behaviour has the potential to significantly improve the quality of human-computer interaction.
Traditionally, these models are carefully hand-crafted to approximate specific aspects of well-documented user behaviour. This
limits their availability in virtual and augmented reality where user behaviour is often not yet well understood. Recent efforts have
demonstrated that reinforcement learning can approximate human behaviour during simple goal-oriented reaching tasks. We build on
these efforts and demonstrate that reinforcement learning can also approximate user behaviour in a complex mid-air interaction task:
typing on a virtual keyboard. We present the first reinforcement learning-based user model for mid-air and surface-aligned typing on a
virtual keyboard. Our model is shown to replicate high-level human typing behaviour. We demonstrate that this approach may be used
to augment or replace human testing during the validation and development of virtual keyboards.

Index Terms—Reinforcement learning, virtual reality, user model

1 INTRODUCTION

A central interaction challenge in virtual and augmented reality is
allowing users to comfortably and efficiently input text and commands.
However, a major challenge is that successful text entry methods tend to
1) provide high immediate efficacy—in other words, they are effective
with minimal learning effort; and 2) exhibit high efficiency in relation
to other text entry methods users are already familiar with, such as
typing on their laptops, tablets or mobile phones [28—30]. This poses a
considerable design challenge as it is difficult to create an unfamiliar
text entry method that is both easy-to-learn and efficient. As a result,
a promising direction of research is to identify means to effectively
transplant an established text entry method to virtual and augmented
reality headsets that is both efficient and familiar to users. One such
candidate is mid-air virtual keyboard typing, which allows users to type
using both hands on a virtual keyboard reminiscent of a laptop or tablet
keyboard.

However, an effective high-performance mid-air virtual keyboard
relies on using a machine learned model to infer users’ intended text
from noisy sensor data. It is therefore necessary to involve users to both
1) iteratively evaluate system designs; and 2) collect representative de-
velopment, training and testing data of users’ typing behaviour. While
this is a well-known challenge in many human-computer interaction
(HCI) systems, the cost of instrumenting users for interactive virtual
and augmented reality systems exacerbates the problem.

One established solution is user modelling, which is practically as
old as the field of human-computer interaction itself. However, these
models tend to be meticulously handcrafted to approximate human
behaviour for specific interaction tasks [53]. The highly specific nature
of these models has resulted in most of them not being widely used by
practitioners developing new HCI systems. Additionally, most exist-
ing user models are designed to approximate known human behaviour.
While this is a valid approach for interactive scenarios that are well un-
derstood, it is not useful for more complex tasks or cases where limited
user data is available, such as typing on a mid-air virtual keyboard.

*e-mail: hetzell @ethz.ch
fe-mail: jjd50@cam.ac.uk
*e-mail: feit@cs.uni-saarland.de
Se-mail: pok21@cam.ac.uk

Manuscript received 15 Mar. 2021, revised 11 June 2021; accepted 2 July 2021.
Date of publication 27 Aug. 2021, date of current version 1 Oct. 2021.
Digital Object Identifier no. 10.1109/TVCG.2021.3106494

In contrast, recent work in reinforcement learning (RL) has demon-
strated that complex human-like behaviour may emerge from simple
cost functions [17]. In particular, RL agents have been shown to ap-
proximate human behaviour during simple targeted reaching movement
tasks [6, 14].

In this paper we build on and extend this prior work by showing
that these RL agents are able to learn more complex interactive tasks,
in particular two-finger typing on a mid-air virtual keyboard. Using
reinforcement learning has the notable advantage that absolutely no
user data is required to develop or train the model. In contrast to
heuristic-based user models, our RL model does not explicitly consider
the keyboard geometry, the type of text being typed, or the keyboard’s
size and position. For example, typing speed and accuracy are never
explicitly enforced but emerge naturally from a simple cost function,
a muscle model and the kinematics of the skeletal model. In other
words, it is a truly generative model of two-finger virtual keyboard
typing behaviour. This model can be retrained and applied to examine
different keyboard designs and interaction mechanisms without any
changes to the underlying architecture of the model. Therefore, models
such as ours can, in many cases, be extended beyond their original
scope with computational effort alone, for example, without requiring
any manual work by engineers.

Our RL model is useful in a variety of applications. For example,
we show that the learned policy approximates human behaviour and
can therefore be used to reliably and objectively select hyperparameters
during the development of virtual keyboards (and possibly other HCI
systems). Since our model makes no assumptions about the underlying
keyboard layout it may additionally be used to comprehensively qualify
parameters, such as key size, which are prohibitively expensive to
evaluate with real users.

Our RL model offers an attractive trade-off between modelling effort
and usefulness. While, for example, Fitts’ law is simple to apply to a
novel system it only predicts average movement times as a function
of an index of difficulty. On the other end of the spectrum, complex
handcrafted models, such as the queuing network model of transcrip-
tion typing [53], can accurately predict human behaviour but are also
much less versatile. Our RL model offers much of the fidelity of the
handcrafted user models, while retaining much of the ease of use and
generality that practitioners appreciate about heuristics, such as Fitts’
law.

The central objective of this work is to demonstrate that we can learn
a model of two-finger virtual keyboard typing using model-free rein-
forcement learning and a naive cost function. As we will demonstrate
later in this paper, we use reinforcement learning to learn a model of
two-finger virtual keyboard typing that approximates two-finger mid-air

1077-2626 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

HETZEL ETAL.: COMPLEX INTERACTION AS EMERGENT BEHAVIOUR: SIMULATING MID-AIR VIRTUAL KEYBOARD TYPING...

typing data from real users without our model being trained on any
empirical user data at all or tuned to match any evaluation metric, such
as entry or error rate.

In summary, this paper makes the following contributions:

¢ We demonstrate that reinforcement learning for control of a
biomechanical model can be used to create a generative model
that approximates users’ virtual keyboard typing behaviour.

* We show how such a model can be used to objectively identify
good hyperparameters with high confidence and augment, or
replace, testing with human users.

2 RELATED WORK

Model-free reinforcement learning agents have recently achieved
groundbreaking results in many domains including multi-agent co-
ordination [2], recommendation systems [55] and dexterous manipu-
lation [39]. In particular, they have increasingly been used to solve
challenging biomechanical control tasks [37]. Recent works have begun
to leverage these advances to model specific aspects of simple mid-air
interactions. For example, Fischer et al. [15] show that an RL agent
trained to hit targets in mid-air using a biomechanical model of the
human arm observes the two-thirds power law and Fitts’ law. In a more
practical sense, RL agents using a simplified arm model have been
shown to predict perceived fatigue (the “gorilla arm effect”) in mid-air
interaction [6]. We extend these approaches by modelling mid-air text
entry—a substantially more complex task.

Beyond AR and VR, predicting user intent has been widely explored
in the HCI literature for pointing tasks [15,31] and beyond [17]. For
example, Lank et al. [31] predict the most likely 2D selection intent
from noisy mouse movements. More recent work [1, 54] proposes
stronger predictive methods that rely on continuous hand tracking
to predict intended touch points from 3D to accommodate the more
complex motions that can occur in 3D space.

As transcription typing is pervasive in typing studies [10,11,13,51],
we focus our efforts on modelling this task. In a transcription task the
user is instructed to type predefined stimulus phrases. The cognitive and
motor aspects of transcription typing have been widely investigated [41].
Based on these findings, queuing network based methods [53] have
been used to explicitly model transcription typing. In contrast to our
approach, these models are carefully designed by hand to reflect specific
empirically observed phenomena in transcription typing and do not
explicitly consider the biomechanical characteristics of the human arm.

