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A B S T R A C T   

Virtual reality (VR) user interfaces contain numerous dynamic interactive tasks, among which acquiring moving 
targets is a common basic one. Previous studies have investigated user performance in moving target acquisition 
in desktop and touchscreen settings. However, these findings are not directly transferable to VR where targets 
and user input have complete freedom in three dimensions. This paper concentrates on motion-in-depth, that is, 
where a target predominantly exhibits approaching or receding movement as opposed to lateral motion across 
the user’s field of view. We report on two studies investigating how various factors including texture, shadow, 
alignment, moving speed and moving direction affect: 1) perception accuracy of 3D targets with motion-in- 
depth, and 2) user performance, which we define as the combination of movement time (MT) and error rate 
(ER), in a target acquisition task involving motion-in-depth. Our data reveal a number of empirical results that 
are distinct from the depth perception of static targets and the user performance of 1D/2D target acquisition. We 
found that MT and ER when acquiring targets with motion-in-depth have strong regularities as the data showed 
good fits with Jagacinski’s model for movement time estimation and a Ternary-Gaussian model for error rate 
prediction. We conclude with implications derived from this study for future designs.   

1. Introduction 

Interactive dynamic content is ubiquitous in modern computing 
applications such as games, real-time simulations and data visualiza
tions. Dynamic content is particularly prevalent in virtual reality (VR) 
given the opportunity this environment affords for natural, embodied 
interaction with objects in three dimensions. One of the most common 
and fundamental interaction tasks encountered in such scenarios is the 
acquisition of moving targets, such as hitting a virtual tennis ball in a 
game. Despite its prevalence, acquiring moving targets is still very 
challenging for most users due to the level of sensory-motor coordina
tion required (Brenner and Smeets, 1996; Franklin and Wolpert, 2011). 
In VR, the higher degree of freedom of motion makes it more difficult for 
users to locate and select moving targets. A better understanding of the 
factors influencing moving target acquisition in VR, and how these 
factors affect user performance, can help drive improvements in inter
action design. 

The essential difference between interactions in VR and other lower- 
dimensional (1D/2D) settings lies in the extra degree of freedom in 

depth. This addition of depth not only broadens the design space for user 
interfaces, but also invokes a series of specific research topics, such as 
the effect of depth on user performance (Janzen et al., 2016; Teather and 
Stuerzlinger, 2013) and perceiving (Hubona et al., 1999) or reaching 
(Batmaz et al., 2019) objects in depth. Previous studies (e.g., (Batmaz 
et al., 2019; Hubona et al., 1999; Janzen et al., 2016)) indicate that the 
perception and behavioral patterns of users in the depth dimension are 
different from those in other dimensions; this motivates our investiga
tion of user performance in acquiring moving targets specifically in the 
depth dimension, or what we term ‘motion-in-depth’ in this paper. 

Compared to the extensive studies on static target pointing, there is 
far less existing work on assisting moving target pointing in VR. Recent 
works in moving target acquisition offer good explanations and models 
for user pointing behaviors in moving targets (Hasan et al., 2011; Huang 
et al., 2018; Lee et al., 2018). However, these studies have been con
ducted only in 1D or 2D spaces and with traditional input devices (e.g., 
mouse and touch screen); therefore, the results from these studies 
cannot be directly transferred and generalized to target motion in the 
depth dimension. 
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To gain an understanding of the factors affecting user performance in 
VR-based target acquisition with motion-in-depth, we conducted two 
user studies. The first study investigates the influence of speed, moving 
direction, texture, shadow and alignment on perception accuracy of ob
jects with motion-in-depth. The second study explores how the afore
mentioned factors affect user performance, which we define as the 
combination of movement time (MT) and error rate (ER), in a target 
acquisition task involving motion-in-depth. We found that target speed 
has the greatest impact on users perception, followed by shadow and 
direction movement (i.e. approaching or receding). We discovered 
empirical evidence that differs from previous research on target selec
tion in conventional user interfaces, such as the influence of target speed 
on MT depending on the target’s moving direction and initial distance 
having a significant impact on selection ER. Data of MT and the ER of 
motion-in-depth showed good fits with Jagacinski’s model and a 
Ternary-Gaussian model, implying strong lawful regularities of MT and 
ER in this task. Based on the empirical evidence from these two studies, 
we derive several important implications for the design of applications 
involving targets with motion-in-depth. 

In summary, this paper makes the following three contributions:  

a) An empirical investigation of the effects of five design factors: 1) 
texture; 2) shadow; 3) alignment; 4) moving speed; and 5) moving 
direction on perception accuracy of motion-in-depth.  

b) An empirical investigation and model analysis of the effects of the 
above mentioned five design factors and two task variables: 1) initial 
distance; and 2) target size on MT and ER for targets with motion-in- 
depth.  

c) A set of design guidelines for applications in virtual environments to 
improve the design of dynamic content with motion-in-depth. 

2. Related work 

We categorize the related work on user performance in target 
acquisition with motion-in-depth into three areas: target acquisition in 
VR, perception and user performance in the depth dimension, and 
descriptive models for moving target acquisition. 

2.1. Target acquisition in VR 

Target Acquisition is a basic operation in HCI (Argelaguet and 
Andujar, 2013). In 2D space, target acquisition has been extensively 
researched, resulting in well-established selection paradigms, such as 
mouse (Dragicevic, 2004), pen (Accot and Zhai, 2002) and touch input 
(Luo and Vogel, 2014). There has also been much work on selection 
techniques in 3D space, which includes volumetric displays (Grossman 
and Balakrishnan, 2006), as well as VR (Huang et al., 2019b; Tu et al., 
2019) and augmented reality (AR) (Wolf et al., 2018). Compared to 2D, 
interaction in 3D environments is more challenging due to the additional 
third dimension (Hinckley et al., 1994). Consequently, several attempts 
have been made to develop techniques to enable more efficient inter
action in 3D spaces. For instance, Feiner (2003) developed a technique, 
called the Flexible Pointer, which allows users to select objects that are 
partially or fully obscured by other objects in 3D space. Poupyrev et al. 
(1996) developed the go-go cursor, an extendable projected cursor 
designed to facilitate reaching of both near and far objects based on the 
user’s arm extension. In the commercial VR space, target acquisition is 
primarily achieved using two main and extensively-studied methods – 
raycasting and virtual hand. 

Raycasting is a method where a ray is projected from an input device 
(either a controller or a hand) towards an interface. Targets are acquired 
at the point the projected ray intersects with an interface element, e.g. a 
button. To leverage simpler interactions in 3D space, researchers have 
exploited the use of 2D image planes and the raycasting technique 
(Lubos et al., 2014; Tu et al., 2019). For instance, Ramcharitar and 
Teather (2018) developed the EZCursorVR technique, which shows a 2D 

cursor on a plane in front of the user in VR, to make depth-based se
lections beyond the image plane possible. Tu et al. (2019) compared 
pointing to a crossing technique, both of which used raycasting as a 
foundation for target acquisition in VR. The raycasting method is widely 
used in commercial VR applications to support the selection of distant 
targets; the interaction is typically implemented as a laser-like pointer 
projected from the VR controller or hand into the virtual environment. 
The virtual hand technique places a cursor at the position of the user’s 
hand in 3D space. In its simplest form, it is represented by a point cursor 
placed at the user’s hand or a hand-held wand—for instance, (Barrera 
Machuca and Stuerzlinger, 2019; Batmaz et al., 2019). The benefit of the 
virtual hand method, versus the raycasting technique is that more nat
ural interactions can be enabled in 3D space, with the user able to move 
the hand and acquire targets in three dimensions. Barrera Machuca and 
Stuerzlinger (2019) highlighted a variation of Fitts’ Law to predict 
movement depth using a virtual hand-based cursor. Batmaz et al. (2019) 
also implemented a similar virtual hand technique to explore the effect 
of target depth on target acquisition in VR and AR. 

While raycasting is mostly used in static VR UIs (e.g. home menus for 
Oculus and HTC Vive), virtual hand interactions are increasingly used in 
both static and dynamic interaction scenarios to promote natural ges
tures, especially with the capabilities for hand tracking in modern VR 
headsets (e.g. Oculus Quest). In moving target selection such as required 
in modern VR games, virtual hand selection using a VR controller is 
often the dominant method. This is especially true when movement is in 
the depth dimension—for instance, using the sword in Beat Saber to hit 
blocks moving towards the player, or using a bat in a table tennis VR 
game. Using a raycasting method for target acquisition in these types of 
interactions would be both cumbersome and unnatural. Therefore, since 
our work is concerned with moving target selection in the depth 
dimension, we primarily use the virtual hand method, instead of ray
casting, for target acquisition. 

2.2. Perception and user performance in the depth dimension 

The human visual system is incredibly complex, with depth 
perception specifically affected by a wide range of factors. In this sec
tion, we review those factors most relevant to the investigation of 
moving target acquisition in VR. 

VR headsets present different images to each eye to produce the 
illusion of depth in the virtual environment. Visual cues in VR differs 
from physical environments. The presentation of different images to 
both eyes causes a dissociation of accommodation and vergence in ste
reoscopic displays, whereas the curvature of the lenses accommodates to 
the distance of the display (Maruhn et al., 2019). Subjects’ estimation of 
egocentric distances (i.e., the distance from oneself to an object) in VR is 
consistently lower than that in physical environments (Lin and Wolde
giorgis, 2017; Renner et al., 2013). These works highlight the need of 
conducting empirical evaluation for depth perception in VR. 