While some recent prior work has begun to explore the kinematics
underlying mid-air reaching movements [32], their fidelity is still lim-
ited compared to the understanding built through decades of research
on conventional keyboard and mouse-based entry methods. Unlike user
models of traditional input methods, modelling mid-air interaction is
therefore particularly challenging since the underlying phenomena are
not yet well understood.

Text entry is perhaps one of the most challenging input tasks in
virtual and augmented reality and many different text entry methods
have been investigated [3]. While researchers have studied appropri-
ating physical keyboards for VR [19,27,43], a likely future dominant
solution is the transplanting of full-sized keyboards into VR and AR
environments as full-sized virtual keyboards available for either mid-air
typing or surface-aligned typing supported by a reappropriated nearby
hard surface. However, to support such typing is highly challenging,
as the targets (keys) are tightly packed, requiring highly precise hand
and finger tracking [40], as well as strong predictive models to account
for incorrect key hits. Additionally, direct comparisons with regular
keyboards and the associated user expectations regarding speed and
accuracy are difficult to manage. Similar to text entry on small touch-
screens (e.g. [18,52]), most existing virtual keyboard work leverages
statistical modelling to improve typing accuracy [12,40]. Previous
work has shown that aligning virtual keyboards with a physical surface
can significantly improve the entry rate [11]. Dudley et al. [11] found
that corrected entry rates were significantly higher for two-finger typing
than ten-finger typing on a mid-air virtual keyboard. This motivates

4141

Fig. 1. Arm model and keyboard geometry. At inference time the left arm
is simulated as described in Sect. 3.6.

our choice to use reinforcement learning to learn a model of two-finger
typing for mid-air and surface-aligned keyboards.

3 APPROACH

Mid-air typing is a complex process since the user needs to plan and
execute a trajectory between many tightly packed targets—the keys
on the keyboard. Simulating such a task requires careful considera-
tion. In this section we therefore initially consider the problem from
a purely biomechanical perspective and establish the kinematics and
actuation of the system. After introducing the simulated mechanical
system, we outline how the process of typing can be formulated as a
Markov decision process and subsequently learned using reinforcement
learning.

3.1

It is important to consider the considerable kinematic complexity of
the human arm and hand. The human arm is often assumed to have
seven principal degrees of freedom (DOF): three in the shoulder, one
in the elbow, one for forearm rotation, and one each for wrist deviation
and flexion [42]. The human hand is considerably more complex with
27 kinematic degrees of freedom and a number coactivations between
them [35]. While there has been some success in RL-based control of
highly complex hand models [37,38], we chose to fix the hand in a rigid
pointing pose to reduce the complexity of the RL problem and leave
the investigation of fully actuated ten-finger typing for future work.
Additionally, there is empirical evidence suggesting that two-finger
virtual keyboard typing may be preferred by many users for mid-air
interaction [11].

Inspired by Fisher et al [14], we adapt a biomechanical model of the
human arm [42], which was originally created for the Stanford Open
Sim and converted to the Mujoco physics simulator [48] by Ikkala and
Héamaildinen [24]. The thorax is fixed to the world coordinate system.
‘We manually adjusted the bones of the hand to form a rigid pointing
posture. A sphere with a diameter of 10 mm is attached to the finger tip
of the index finger to approximately model the tip of the human index
finger. It is important to note that all bones of the hand and arm are
treated as rigid bodies, any of which may make contact with the virtual
keyboard.

Kinematics

3.2 Actuators

The original version of the arm model we employ [42] included 50 Hill-
type muscle-tendon, that is, linear actuators. These actuators act upon
just 7 degrees of freedom, which require careful coordination between
the individual actuators. To dramatically reduce the dimensionality of
the control problem, we remove the 50 linear actuators in our model
and replace them with just 7 direct torque actuators attached to the
joints indicated in Table 1. This approach is commonly used when
controlling biomechanical models using reinforcement learning [6, 14].

4142

Table 1. Joint limits and peak torques [14].

Joint Name Limits (°) Torque Limit (Nm)
Elevation plane [-90, 130] 36.01

Shoulder elevation [0, 180] 60.97

Shoulder rotation [-90, 20] 19.37

Elbow flexion [0, 130] 12.57

Forearm rotation [-90, 90] 1.03

Wrist deviation [-10, 25] 2.14

Wrist flexion [-70, 70] 1.53

To approximate the torque response of the original muscle-driven
joints, we include a muscle model that computes the instantaneous joint
torque from the control inputs. We now briefly introduce some of the
key characteristics that define the torque response of muscle-driven
joints. For highly explosive efforts, such as a sprinter pushing off the
starting block at the beginning of a race, the torque response is not
instantaneous, since muscle fibres need to be activated. For example,
the maximum torque around the knee joint is only reached after about
250 ms [47]. Another significant factor that influences the torque
response is how close the current joint position is to the limits of the
movement range. For example, the peak torque around the elbow joint
is reduced by up to 50% at the joint’s angle limits [26]. Intuitively, peak
joint torque is also decreased significantly after prolonged exertion [34].

Guided by related work in controlling biomechanical models of
the human arm [6, 14], we identify two potentially suitable models: a
three compartment muscle model called 3CCr [34], which emphasises
predicting fatigue, and a second-order model [14], which approximates
the torque-time response of muscle groups. Each of these models can
approximate only some of the phenomena discussed in the previous
paragraph. For example, neither model considers the considerable
torque decrease when approaching the angular limit of the joint.

Additionally, our preliminary experiments revealed that adding ei-
ther of these models to our arm model significantly increased the com-
plexity of the RL problem. Without a muscle model we observed
satisfactory performance in the first stage of training after around one
million iterations. In contrast, nearly three million iterations were re-
quired to achieve comparable performance with a second-order muscle
model. The 3CCr model, which has previously only been used on
arm models with simplified kinematics [6], did not achieve satisfactory
performance.

We therefore opted to pursue a simplified approach and introduce
both signal dependent and constant noise into our actuators, which
is a tactic that has been shown to generate realistic reaching move-
ments [49]. Following the typical notation for a Markov decision
process, we call the control input to the system the action. The per-
turbed action or control input ¢, is computed from the nominal action
(control signal) d; as follows:

ar = min(max(u -d; +€,—1),1). (1)

The signal-dependent perturbations, p, and signal-independent per-
turbations, €, are drawn at each time step from a Gaussian distribution
with standard deviations chosen to be as large as possible without im-
pacting the stability of the training regime subsequently introduced
in Sect. 3.5. We limit our actuators to the natural torque limits reported
by Fischer et al. [14]. These limits were computed by performing
inverse kinematics on motion capture data of a human performing a
mid-air pointing task. We assume here that the action (control signal)
dy is bounded on [—1,1]. As indicated in Equation 1, the perturbed
action is clipped to the same interval to ensure the torque limits are
observed at all times. Using the vector of peak torque magnitudes, g,
described in Table 1, the instantaneous joint torques, 7, are computed
from the perturbed action a; as follows:

T=ga. 2

Therefore, in contrast to related work, we chose not to explicitly model
the time and fatigue dependence of peak joint torques. Considering

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 11, NOVEMBER 2021

the near instant response of human joints for small changes in torque
amplitude [47], and the fact that our model observes the peak torques
reported by Fischer et al. [14], we expect our model to approximate
natural motions with reasonable accuracy. Additionally, since we
initially only aim to model user behaviour during transcription typing
of short stimulus phrases, we propose that fatigue-driven peak torque
decline can be safely ignored. Further, we expect typing of short
phrases to be the most common use-case for mid-air text entry, since
sustained writing without a supporting surface is highly fatiguing [6].