Wann et al. (1995) succinctly describe several factors that make 
depth perception in VR fundamentally distinct from normal viewing. 
The key difference is the fact that in VR, each eye is actually viewing a 
two-dimensional image source. As a results, users are not presented with 
the full complement of visual cues that are present in the real world. 

Renner et al. (2013) provides a highly informative survey of the 
factors influencing egocentric distance perception in virtual environ
ments. Among the many factors that can influence depth perception, 
perhaps the most relevant in a VR context are: movement, shadow and 
texture. 

The influence of the motion of objects (Sauer et al., 2001; Wanger 
et al., 1992) and the motion of the viewer (Smets, 1992) on depth 
perception has been widely investigated. Sauer et al. (2001) examined 
the impact that object self-rotation can have on the perception of object 
size at different depths, with a rotating cylinder being judged to have 
greater object self-depth than the equivalent object without rotation. 
Smets (1992) examined the role of observer movement in depth 
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perception for remote teleoperation. In the apparatus developed by 
Smets (1992), head movements of the viewer produced corresponding 
camera movements and this ’depth television’ (video stream on a 2D 
display) enabled superior telemanipulation performance. 

Object texture can provide useful cues about object shape and 
orientation that facilitates size and depth perception (Todd and Aker
strom, 1987; Young et al., 1993). The perceived depth of an object in the 
foreground can also be influenced by the texture of the background 
(O’Brien and Johnston, 2000). 

Shadow has been found to play a key role in depth perception 
(Puerta, 1989). Yonas (1979) makes the distinction between two types 
of object shadow: attached and cast. An attached shadow is shadow 
present on the object itself and provides information about its shape and 
form. A cast shadow is a shadow appearing in the environment due to 
the presence of the object and a corresponding light source. As Hubona 
et al. (1999) note, “cast shadows influence perceived object size, 
elevation and depth.” Shadows can also provide useful cues about object 
shape (Wanger, 1992). Mamassian et al. (1998) demonstrated light 
source motion (more readily altered in a virtual environment) can 
distinctly impact depth perception. 

The complexity of the visual system highlights the need to perform 
empirical evaluations to understand how these factors specifically affect 
a given task. Even more confounding, is the fact that depth perception 
has also been shown to be influenced by induced psychological factors. 
For example, increased walking effort due to wearing a heavy backpack 
can lead to overestimation of distance (Proffitt et al., 2003). Therefore, 
in this paper, we take a structured approach to investigating the most 
relevant factors hypothesised to dictate perception and performance in 
VR moving target acquisition. 

2.3. Descriptive models for moving target acquisition 

Modeling user performance in HCI is a common method used to 
represent the underlying mechanisms behind an interaction phenome
non. MT and ER are the two most important user performance metrics in 
moving target acquisition. As a result, there are mainly two types of 
models in the literature to interpret MT and ER respectively. 

One of the most well-known MT models is Jagacinski’s model 
(Jagacinski et al., 1980). Dating back to Jagacinski et al.’s original work, 
they extended Fitts’ law (Fitts, 1954) to moving target acquisition by 
interpreting the effect of target speed using a modified index of difficulty 
(ID). Similar to the Fitts’ ID, the modified index of difficulty reflects the 
lengthening of MT arising from the interaction of target width and speed 
by including a term for the speed-to-width ratio. Another well-known 
approach in MT estimation comes from Hoffmann (1991), who pro
posed two alternative models for MT prediction by applying the linear 
control model theory to infer the index of difficulty in moving target 
acquisition. A steady-state position error which reduces the effective 
target width was used to simulate the human response of acquiring 
moving targets, and finally to lead to an MT estimation. By considering 
the effect of target motion on human temporal accuracy, Tresilian 
(2005); Tresilian and Lonergan (2002) found different effects of target 
speed in different participants’ target acquisition strategies such as 
pursuit and hitting. Tresilian et al. suggested estimating MT with 
different functions of target speed instead of treating the effects of target 
speed by a fixed function. This paper adopts Jagacinski’s model to 
investigate MT performance in motion-in-depth due to its wide accep
tance and high interpretability. 

ER models for moving target acquisition predict how likely the user is 
to acquire the target under specific task conditions. There are two 
typical types of errors in acquiring moving targets. The first type of error 
occurs in the spatial domain. A spatial error is counted when the spatial 
location of the user’s selection endpoint falls outside the physical 
boundary of the target (Huang et al., 2018; Wobbrock et al., 2008). 
Unlike the errors in the spatial domain, the second type of error happens 
in the temporal domain. An error in the temporal domain occurs if the 

user initiated response (Lee and Oulasvirta, 2016) (also known as 
time-to-contact (Rolin et al., 2018)) is outside of a limited time window. 
To model ER in the spatial domain, one of the most common methods is 
to predict the distribution of spatial endpoints of users. A recent 
approach for modeling the spatial errors in moving target acquisition is 
the Ternary-Gaussian model (Huang et al., 2020; 2018; 2019a). The 
Ternary-Gaussian model assumes the endpoint distribution is a Gaussian 
distribution consisting of three Gaussian components, generated from 
uncertainties of the input device, target size, and target speed. Given the 
distribution of spatial endpoint, errors can be obtained through inte
grating the probability distribution function within the selection region 
of the targets. 

Similarly, to model ER in the temporal domain, we can estimate the 
distribution of temporal endpoints. Lee and Oulasvirta (2016) derive a 
model to predict ER in a temporal pointing task by assuming that users 
have an implicit temporal point of aim within the target time window, 
that is, the point in time at which they intend the input event to be 
registered. Based on this approach, various models have been proposed 
to predict ER in moving target acquisition with multiple cues (Lee et al., 
2018), motion delay (Lee et al., 2019) and click planning (Park and Lee, 
2020). In this paper, we focus particularly on the spatial pointing task, 
thus the Ternary-Gaussian model is used to analyze the spatial errors in 
the task. 

3. Motivation and research questions 

As mentioned earlier, acquiring targets with motion-in-depth is an 
important and relatively understudied problem. The way in which 
modern VR displays create the illusion of 3D means that the scale of the 
virtual space far from our eyes is visually much smaller than the nearby 
space. The position of an object moving in the depth dimension may only 
be perceived by variation in size under certain viewing conditions. This 
difficulty in perceiving the object’s position is very likely to result in 
varied user performance when attempting to reach the object. Further
more, various aspects of the moving target acquisition task such as 
initial distance, target size, speed, and moving direction may have 
completely different effects on user performance when compared to 1D/ 
2D scenarios in which the visual size and speed of the target do not 
change over time. This largely unexplored landscape is the fundamental 
motivation for conducting this study. 

In order to better explain user performance in acquiring targets with 
motion-in-depth, we divided the research into two studies. The first 
study focused on perception accuracy of 3D targets with motion-in- 
depth, while the second study investigated the user performance (i.e., 
the results of human actions) in acquiring such targets. Moving target 
selection is commonly thought of as a ballistic motion that consists of 
two processes: planning and execution (Brenner and Smeets, 1996; 
Smeets and Brenner, 1995). The planning process entails primarily 
perceiving information about the target location and speed, which is 
used as the primary guiding basis for the human body to take action in 
the following stage. As a result, perception accuracy for target motion 
could greatly affect the final user performance of the task. Observations 
of perception accuracy from the first study can not only strengthen our 
final conclusion on user performance, but also provide a more thorough 
explanation of potential findings. 

In order to make this study more practical for HCI designers, we 
focus on the impact of associated VR design factors on perception ac
curacy and user performance rather than the underlying mechanism of 
the human sensory-motor system. Based on a synthesis of previous work 
on VR target selection (Batmaz et al., 2019), depth perception (Wanger 
et al., 1992), and moving target acquisition (Huang et al., 2018), we 
choose to study the following five design factors that we consider to be 
most worthy of investigation in VR: texture, shadow, alignment, moving 
speed and moving direction. Texture and shadow (including lighting 
effect) are two of the most widely mentioned influencing factors in the 
existing literature. Texture reveals spatial relations by amplifying the 
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information that one surface occludes another (Gibson, 1950), whereas 
shadow, which is caused by one object obstructing the light falling on 
another, is a powerful source of information for spatial position (Yonas, 
1979). Alignment, moving speed, and moving direction are three factors 
derived from the target’s spatial movement; they yield relative 
displacement between the target and the environment, as well as the 
relative displacement between the target and the user, which is also 
considered a source of information for spatial relations. 

The literature also identifies many other factors that could influence 
depth perception and user performance in target acquisition. However, 
in our studies we choose to omit factors that have already been estab
lished as industry standards and implanted into the hardware and soft
ware systems of VR devices. Such factors, as summarized in Wanger’s 
study (Wanger et al., 1992), include convergence and accommodation, 
binocular disparity, perspective, etc. What we are more interested in is 
the factors that designers can control more directly, and how to use these 
cues to deliver interactions and interfaces that meet specified design 
purposes. 

With the aforementioned motivation, this paper aims to answer the 
following three research questions (RQs): 

RQ1) Do the design factors of Texture, Shadow, Alignment, Moving 
Speed and Moving Direction affect perception accuracy of targets 
with motion-in-depth, and which factors have the greatest impact? 
RQ2) How do these factors affect user performance in terms of MT 
and ER in acquisition of targets with motion-in-depth? 
RQ3) Does the acquisition of targets with motion-in-depth possess 
lawful regularities? 

In the following sections, we first introduce the definition of motion- 
in-depth and the corresponding testing environment in VR, and then 
report on two studies to answer these questions. Specifically, Study 1 
was conducted to investigate RQ1, and Study 2 was designed for 
answering RQ2 and RQ3. 