3.3 Agent

The underactuated nature of our biomechanical model makes comput-
ing optimal control inputs from inverse kinematics highly challeng-
ing [9]. This in combination with the fact that we would like to abstain
from using questionable [22] heuristics, such as minimising jerk or
energy, leaves model-free reinforcement learning as the obvious choice
for actuating the biomechanical model. An RL agent is trained to
maximise the expected reward given to it. RL, in contrast to imitation
learning [23], does not rely on any preexisting data. While this elim-
inates the concern of overfitting, it can be challenging to control the
specific behaviour of an RL agent, since behaviour emerges from a
simplistic cost function. For example, an agent may learn to ‘cheat’
at a game, if the environment and cost function are not sufficiently
restrictive [2]. RL using direct torque control of skeletal models has
recently been shown to synthesise movements that closely mimic hu-
mans [14,25].

We chose a soft actor critic (SAC) [20] network ensemble, since it
has recently been successfully applied in many domains of dynamic
control [14,21]. Additionally, SAC is comparably sample efficient,
which is favourable since our training is primarily bottle-necked by the
single threaded physics simulation in Mujoco.

For details about the algorithm we refer to the original publica-
tion [20]. However, we provide a brief overview here for completeness.
SAC concurrently trains a policy (the actor) and two Q-networks (the
critic). In high level terms, the Q-networks learn to jointly predict the
expected reward during training and the actor learns to act in a way that
maximises the reward predicted by the Q-networks.

While standard RL formulations maximise the expected reward,
SAC is a variant of maximum entropy RL, which adds a bonus reward
based on the entropy H of the policy 7 to the objective J:

T
J(m) = ;)E[r(s,,é,) +aH(n(-|s;))]. 3)

Figuratively speaking, given a state s; the agent tries to optimise
the expected reward r(s;,d;), while also acting as randomly as pos-
sible. The entropy regularisation coefficient @ determines the trade-
off between these two factors. We use an implementation of SAC
that balances exploration and exploitation by varying ¢ throughout
training. Further details on this approach are available in the original
implementation! and associated publication [21]. The actor and both
Q-networks that act as the critic have two hidden layers with 256 nodes
and ReLu [36] activation. The parameters for all three networks are
optimised using the Adam Optimiser. The two outputs of the actor
network are treated as a standard deviation o; and a mean L, from
which the nominal control signal or action d, is computed as follows:

ar (s, &) = tanh(W (s¢) + 0 (s;) 0 &), &~ A(0,1). (4)

Since it is the output of a tanh, the action is bounded on the interval
[-1, 1], which is a significant advantage over other off-policy algo-
rithms, such as PPO [45] and TRPO [44]. As outlined in Sect. 3.2, we
can therefore ensure that biomechanically accurate torque limits are
observed at all times. Importantly, and in contrast to other applications
of SAC, we do not disable the action noise in Equation 4 at inference
time as we want to encourage stochastic behaviour.

'https ://github.com/DLR-RM/stable-baselines3

HETZEL ETAL.: COMPLEX INTERACTION AS EMERGENT BEHAVIOUR: SIMULATING MID-AIR VIRTUAL KEYBOARD TYPING...

Table 2. State of the Markov decision problem.

Quantity

Controllable Joint Positions 7
Controllable Joint Velocities 7
Curriculum Tolerance 1
End-Effector Position 3
Center of Target Key 3
Target to End-Effector Offset 3

Total: 24

3.4 Environment

We model typing on a mid-air keyboard as a Markov decision pro-
cess (MDP). An MDP describes a discrete-time stochastic control
process. It is defined by the tuple {s;,a;,r}, where s € R is the ob-
servable system state, as described in Table 2. The reward function
r, which changes throughout training as outlined in Sect. 3.5, assigns
a value to any action g, given a state s;. Reinforcement learning ap-
proximates a policy that maximises the expected reward for such an
MDP [50]. Due to the exploratory nature of our work, we do not con-
sider the cognitive aspects of typing. Therefore, the typing problem
is reduced to a sequence of reaching movements. Since the model is
trained on English stimulus phrases, it may, however, learn to optimise
its trajectory based on the most likely subsequent key. This is made
possible by the fact that Soft Actor Critic optimises the reward over
its entire replay buffer, which may contain experiences from multiple
subsequent episodes.

The agent takes actions a; € [—1, 1], which are converted into instan-
taneous joint torques at the controllable joints as indicated in Equation 2.
We note that the agent is only given information about the next key in
the stimulus. To facilitate direct comparison with an existing dataset
of users typing on a mid-air and surface-aligned virtual keyboard, the
keyboard layout was directly taken from the study performed by Dudley
et al. [11]. The keyboard was placed 40 cm in front and 20 cm below
the manubrium (i.e. upper part of the sternum) [35] to approximate
the setup used by Dudley et al. [11]. Additionally, the keyboard was
tilted towards the user by 20 degrees. The keyboard is a QWERTY
layout with a reduced punctuation set (,’?!.). Each key, except the space
bar, is hexagonal with a nominal diameter of 25 mm. Importantly,
the keyboard does not contain a backspace key and the model is not
given the opportunity to correct errors. The top row of the layout is
approximately 250 mm wide, making it approximately 30% wider than
a typical physical layout.

Each key on the keyboard is modelled as a rigid body. Key hits are
detected as collisions between any part of the arm and a key. To avoid
accidental key repetition we enforce that after hitting a key the hand
and arm must leave the keyboard plane completely before another key
hit can be registered. Mid-air interaction is modelled by making the
contact between the key and hand extremely soft, so that essentially
no contact force is generated. This implementation allows us to switch
between mid-air and surface-aligned typing very easily.

3.5 Multi-Stage Training

Shaping the reward function to achieve the desired behaviour is an
essential aspect of creating an RL agent. The most naive reward
function to model keyboard typing may simply give a large positive
reward if the correct key is hit, no reward if no key is hit, and a small
negative reward if the incorrect key is hit. We call this a “hit-based”
reward. In our initial investigations we found that learning keyboard
typing from scratch using this reward function is not feasible, even
if combined with a tolerance curriculum. We therefore propose a
dual stage training strategy. Additionally, an automatic curriculum is
used during both stages to gradually increase the difficulty as training
progresses.

First Stage: Initially the agent is rewarded for reaching a tar-
get (a sphere around the centre of a key), even if it would have

4143

0.04
QW E/RIT Y//U|I|O|IP
0.00 +HEAHSHDAFFHGHHAd K
?21Z/X//CI/V.BI/NIM|,
—0.04
space
—0.08
—0.1250 —0.0625 0.0000 0.0625 0.1250

Fig. 2. The keyboard layout used during training and evaluation. All
labels in metres. Hexagonal keys have a nominal diameter of 25 mm.

hit other keys along the way. Upon reaching the target sphere, or
after three seconds in simulation time, the episode is terminated.
The agent is trained in this stage until convergence. The tolerance
(radius of the target sphere) is initialised to 300 mm and can be
incrementally reduced, at most, every 20,000 steps. It is reduced
by 10% if the agent reaches the target within the time limit more
than 90% of the time, until the radius of the target is equal to the
nominal key radius (12.5 mm). During this stage the model is trained
on 40-80 character long randomly generated stimuli. The stimuli
are generated using a uniform distribution over all keys on the keyboard.