4. Definition and the testing environment of motion-in-depth 

In this paper motion-in-depth refers to the movement of an object 
approaching or receding from a user. Correspondingly, the perception of 
motion-in-depth means the awareness of the approaching or receding 
motion of an object and the dynamically changing location of the object. 

Acquiring an object with motion-in-depth is then defined as using any 
available pointing technique to reach an object with approaching or 
receding motion. In VR, we construct this motion pattern with interac
tive content (e.g., a ball) that only moves in the depth dimension which 
is perpendicular to the user’s viewing plane (see Fig. 1(a)). Targets and 
cursors used in this study are fixed in the horizontal (x) and vertical (y) 
dimensions. As in any other target acquisition task, MT and ER are the 
two most appropriate user performance metrics in the task of acquiring 
objects with motion-in-depth. 

The five factors the ways we manipulated them in the VR environ
ment are as follow.  

• Texture: There are many kinds of texture in VR. We adopted a general 
representative texture, a checkerboard pattern, previously intro
duced by Wanger et al. (1992). Two conditions were introduced for 
texture: texture-on and texture-off. For the texture-on condition, 
objects were textured with a checkerboard pattern, which provides 
information of surface orientation and distance: both cues relevant to 
perceiving depth motion. For the texture-off condition, materials on 
the objects were removed, resulting in them being rendered in a flat 
gray color (see Fig. 1(b) left).  

• Shadow: As mentioned in Yonas (1979), there are two main types of 
shadow in computer graphics systems: attached shadow and cast 
shadow. Shadows are generated by light sources. Different positions 
and numbers of light sources produce different shadow effects 
(Hubona et al., 1999). For simplicity, we used a single light source 
generating both attached and cast shadow when shadow is enabled 
(see Fig. 1(c) right), and we remove all shadows otherwise (see Fig. 1 
(c) left).  

• Alignment: In Wanger’s study (Wanger et al., 1992), an important 
factor “viewpoint motion” was investigated, which was manipulated 
by allowing the participants to move their viewpoint along a hori
zontal axis to watch the target from the left or right side. We included 
a similar factor called Alignment in this study by allowing partici
pants’ different views of the target motion. The effect of Alignment 
was examined at two possible levels: collinear—the target motion 
coincides with the participants’ viewing direction (see Fig. 1(d) left); 
parallel—the target moves along a path parallel to the participants’ 
viewing direction, and the path is offset by a certain distance to the 
right or left from the participants’ viewing direction (see Fig. 1(d) 
right). 

Fig. 1. VR configuration for studying moving target acquisition in depth. a) Schematic diagram of acquisition of targets with motion-in-depth; b-d) Conditions of the 
design factors investigated in this study. 
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• Moving Speed: Objects move at a specified speed. Previous evidence 
suggests that moving speed has a significant impact on selection 
accuracy in moving target acquisition (Huang et al., 2018). We 
therefore included target speed as a factor in our study and examined 
it at three levels: slow, medium and fast.  

• Moving Direction: Objects move in a specified direction. Previous 
studies showed that participants have different performance in 
acquiring objects depending on moving direction (Tresilian, 2005). 
In this paper, moving direction was included as study conditions with 
two possible levels: approaching and receding. 

5. Study 1: perception accuracy of motion-in-depth 

In Study 1, we aim to answer whether the design factors of texture, 
shadow, alignment, moving speed and moving direction affect percep
tion accuracy of motion-in-depth, and which of these have the greatest 
impact. We adopted the positioning task presented in Wanger’s study 
(Wanger et al., 1992) and modified it to a depth-marking task: Partici
pants controlled a cursor ball to mark the depth of two target balls 
connected by an imaginary line segment (see Fig. 2(a)). The two main 
reasons for adopting this two-target-balls task are: 1) the cursor ball used 
to mark depth is located at the center of the participants’ field-of-view, 
which makes the marking more accurate; and 2) the two-target-balls 
setting prevents the cursor ball from being obscured by the target. We 
describe the task in detail below. 

5.1. Depth-marking task 

Three balls (i.e., two target balls and one cursor ball), which can only 
move in the depth dimension, were displayed in a virtual room. The two 
balls form the endpoints of an imaginary line segment whose orientation 
varied randomly from trial to trial. The cursor ball, aligned vertically 
and horizontally with the midpoint of the imaginary line segment of the 
two target balls, was controlled using an HTC Vive controller. As the 
cursor ball is fixed in the x and y axes, only the z-component of the 
controller motion was used to adjust the cursor position. 

When the task begins, the target balls move toward (approaching) or 
away (receding) from the participant with a fixed speed. The participant 
must adjust the depth of the cursor ball to lie at the midpoint of the 
imaginary line segment joining the two target balls as quickly and as 
accurately as possible. 