Second Stage: In this stage we use the “hit-based” reward in-
troduced previously in this section. Key hits are detected as collisions
between the hand, or arm, and the keys. The first key the agent hits
terminates the episode and the agent is rewarded based on whether it
hit the correct key or not. A small negative reward is given at each
time-step to accelerate convergence. Episode length is limited to three
seconds in simulation time. If no key is hit before the end of the
episode this is considered an incorrect key hit. A key hit is considered
correct if its centre lies within the current tolerance of the centre of the
nominal target key. The tolerance is initialised to 100 mm and can be
reduced every 20,000 steps until it converges to zero. The tolerance is
reduced if the agent hits the correct key more than 90% of the time
during evaluation at that training step. During this stage, the model
is trained on 20—100 character long stimuli, extracted from Sherlock
Holmes novels. When the episode ends, the agent is only reset if it
reaches the end of a stimulus phrase. Otherwise, the agent begins the
next episode in the configuration where it finished the previous episode.
Figuratively speaking, in the first stage of training the agent learns how
to move and in the second stage it learns how to move correctly.

3.6 Bimanual Typing

All considerations up until this point have considered only the right arm
and hand. We acknowledge that prior work has found differences in
how humans use their left and right hands while typing. For example,
the average user globally moves their right hand significantly more
than their left hand [13]. While it would be ideal to train an agent
that controls two coordinating arms at the same time, this is infeasible
in practice since it significantly increases the complexity of the RL
problem. In addition to having twice as many degrees of freedom, the
agent would also have to learn to dexterously coordinate both hands
above the keyboard.

Here we therefore pursue a simplified approach: an agent controlling
a right arm is trained to press keys on the entire keyboard. Our two-
handed (bimanual) model is guided by a simple geometric realisation:
reflecting the arm along the centre plane of the thorax (effectively
turning a right arm into a left arm) is equivalent to flipping the keyboard
along the centre plane. Bimanual typing is simulated at the time of
inference by running two simulations in parallel, and flipping the keys
hit in the left simulation along the centre plane. While one arm moves
towards the next key in the stimulus, the other simulation is frozen.
This is a conservative approximation, as users generally tend to prepare
the next key-press for one hand, while the other hand is about to hit a

4144

Fig. 3. lllustration of our bimanual composite model. Only one arm may
move at a given timestep.

Iy |
Left: * L 1

t 15
Right: # 2 s 12

Fig. 4. lllustration of bimanual interleaving for the example stimulus word
“LIST”. Starting positions for the left and right hand are marked as “«”.
Total time, 1, is calculated starting from the first key in the stimulus as a
weighted sum of IKl 7;. In this case: t =1, + -1, +13.

key [13]. To compensate for the lack of asynchronous movement in our
model, and to approximate real user behaviour more closely, we scale
the inter-key intervals (IKIs) for hand alternating bigrams by a factor
B =141.28/170 ~ 0.8311. This is the ratio of hand alternating and
single handed IKIs for non touch-typists determined by Feit et al. [13].
The above approach is illustrated in Fig. 3 and Fig. 4.

3.7 Map-Based Keyboard Decoder

To illustrate the usefulness of our model we subsequently investigate
if it may be used to select hyperparameters for a map-based keyboard
decoder during our evaluation. For completeness, we briefly introduce
the decoder under consideration here. The objective of the decoder is
to translate an observation sequence of touch inputs into intended text.
The decoder operates on individual words. Words may be delimited by
space, comma, full-stop, question-mark and exclamation-mark charac-
ters. The decoder combines predictions from a touch model and two
language models to find the most likely intended word.

The touch model assigns a probability P(o;|/;) to a touch point o;
given a key /; using a 2D Gaussian distribution with diagonal variance
centred on the key. The probability P(O|L) of an observation sequence
O with length N given a character sequence L is computed as follows:

N
P(OIL)P.(L) = [[P(oilli) Pe(L)- (%)
i=1

The set L also contains the options that any given touch was preceded
by an omission or is itself an insertion error. The probabilities of these
options are reduced by multiplying with ¥, where « is the insertion

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 11, NOVEMBER 2021

Stimulus Trace D

Bayesian Optimisation:
Find decoder parameters pop
that minimise CER on D

Popt

Evaluation on D,,;»

CERcorr

Fig. 5. Optimisation scheme used in Sect. 4.2. The Stimulus trace D
contains stimulus phrases and corresponding touch points generated by
our model or a real user.

or deletion penalty. This prediction is combined with a character-
level language model that predicts the accumulated likelihood of a
character sequence P.(L). Finally, we form a weighted average with the
prediction P, (L|S) from a word-level language model that considers
the full sentence S to find the most likely character sequence L. The
two predictions are weighted by a factor A:

l::argznax [AP(O|L)P.(L)+ (1 —=A)P,(L|S)]. (6)

The character-level language model is a 5-gram model trained on a
subset of texts from the Gutenberg Project. The word-level lan%uage
model is the ‘tiny’ variant of a publicly available 4-gram model.

In our hyperparameter selection task we consider the following
decoder parameters:

* insertion and deletion penalties as integers in [-20, -2];

e variance in x and y direction used by the touch model as real
values in [6.25, 25];

* and model weighting A, a real value in [0.1, 0.9].

4 EVALUATION

We evaluate our model in two ways: First, we show that it can predict
the results of a user study (with real users) for both mid-air and surface-
aligned typing on a virtual QWERTY keyboard. Second, we illustrate
how the model can be used to augment or replace human testing, by
using our model to select good hyperparameters for the keyboard-
decoder introduced in Sect. 3.7.

In both parts of our evaluation we compare our model against 24
real users from a recent user study by Dudley et al. [11]. The study
includes data for two-finger typing on a surface-aligned and mid-air
virtual QWERTY keyboard (see Fig. 2). Each participant typed a
unique set of 160 phrases per condition, resulting in two datasets,
each containing 3,840 stimulus phrases. Following the notation of
the original publication we subsequently refer to the datasets as Dy,,,2
for surface-aligned typing and D,,,» for the mid-air condition. Unless
otherwise specified, all evaluations of our model were carried out using
stimuli sampled from the same corpus of phrases used in the benchmark
user study. The stimulus phrases consist of four words or more and are
less than 40 characters long.

4.1 Alignment with User Behaviour

In this part of the evaluation we show that our model is well aligned
with many behaviours observed in the benchmark study introduced
at the beginning of the previous section. We trained two versions of

Zhttps://aactext.org/imagine/

HETZEL ETAL.: COMPLEX INTERACTION AS EMERGENT BEHAVIOUR: SIMULATING MID-AIR VIRTUAL KEYBOARD TYPING...

Condition ‘
120 | m1dﬁnr
I surface
100 ——
'
80
=
~
B RN
60
20
L
+
Our Model Real Users

Fig. 6. Box-and-whisker plots of per stimulus entry rate (WPM). Whiskers
are 1.5 times longer than the interquartile range (IQR). Our model pre-
dicts that users will type faster on surface-aligned keyboards, which is
well aligned with empirical data [11].

our model: one for mid-air and one for surface-aligned typing. Both
the model for surface-aligned and mid-air typing were trained for
one million iterations during the first training stage and four million
iterations during stage 2 of the training regime outlined in Sect. 3.5.
We evaluate uncorrected character error rate (CER), words per minute
(WPM) and inter-key intervals (IKIs). Words per minute is calculated
as the number of characters typed per minute divided by a nominal
word length of five characters. Character error rate is computed as the
Levenshtein distance between the stimulus and response text, divided
by the length of the stimulus phrase (including spaces).