5.2. Participants and apparatus 

Twelve participants (4 female) were recruited. The age range of the 
participants was from 25 to 50 years, with a mean age of 38.6 years and 
a standard deviation of 9.5 years. Arm length of the participants was 
ranged from 57.5 to 71.9 cm, with a mean of 61.8 cm and a standard 

deviation of 3.6 cm. All participants were right-handed and two had 
prior experience with VR applications before the experiment. Partici
pants were screened for stereo vision by oral questioning and each of 
them was compensated with $20 for their time. The experiment was 
conducted on a computer, with an Intel Core i7 4 Quad core CPU at 2.6 
GHz, a NVIDIA GeForce 1080 GPU, and 8 GB of RAM, running Microsoft 
Windows 10. We used an HTC Vive Pro-head-mounted display con
nected to the computer via HDMI. The device features a resolution of 
1440 × 1600 per eye, a 90 Hz refresh rate and a 110∘ field of view. The 
experimental environment was developed with Unity 3D in C#. 

5.3. Factors 

We investigated the five factors outlined in Section 4 at several 
levels. These are: Speed (slow, medium, fast), Direction (approaching, 
receding), Alignment (collinear, parallel), Texture (on, off) and Shadow 
(on, off). 

The three moving speeds of the target balls were set as 2 cm/s, 4 cm/s 
and 8 cm/s respectively. In the collinear condition, the midpoint of the 
target balls was placed directly in front of the participant’s view, and 
approached or receded from the participant on a path collinear with 
their viewing direction. In the parallel condition, the midpoint of the 
target balls was offset by 50 cm to the right or left from the participants’ 
viewing direction and moved along a path parallel to the participants’ 
nominal viewing direction. In the texture-on condition, the objects in the 
scene including the target balls, the cursor ball, the walls, the ground 
and the ceiling of the room were mapped with texture in a checkerboard 
pattern, while in the texture-off condition, all of the objects were dis
played in a different shade of grey – the target balls and the cursor ball 
were darker while other objects were lighter. In the shadow-on condi
tion, a downward directional light was placed at the top of the room, 
generating both attached and cast shadow for every object in the scene. 
In the shadow-off condition, the directional light was removed and there 
were no shadows present. 

5.4. Procedure 

Participants were seated in the middle of a tracking area in a non- 
swivel chair. They were asked to maintain their head facing straight 
ahead in the nominal direction (the same direction of target motion) 
during the study (see Fig. 2(b)). After putting the headset on, partici
pants were introduced to the task and encouraged to practice until they 
mastered the task. 

To start the test, a participants push a button on the controller and 
hold the cursor ball in a start area (a region 30 cm in front of participants 
and at the same height as their eyes). Following a 500–1000 ms delay, 
the target balls appear in the center of the start area and immediately 
begin moving toward (approaching) or away (receding) from the 

Fig. 2. Task and apparatus in Study 1. a) The two-target-balls task; b) A participant took part in Study 1.  
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participants with a fixed speed. The participants are asked to move the 
cursor ball (0.5 cm in size) to track the midpoint of the two target balls 
(5 cm in size and separated by 20 cm) as quickly and as accurately as 
possible. The test ends after the participants track the midpoint of the 
target balls for 3 s. The position and timestamp of the cursor ball and the 
midpoint of the target balls during the process are recorded using a 100 
Hz sampling rate. 

Each participant made 6 repeats for each condition in the test, 
yielding 3 Speed × 2 Direction × 2 Alignment × 2 Texture × 2 Shadow ×
6 repeats = 288 trials in total. The order of the 288 trials was randomly 
arranged for each participant to ensure that a participant could never 
predict the upcoming condition of the next trial. This avoids the learning 
effect induced by repeating 6 trials of the same condition. Participants 
were permitted to take a break of up to 60 s if they felt uncomfortable at 
any time during the experiment. 

5.5. Measures 

We used the root mean squared error (RMSE) between the depth of 
the target balls and the cursor during the tracking process to measure 
participants’ perception accuracy: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(TargetDepthi − CursorDepthi)

2

√

(1)  

where, m is the number of samples collected in one trial. The RMSE 
provides a non-negative, scale-invariant measure of the errors. 

5.6. Results 

For our statistical analysis, we first binned our data by different 
participants in different conditions. A mean value of RMSE of one 
participant over the 6 repeats in one condition was treated as one sample 
in the following analysis. 

Nonparametric Friedman tests (Wilcoxon, 1992) were used for sta
tistical analysis as one fourth of the conditions (12 in 48) of the 
perception accuracy data (i.e., RMSE) were not normally distributed. 
Effect sizes were calculated using Kendall’s coefficient of concordance 
(Kendall’s W) (Kendall and Smith, 1939). 

Significant main effects of Speed, Direction, Alignment and Shadow 
were found on RMSE (all p < 0.001). Participants demonstrated higher 
perception accuracy for targets at slower moving speeds, targets that are 
approaching the participants, targets with motion misaligned to the 
participants’ viewing direction, and targets with shadow. No significant 
main effect of Texture was found on RMSE (p = 0.637). Table 1 shows 
all statistical results for the factors of Speed, Direction, Alignment, 
Texture and Shadow. Boxplots in Fig. 3 present RMSE for each condition 
of the five factors. 