We quantify how well our model fits into the population of real users
using z-scores (also known as standard scores). The z-score corresponds
to the number of standard deviations std(x) that a sample x is away
from the mean E(x) of a given distribution:

_x E(x) . 7
std(x)

Therefore, we desire our model to have a z-score close to zero. All
results are listed in Table 3 and Table 4. Our mid-air model lies within
0.5 standard deviations from the mean for real users for all metrics.
This is a significant achievement considering that our model was not
explicitly designed, or trained, to approximate any of these metrics. If,

Table 3. Results for mid-air interaction on 500 randomly sampled stimuli
and mean result for all users from Dudley et al [11] (Dyu02)-

Metric Do Our model z-score
IKI [ms] 306 342 0.4268
CER [%] 9.95 9.93 -0.0029
WPM 42.1 37.6 -0.4013

Table 4. Results for surface-aligned typing on 500 randomly sampled
stimuli and mean result for all users from Dudley et al [11] (Dyy2)-

Metric Do Our model z-score
IKI [ms] 244 306 0.7046
CER [%] 12.25 3.88 -0.7911
WPM 55.605 40.93 -0.729

4145

07 Condition
’ I mid-air '
I surface ’
0.6 t
4
0.5
{
~ 0.4
m I
@]
0.3 : 4
1
0.2 i
3
) ; !
0.0
Our Model Real Users

Fig. 7. Box-and-whisker plots of uncorrected, per stimulus, character
error rate (CER). Whiskers are 1.5 times longer than the interquartile
range (IQR). While the z-scores for both conditions are low, our model
does not predict that the uncorrected character error rate will be higher
for surface-aligned typing.

for illustrative purposes, we assume that entry rates (WPM) are nor-
mally distributed across the general population for mid-air typing, then
our model can be considered to be more average than approximately
70% of real users. Further, our model correctly predicts that users can
enter text faster on surface-aligned keyboards (see Fig. 6), which is well
aligned with real user behaviour [11]. Additionally, we note that our
model falls short of the average WPM achieved by real users in both
conditions. While there may be other confounding factors, this may
be caused by our conservative approximation of bimanual interleaving.
However, even though our model approximates the “average user” with
surprisingly high accuracy, it does not yet capture the full spectrum
of human performance, as can be seen by the much lower variance
expressed in Fig. 6. We will cover a number of ways to address this
in our subsequent discussion of future work. For clarity, we would
like to reiterate that while our model is trained in an environment that
mimics the one in the original user study, the behaviour of real humans
in that environment (i.e. the results of the study) was never considered
during the design or training of the model. All similarities emerge from
the skeletal kinematics, the muscle model and a simple cost function.
The evaluation of both mid-air and surface-aligned conditions serves to
illustrate how the model can generalise across both interaction settings.

As with any other user model, our model, while surprisingly accurate,
does not approximate all aspects of human behaviour. As illustrated in
Fig. 7, our model does not predict that real users make more errors when
typing on a surface-aligned keyboard. The touch point distributions
over the layout shown in Fig. 8 reveal a degree of consistency with
Dudley et al. [11] in terms of additional variance in the lateral direction
across the layout, but differ in terms of the generally higher variance
observed with the mid-air model for keys near the centre of the layout.
However, in the second part of our evaluation we will focus on whether
the model is sufficiently accurate to be useful for keyboard design in
practice.

4.2 Applications to Hyperparameter Selection

In the development of any system, a large number of design decisions
have to be made. For example, when investigating the feasibility of
a new keyboard layout in VR, factors such as key size, keyboard po-
sition and other parameters are often impractical or infeasible to be
comprehensively evaluated in a user study. Instead, designers often rely

4146

on initial tests with small sample sizes (N ~ # authors) or simply do
not optimise many of these parameters at all. We will now show how
our model can be used objectively and efficiently to augment, or even
replace, human testing. For this part of the evaluation we only consider
mid-air typing.

In particular, we use our model to select hyperparameters for the
map-based keyboard decoder introduced in Sect. 3.7. The decoder
takes a sequence of touch points on a virtual keyboard as input and
predicts the sequence of keys the user intended to hit.

Optimal hyperparameters are selected and evaluated as indicated
in Fig. 5. Specifically, we seek to minimise the character error rate
after corrections are applied by the map-based keyboard decoder. To
differentiate from the CER values reported in Sect. 4.1 (based on closest
key to touch point), we refer to this corrected character error rate as
CER¢orr. Note that in the experimental protocol for the transcription
task applied by Dudley et al. [11], participants were not permitted
to perform any active correction (i.e. no backspace/delete key was
available) and so some remaining errors are to be expected.

We use Bayesian optimisation with a Gaussian process base estima-
tor and a GP-Hedge acquisition function [4] to perform this hyperpa-
rameter optimisation. Bayesian optimisation does not rely on gradients
and is therefore particularly well-suited for applications where sample
acquisition is expensive. Instead, it approximates the objective using
a surrogate model and selects the next points for evaluation based on
some statistical metric (e.g. expected improvement). For an introduc-
tion to Bayesian optimisation we refer readers to Frazier [16]. The
acquisition function is optimised using Limited-memory BFGS [33].
All parameters are initialised with uniform priors. Eight points are
evaluated in parallel using the minimum-constant liar strategy [7].

To obtain a reliable estimate of our model’s performance, we cap-
ture 10 different datasets of the model typing 160 stimulus phrases
sampled from the original corpus. We run Bayesian optimisation on
each of these datasets and compute the average CERqr of the best
set of hyperparameters from each optimisation on D,,,». The results
from this evaluation are illustrated in Fig. 9. In particular, the best
hyperparameters found for the ten datasets captured using our model
achieve an average CER¢qrr of 5.77% on D,,,,o. We note that we are
not primarily interested in this absolute value but rather in the relative
difference between our model and real users.

4.2.1

Realistically, most hyperparameters in real systems are never explicitly
optimised. Instead they are arbitrarily chosen by the designers. While
gut feeling is difficult to approximate we take inspiration from financial
science, where portfolio allocations are often compared against a large
number of randomly chosen portfolios made up of the same under-
lying assets [5, 8]. We show that our model can outperform random
hyperparameter choices for the previously introduced keyboard decoder
with high confidence. As a baseline, we randomly sample 400 sets of
hyperparameters from the domain described in Sect. 3.7 and evaluate
their performance on D,,;,». Comparing random choices to the intuition

~0.025 % é‘\@? if

Random Baseline

0.025

—0.050

—0.075 +

—0.10 —0.05 0.00 0.05 0.10

Fig. 8. Touch point covariance for each key represented as ellipses, which
encompass the 50% confidence intervals. All labels are in metres. Points
were collected using our mid-air model typing 500 random character
sequences.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 11, NOVEMBER 2021

Real Users | ©® o

Our Model - ¢

5.2 5.4 5.6 5.8 6.0 6.2 6.4
CERcorr [%]

Fig. 9. Hyperparameter performance on D,,,. Our model is shown to
be nearly as predictive of hyperparameter performance as real users.
This includes the best sets of hyperparameters found using 10 different
datasets captured using our model, compared with the hyperparameter
sets found using traces for each single real user.

of experienced engineers is of course a highly conservative simplifi-
cation.Therefore, we consider only the best 25% of hyperparameters.
Even so, in a pairwise comparison our model outperforms 99.8% of
randomly sampled points. The 25% best randomly sampled points
achieve an average CER o 0f 29.99% on D,,,,», compared to 5.77%
for our model. The high CER achieved using random sampling of
the parameters illustrates how challenging the hyperparameter selection
problem at hand is.