To establish a quantitative measure of the contributions of the factors 
to perception accuracy, we conducted linear regression on our data. In 
the following analysis, the factor of speed was measured by its physical 
unit (i.e., centimeter), other factors were measured as follows: for Di
rection, receding = 0 and approaching = 1; for Alignment, collinear =
0 and parallel = 1; for Texture, texture-off = 0 and texture-on = 1; and 
for Shadow, shadow-off = 0 and shadow-on = 1. 

The linear regression was conducted with the RMSE as a dependent 
variable and all of the five factors as independent variables. As shown in 
Table 2, only the relationships between the RMSE and Speed, Shadow 
and Direction were significant. The unstandardized coefficients of the 
linear regression revealed that, a 1 cm/s increase in Speed was predicted 
to result in a 0.259 cm increase in RMSE; enabling shadow (shadow was 
measured as shadow-off = 0 and shadow-on = 1) was predicted to result 
in a 0.561 cm decrease in RMSE; changing the moving direction from 
receding to approaching (direction was measured as receding = 0 and 
approaching = 1) was predicted to result in a 0.509 cm decrease in 
RMSE. On the other hand, speed had the biggest absolute standardized 

coefficient (0.304), followed by Shadow (0.132) and Direction (0.119). 
These results indicate that within the test scope of each variable 
described in this paper, the factor of speed has the greatest impact on 
participants’ perception accuracy, followed by Shadow and Direction. 

5.7. Discussion 

Our results suggest that participants have a higher perception ac
curacy on targets at slower moving speeds in the depth dimension. This 
is consistent with prior work conducted in 1D and 2D settings (Brenner 
and Smeets, 1996; Huang et al., 2018; 2019a), The uncertainty in mo
tion estimation is thought to be caused by delay in the human 
sensory-motor system (Huang et al., 2018; Miall et al., 1993). Our data 
suggests that this sensory-motor delay also affects motion estimation in 
the depth dimension. 

The study data reveals that the participants could perceive motion- 
in-depth more precisely when the shadow of the target balls was 
enabled. Similar results can be found in previous studies on human 
perception of static targets with depth (Hubona et al., 1999; Wanger 
et al., 1992). Shadow provides a ground-plane-relative reference for the 
target distance which can enhance one’s perception of motion. 

We observed higher perception accuracy when the target balls are 
moving toward the participants compared to when they are receding. 
We suggest this observation can be explained by the following charac
teristics of the acquisition task. When the target balls are moving away 
from the participants, the distance to the target balls increases with the 
movement. The movement of objects further from the participants’ eyes 
appears smaller, thereby likely making it harder for the participants to 
perceive the target motion (i.e., lower perception accuracy). In contrast, 
when the target balls are moving toward the participants, the distance 
between the target balls and the participants reduces and the visual 
motion of objects increases. This likely makes it easier for participants to 
perceive the target motion (i.e., higher perception accuracy). 

We found that perception accuracy was significantly improved when 
the target motion was misaligned with the participants’ viewing direc
tion. When the target motion is misaligned from the viewing direction, 
the target motion in the depth dimension is not completely perpendic
ular to the participants’ retina. Motion of misaligned targets can be 
perceived not only through the visual change in size of the object but 

Table 1 
Statistical results for the factors of Speed, Direction, Alignment, Texture and 
Shadow on RMSE. Asterisks represent pairwise significant differences, which are 
noted as: p < 0.001(**) and p < 0.05(*). The condition with the lowest RMSE is 
highlighted in bold for each factor that has a significant effect.  

Factors Conditions RMSE 
(SD) cm 

χ2 p Kendall’s 
W 

Speed Low (2 cm/s) 1.48 
(1.46) 

215.930 <0.001∗∗ 0.562 

Medium (4 cm/ 
s) 

1.95 
(1.92) 

High (8 cm/s) 3.03 
(2.56) 

Direction Approaching 1.90 
(1.65) 

18.000 <0.001∗∗ 0.063 

Receding 2.41 
(2.50) 

Alignment Collinear 2.23 
(2.11) 

12.129 <0.001∗∗ 0.042 

Parallel 2.07 
(2.14) 

Shadow Shadow-on 1.87 
(1.71) 

29.389 <0.001∗∗ 0.102 

Shadow-off 2.43 
(2.45) 

Texture Texture-on 2.14 
(2.00) 

0.222 0.637 0.001 

Texture-off 2.16 
(2.25)  
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also through the object’s relative motion in the x-direction (see Fig. 1 
(a)). More information about the target location is therefore available to 
participants this is likely the responsible for improving the participants’ 
perception accuracy. 