4.2.2 Single User Baseline

For the second part of this evaluation we now consider the use-case
of a developer selecting hyperparameters based on their own data,
a common tactic in practical design. In other words, we consider
that our model may be used to select hyperparameters as good or
better than some human users. We show that our model may in some
cases be used to replace initial tests altogether with only a small real-
world performance penalty. We again make use of the same keyboard
decoder and the user data D,,,;,» from Dudley et al. [11]. Initial testing
is simulated by using data from a single user to find hyperparameters
that minimise the average CER,r using Bayesian optimisation. This
set is then evaluated on the data for the other 23 real users. This process
is repeated for each of the 24 users.

As indicated above, our model achieves an average CER o 0f 5.77%
on D,,,», while the parameters found using real user data achieved an
average CER¢qpr Of 5.63%. The fact that our model performs nearly
as well as real users is particularly impressive when considering how
poorly the random baseline from Sect. 4.2.1 performed . Additionally,
in a pairwise comparison our model has a 38.3% percent chance of out-
performing any single user. This is particularly impressive, considering
that this implies that (at least in terms of our evaluation) our synthetic
model is more indicative of the behaviour of the average real user than
38.3% of actual real users.

From the benchmark user study [11] we know that collecting the
data that we used during our evaluation took real users approximately
two hours. Even if we assume that a researcher would be willing to
invest this time to optimise a certain parameter, there is still a significant
chance that our model will find better parameters.

Further, our model may be used to optimise parameters that realisti-
cally cannot be numerically optimised through human testing. In most
cases, human testing can only be used to numerically optimise parame-
ters that can be altered after the data is already captured (for example,
the parameters of the keyboard decoder from our evaluation). In other
cases (for example, altering the keyboard size) a human participant
would have to type a large number of sentences for each level of the size
parameter to be evaluated, which quickly becomes infeasible. Since our
simulation can generate data for approximately 100 stimuli per minute,
even on a laptop with an Intel i7-6700HQ CPU, fresh training data can
easily be generated at each evaluation step.

HETZEL ETAL.: COMPLEX INTERACTION AS EMERGENT BEHAVIOUR: SIMULATING MID-AIR VIRTUAL KEYBOARD TYPING...

5 DISCUSSION

In this paper we have shown that a reinforcement learning agent con-
trolling a biomechanical model of the human arm and trained on a
simple cost function can approximate unseen user data with high accu-
racy. Importantly, the resulting model does not explicitly approximate
human behaviour and it is not trained on any data from real users, or
tuned on any evaluation metrics, such as entry or error rate. Instead,
reinforcement learning allowed the system to learn a model that shows
emergent behaviour aligned with human behaviour. It does so not by
explicitly modelling how humans may behave, but through optimising
its behaviour under similar underlying constraints as a human typist,
including the skeletal structure and muscle model.

5.1 Implications

Advances in human-computer interfaces are often driven by stronger
predictive methods. Touchscreen input already relies heavily on meth-
ods that predict the most likely user action (e.g. [18]). Considering
the vastly more complex interactions that need to be well-supported
in virtual and augmented reality, such as bimanual tracked movement
of both hands and the individual fingers, predictive computational
models are likely to form an important building block towards virtual
and augmented reality user interface design that is more aligned with
engineering science principles.

Many promising fluent, robust and flexible interaction techniques
in virtual and augmented reality, such as mid-air virtual keyboard
typing, will rely on data-hungry statistical models, such as deep neural
networks. However, representative data from VR and AR headset users
is typically limited. The generative RL model introduced in this paper
acts as an inexpensive source of representative surrogate user data
suitable for training a rich computational model and thereby paves the
way towards developing such models in the future.

Another use of the RL model for mid-air virtual keyboard typing
is as an interactive design tool for a use-case where little or no user
data may be available. For example, our RL model can be used to
carry out sensitivity analysis and alert designers to hyperparameter
choices that should be more carefully considered during the design of a
system. Further, as previously demonstrated, our RL model can readily
support designers in finding suitable hyperparameters for a keyboard
auto-correction decoder for two-finger mid-air virtual keyboard typing.

5.2 Limitations and Future Work

The most notable limitation of the RL model in this paper is that it
uses two right arm models to simulate bimanual typing. This limits the
model’s ability to approximate the complex bimanual interleaving that
real users exhibit [13]. However, the simplified approach is justified
since adding a second arm would double the number of degrees of
freedom and require the agent to dexterously coordinate both hands. A
possible solution to account for this increase in difficulty would be to
use imitation learning on real user data to warm-start the reinforcement
learning [39]. However, such approaches rely on real user data, which
reduces their availability for novel interactive systems, such as virtual
and augmented reality, which is why we do not consider them in this
work and leave such investigations for future work.

In this paper, we demonstrate the validity of the RL model by com-
paring the generated behaviours with existing user data. Our proposal
to use the model for investigating the influence of other design param-
eters (e.g. key size, layout) still requires validation with comparable
real user data. Unfortunately, collecting new user data at a large scale
was not possible during this project due to the COVID-19 pandemic.
Nevertheless, since the keyboard geometry is not explicitly considered
in the model, we expect our approach to generalise well to a wide
range of keyboard geometries and even to other target acquisition tasks.
The generalisability of the reinforcement learning-based approach is
exemplified by the fact that we were able to use the exact same RL
model architecture, training regime and hyperparameters to type in both
the mid-air and surface-aligned conditions.

It is likely that the accuracy of our model, particularly in terms
of lower-level parameters, such as the 3D trajectory of the fingertip,
could be improved by using a more complex biomechanical model. In

4147
1.0

0.04
0.8

0.02
0.6

0.00
0.4

~0.02
~0.04 02

T T T

~0.10 ~0.05 0.00 0.0

Fig. 10. Our model can generate highly variable traces: kernel density
estimates of our model typing the word “ace” 500 times. All labels are in
meters. The estimator bandwidth was computed using Scott’s Rule [46].

particular, future work includes comparing different muscle models,
or using the 3CC-r [34] model introduced in Sect. 3.2 and explicitly
consider the fatigue predicted by that model in the cost function.

The ability to generate large amounts of training data is only valuable
if the model is sufficiently complex. In contrast to simple 2D user
models [15], noise introduced into our RL model is mapped through
the highly complex dynamics of the arm and throughout the episode to
determine the trace captured for a specific stimulus. Therefore, even
for the same stimulus phrase, our RL model can generate traces that
are distinct in non-trivial ways (see Fig. 10). However, as evident in
Fig. 6, our RL model does not currently capture the full variance of
human behaviour. To further increase the variance of the generated
data, the RL model can be extended with domain randomisation—
a well-established practice in RL [38]. For example, skeletal and
reward parameters can be randomised to train a large collection of
individual agents. This ensemble can then be used to generate arbitrary
amounts of valuable training data for training of, for example, a large
recurrent neural network-based keyboard decoder for mid-air text entry.
Previous work in reinforcement learning [38] suggests that the addition
of domain randomisation during training can also significantly improve
the generalisability of the model, making it more robust towards large
changes in keyboard layout and geometry. We will investigate these
aspects in future work.

6 CONCLUSIONS

Accurate modelling of user behaviour has the potential to substantially
improve the quality of user interaction in virtual and augmented reality.
All models of user interaction have to strike a careful balance between
accuracy and complexity for them to be relevant beyond the scope of
highly specialised research. At one extreme, a high-level mathematical
regularity, such as Fitts’ law, is easy to apply and research, and as a
consequence has achieved widespread use. More complex handcrafted
models are often ignored by practitioners and the research community
because of their high complexity and relatively low value given the
substantial effort required to tune an accurate model. Reinforcement
learning-based models of interaction have the potential to capture much
of the accuracy of these more complex models, while retaining most of
the ease of use and generality of simple mathematical regularities. In
particular, we believe RL models are particularly promising for mod-
elling hand tracked user interaction in virtual and augmented reality.
In summary, in this paper we have demonstrated that reinforcement
learning can approximate user behaviour in a complex interaction task
that is ubiquitous in virtual and augmented reality: two-finger typing
on a mid-air or surface-aligned virtual keyboard. Specifically, we
have shown that our RL model is capable of replicating high-level
typing behaviour of human users. Further, we have demonstrated the
utility of this approach by showing that it may be used to augment
or replace human testing during the validation and development of
virtual keyboards by assisting with hyperparameter selection for an

4148

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 27, NO. 11, NOVEMBER 2021

auto-correcting virtual keyboard decoder. We hope this work will
inspire further efforts into creating complex yet easy-to-use RL models
of user interaction that can accelerate the development of more robust
and fluent interaction techniques for virtual and augmented reality.

ACKNOWLEDGMENTS

This work was carried out when Lorenz Hetzel was a visiting student
at the University of Cambridge. The authors would like to thank
Otmar Hilliges for his advice and support. John Dudley and Per Ola
Kristensson were supported by EPSRC (grant EP/S027432/1).

REFERENCES

(1]

[2]

[3]

[4]
[5]
[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

B. I. Ahmad, J. K. Murphy, P. M. Langdon, S. J. Godsill, R. Hardy,
and L. Skrypchuk. Intent Inference for Hand Pointing Gesture-Based
Interactions in Vehicles. IEEE Trans Cybern, 46(4):878-889, Apr. 2016.
B. Baker, I. Kanitscheider, T. M. Markov, Y. Wu, G. Powell, B. McGrew,
and I. Mordatch. Emergent Tool Use From Multi-Agent Autocurricula.
CoRR, abs/1909.07528, 2019. _eprint: 1909.07528.

D. A. Bowman, C. J. Rhoton, and M. S. Pinho. Text In-
put Techniques for Immersive Virtual Environments: An Em-
pirical Comparison. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, 46(26):2154-2158, 2002.
_eprint: https://doi.org/10.1177/154193120204602611. doi: 10.1177/
154193120204602611

E. Brochu, M. Hoffman, and N. de Freitas. Hedging Strategies for
Bayesian Optimization. Technical Report arXiv:1009.5419, Sept. 2010.
P. Burns. Performance measurement via random portfolios. Available at
SSRN 630123, 2004.

N. Cheema, L. A. Frey-Law, K. Naderi, J. Lehtinen, P. Slusallek, and
P. Hamaéldinen. Predicting Mid-Air Interaction Movements and Fatigue
Using Deep Reinforcement Learning. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, pp. 1-13. Associa-
tion for Computing Machinery, New York, NY, USA, 2020.

C. Chevalier and D. Ginsbourger. Fast Computation of the Multi-points
Expected Improvement with Applications in Batch Selection. Oct. 2012.
A. Clare, N. Motson, and S. Thomas. An evaluation of alternative equity
indices-part 1: Heuristic and optimised weighting schemes. Available at
SSRN 2242028, 2013.

L. Colombo, D. Martin De Diego, and M. Zuccalli. Optimal con-
trol of underactuated mechanical systems: A geometric approach.
Journal of Mathematical Physics, 51(8):083519, 2010. _eprint:
https://doi.org/10.1063/1.3456158.
doi: 10.1063/1.3456158

V. Dhakal, A. M. Feit, P. O. Kristensson, and A. Oulasvirta. Observations
on Typing from 136 Million Keystrokes. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI *18, pp.
1-12. Association for Computing Machinery, New York, NY, USA, 2018.
event-place: Montreal QC, Canada. doi: 10.1145/3173574.3174220

J. Dudley, H. Benko, D. Wigdor, and P. O. Kristensson. Performance
Envelopes of Virtual Keyboard Text Input Strategies in Virtual Reality. In
2019 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 289-300, 2019. doi: 10.1109/ISMAR.2019.00027

J. J. Dudley, K. Vertanen, and P. O. Kristensson. Fast and Precise Touch-
Based Text Entry for Head-Mounted Augmented Reality with Variable
Occlusion. ACM Trans. Comput.-Hum. Interact., 25(6), Dec. 2018. Place:
New York, NY, USA Publisher: Association for Computing Machinery.
doi: 10.1145/3232163

A. M. Feit, D. Weir, and A. Oulasvirta. How We Type: Movement
Strategies and Performance in Everyday Typing. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, pp. 4262—
4273. Association for Computing Machinery, New York, NY, USA, 2016.
F. Fischer, M. Bachinski, M. Klar, A. Fleig, and J. Miiller. Reinforcement
Learning Control of a Biomechanical Model of the Upper Extremity. 2020.
_eprint: 2011.07105.

F. Fischer, A. Fleig, M. Klar, L. Gruene, and J. Mueller. An Optimal Con-
trol Model of Mouse Pointing Using the LOR. 2020. _eprint: 2002.11596.
P. I Frazier. A tutorial on bayesian optimization, 2018.

C. Gebhardt, B. Hecox, B. van Opheusden, D. Wigdor, J. Hillis, O. Hilliges,
and H. Benko. Learning Cooperative Personalized Policies from Gaze
Data. In Proceedings of the 32nd Annual ACM Symposium on User
Interface Software and Technology, UIST *19, pp. 197-208. Association

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(35]

[36]

(371

for Computing Machinery, New York, NY, USA, 2019. event-place: New
Orleans, LA, USA. doi: 10.1145/3332165.3347933

J. Goodman, G. Venolia, K. Steury, and C. Parker. Language Modeling
for Soft Keyboards. In Proceedings of the 7th International Conference
on Intelligent User Interfaces, IUI 02, pp. 194-195. Association for
Computing Machinery, New York, NY, USA, 2002. event-place: San
Francisco, California, USA. doi: 10.1145/502716.502753

J. Grubert, L. Witzani, E. Ofek, M. Pahud, M. Kranz, and P. O. Kristensson.
Text Entry in Immersive Head-Mounted Display-Based Virtual Reality
Using Standard Keyboards. In 2018 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR), pp. 159-166, 2018. doi: 10.1109/VR.2018.
8446059

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic
Actor. 2018. _eprint: 1801.01290.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar,
H. Zhu, A. Gupta, P. Abbeel, and S. Levine. Soft Actor-Critic Algorithms
and Applications. CoRR, abs/1812.05905, 2018. _eprint: 1812.05905.

C. M. Harris and D. M. Wolpert. Signal-dependent noise determines motor
planning. Nature, 394(6695):780-784, Aug. 1998.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A
survey of learning methods. ACM Comput. Surv., 50(2), Apr. 2017. doi:
10.1145/3054912

A. Ikkala and P. Himéldinen. Converting Biomechanical Models from
OpenSim to MuJoCo. 2020. _eprint: 2006.10618.

Y. Jiang, T. Van Wouwe, F. De Groote, and C. K. Liu. Synthesis of
Biologically Realistic Human Motion Using Joint Torque Actuation. ACM
Trans. Graph., 38(4), July 2019. Place: New York, NY, USA Publisher:
Association for Computing Machinery. doi: 10.1145/3306346.3322966
J. J. Knapik, J. E. Wright, R. H. Mawdsley, and J. Braun. Isometric,
isotonic, and isokinetic torque variations in four muscle groups through a
range of joint motion. Physical therapy, 63(6):938-947, 1983. Publisher:
Oxford University Press.

P. Knierim, V. Schwind, A. M. Feit, F. Nieuwenhuizen, and N. Henze.
Physical Keyboards in Virtual Reality: Analysis of Typing Performance
and Effects of Avatar Hands. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems, CHI 18, pp. 1-9. Association
for Computing Machinery, New York, NY, USA, 2018. event-place:
Montreal QC, Canada. doi: 10.1145/3173574.3173919

P. O. Kristensson. Discrete and Continuous Shape Writing for Text En-
try and Control. PhD thesis, Department of Computer and Information
Science, Linkoping University, Sweden, 2007.

P. O. Kristensson. Five Challenges for Intelligent Text Entry Methods. Al
Magazine, 30(4):85, Sept. 2009. Section: Articles. doi: 10.1609/aimag.
v30i4.2269

P. O. Kristensson. Next-Generation Text Entry. Computer, 48(7):84-87,
2015. doi: 10.1109/MC.2015.185

E. Lank, Y.-C. N. Cheng, and J. Ruiz. Endpoint Prediction Using Motion
Kinematics. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 07, pp. 637-646. Association for Computing
Machinery, New York, NY, USA, 2007. event-place: San Jose, California,
USA. doi: 10.1145/1240624.1240724

C.J. Lin, B. T. Abreham, and B. H. Woldegiorgis. Kinematics of direct
reaching in head-mounted and stereoscopic widescreen virtual environ-
ments. Virtual Reality, Mar. 2021. doi: 10.1007/s10055-021-00505-6

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical programming, 45(1):503-528, 1989.
Publisher: Springer.

J. M. Looft, N. Herkert, and L. Frey-Law. Modification of a three-
compartment muscle fatigue model to predict peak torque decline during
intermittent tasks. J Biomech, 77:16-25, 2018.

K. L. Moore, A. F. Dalley, and A. M. R. Agur. Clinically oriented anatomy.
Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, 7th
eded., 2014.

V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted
Boltzmann Machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, ICML’10, pp. 807—
814. Omnipress, Madison, WI, USA, 2010. event-place: Haifa, Israel.
OpenAl, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. Mc-
Grew, A. Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schnei-
der, N. Tezak, J. Tworek, P. Welinder, L. Weng, Q. Yuan, W. Zaremba,
and L. Zhang. Solving Rubik’s Cube with a Robot Hand. CoRR,
abs/1910.07113, 2019. _eprint: 1910.07113.

HETZEL ETAL.: COMPLEX INTERACTION AS EMERGENT BEHAVIOUR: SIMULATING MID-AIR VIRTUAL KEYBOARD TYPING...

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]

[52]

[53]

[54]

[55]

OpenAl, M. Andrychowicz, B. Baker, M. Chociej, R. J6zefowicz, B. Mc-
Grew, J. W. Pachocki, J. Pachocki, A. Petron, M. Plappert, G. Pow-
ell, A. Ray, J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng,
and W. Zaremba. Learning Dexterous In-Hand Manipulation. CoRR,
abs/1808.00177, 2018. _eprint: 1808.00177.

A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov,
and S. Levine. Learning Complex Dexterous Manipulation with Deep
Reinforcement Learning and Demonstrations. 2018. _eprint: 1709.10087.
M. Richardson, M. Durasoff, and R. Wang. Decoding Surface Touch
Typing from Hand-Tracking. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology, UIST °20, pp.
686—696. Association for Computing Machinery, New York, NY, USA,
2020. event-place: Virtual Event, USA. doi: 10.1145/3379337.3415816
T. A. Salthouse. Perceptual, cognitive, and motoric aspects of transcription
typing. Psychological bulletin, 99(3):303, 1986. APA.

K. R. Saul, X. Hu, C. M. Goehler, M. E. Vidt, M. Daly, A. Velisar, and
W. M. Murray. Benchmarking of dynamic simulation predictions in two
software platforms using an upper limb musculoskeletal model. Comput
Methods Biomech Biomed Engin, 18(13):1445-1458, 2015.

D. Schneider, A. Otte, T. Gesslein, P. Gagel, B. Kuth, M. S. Damlakhi,
O. Dietz, E. Ofek, M. Pahud, P. O. Kristensson, J. Miiller, and J. Grubert.
ReconViguRation: Reconfiguring Physical Keyboards in Virtual Reality.
IEEE Transactions on Visualization and Computer Graphics, 25(11):3190-
3201, 2019. doi: 10.1109/TVCG.2019.2932239

J. Schulman, S. Levine, P. Moritz, M. 1. Jordan, and P. Abbeel. Trust
Region Policy Optimization. CoRR, abs/1502.05477, 2015. _eprint:
1502.05477.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal
Policy Optimization Algorithms. CoRR, abs/1707.06347,2017. _eprint:
1707.06347.

D. W. Scott. Multivariate density estimation: theory, practice, and visual-
ization. John Wiley & Sons, 2015.

N. A. Tillin, M. T. Pain, and J. P. Folland. Contraction type influences
the human ability to use the available torque capacity of skeletal muscle
during explosive efforts. Proceedings of the Royal Society B: Biological
Sciences, 279(1736):2106-2115, 2012. Publisher: The Royal Society.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 5026-5033. IEEE, 2012.

R.J. van Beers, P. Haggard, and D. M. Wolpert. The Role of Execution
Noise in Movement Variability. Journal of Neurophysiology, 91(2):1050—
1063, 2004. _eprint: https://doi.org/10.1152/jn.00652.2003. doi: 10.1152/
jn.00652.2003

M. van Otterlo and M. Wiering. Reinforcement Learning and Markov
Decision Processes. In M. Wiering and M. van Otterlo, eds., Reinforcement
Learning: State-of-the-Art, pp. 3—42. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012. doi: 10.1007/978-3-642-27645-3_1

P. D. Varcholik, J. J. LaViola, and C. E. Hughes. Establishing a baseline
for text entry for a multi-touch virtual keyboard. International Journal of
Human-Computer Studies, 70(10):657 — 672, 2012. doi: 10.1016/j.ijhcs.
2012.05.007

K. Vertanen, H. Memmi, J. Emge, S. Reyal, and P. O. Kristensson. Veloc-
itap: Investigating fast mobile text entry using sentence-based decoding
of touchscreen keyboard input. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, pp. 659-668, 2015.
C. Wu and Y. Liu. Queuing Network Modeling of Transcription Typing.
ACM Trans. Comput.-Hum. Interact., 15(1), May 2008. Place: New
York, NY, USA Publisher: Association for Computing Machinery. doi: 10.
1145/1352782.1352788

R. Xiao, J. Schwarz, N. Throm, A. D. Wilson, and H. Benko. MRTouch:
Adding Touch Input to Head-Mounted Mixed Reality. IEEE Transactions
on Visualization and Computer Graphics, 24(4):1653-1660, 2018. doi: 10
.1109/TVCG.2018.2794222

G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li.
DRN: A Deep Reinforcement Learning Framework for News Recom-
mendation. In Proceedings of the 2018 World Wide Web Conference, pp.
167-176. International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, CHE, 2018.

4149