The linear regression applied on the study data indicates that moving 
speed had the greatest impact on participants’ perception accuracy, 
followed by shadow and direction. Because the human body has a fixed 
sensory-motor processing delay of 150 ms (Miall et al., 1993), our brain 
always receives target depth information after a certain amount of time 
has passed, and by the time we receive it, the target has already moved a 
distance proportional to its moving speed. 

6. Study 2: user performance of acquiring targets with motion- 
in-depth 

In Study 2, we first investigate how the design factors in VR affect MT 
and ER in acquisition of targets with motion-in-depth; and then, we test 
if the task of acquiring targets with motion-in-depth can be modeled by 
existing models for moving target acquisition. We fit the MT and ER 
models under different conditions of design factors and observe how the 
factors affect the overall trend of MT and ER. Study 2 was carried out 
several weeks after Study 1 was completed. The participants and 
apparatus were the same as in Study 1. We used the same participant 
pool in both studies for two reasons: 1) using the same participant pool 
ensures that the data of Study 1 and Study 2 are comparable by mini
mizing the impact of individual differences between participants; 2) 
recruiting the same participants simplifies the organization of the ex
periments during the COVID-19 pandemic. 

6.1. Target acquisition task of motion-in-depth 

In contrast to the goals of Study 1 which assessed participants’ 
perception of motion-in-depth, the purpose of Study 2 was to investigate 
participants’ performance when acquiring targets with motion-in-depth. 
Therefore, we adopted a conventional Fitts-like task paradigm in Study 
2: Participants were asked to control a cursor ball to acquire a target ball 
with motion-in-depth. In the task, the participants dynamically adjust 
the depth of the cursor ball to reach the target ball and confirm the 
acquisition with a button press. As in Study 1, the x and y position of the 
cursor ball was fixed and aligned with the target ball. 

6.2. Factors 

We investigated the following factors in Study 2: Initial Distance 
(near, far); Width (small, medium, large); Speed (slow, medium, fast); 
Direction (approaching, receding); Alignment (collinear, parallel); 
Texture (on, off) and Shadow (on, off). In addition to the five factors in 
Study 1, initial distance and target size were added in Study 2 as they are 
key factors for a Fitts-like task. All of the factors except the initial dis
tance and target size have the same settings as in Study 1. Initial distance 
refers to the distance from the starting position of the target ball to the 
cursor ball in the depth dimension. The two initial distances were set as 
10 cm and 20 cm respectively. The three sizes of the target ball were set 
as 1 cm, 2 cm and 4 cm respectively. 

6.3. Procedure 

To begin the test, participants push a button on the controller and 
hold the cursor ball in a start area. After a 500–1000 ms delay, a target 
ball appears at a certain distance from the center of the start area. The 
start area is set between the initial position of the target and the 
participant. Once the target ball appears, it immediately starts moving 
toward (approaching) or away (receding) from the participant with a 
fixed speed. The participant must move the cursor ball to reach the 
target ball and confirm the acquisition with a button press as quickly and 
accurately as possible. The test ends when the participant confirms the 
acquisition regardless of whether they hit or miss the target. 

Each participant made 6 repeats for each condition in the test, 
yielding 3 Size × 3 Speed × 2 Direction × 2 Alignment × 2 Texture × 2 

Fig. 3. Boxplot diagrams represent analysis of RMSE for Speed, Direction, Alignment, Texture and Shadow. “x” in the diagrams are mean values for each condition. 
Asterisks represent pairwise significant differences, which are noted as: p < 0.001(**) and p < 0.05(*). 

Table 2 
Coefficients of linear regression for Speed, Direction, Alignment, Texture and 
Shadow on RMSE. Asterisks represent pairwise significant differences, which are 
noted as: p < 0.001(**) and p < 0.05(*).  

Factors Unstandardized coef. Standardized coef. p 

Speed 0.259 0.304 0.001∗∗

Direction − 0.509 − 0.119 0.002∗

Alignment − 0.156 0.037 0.351 
Texture − 0.023 − 0.006 0.888 
Shadow − 0.561 − 0.132 0.001∗∗
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Shadow × 6 repeats = 864 trials in total. The order of conditions was 
randomized. Participants were permitted to take a break of up to 60 s if 
they felt fatigue in the arm at any time during the experiment. 

6.4. Measures 

We log participant performance on two measures:  

1. Movement time (MT): the time duration from the start of the task to 
the confirmation of the target acquisition.  

2. Error rate (ER): an error occurs when the button is pressed and the 
cursor is outside the target. Accordingly, the error rate is defined as 
the percentage of misses among all acquisitions. 

6.5. Results 

To conduct the statistical analysis, we binned our data from each 
participant’s performance in each condition generated from the seven 
factors. For MT analysis, the mean MT of the 6 trials of one participant in 
one condition was treated as one sample. For ER analysis, the ratio of 
error trials to the total 6 attempts of one participant in one condition was 
used as one sample. 

All MT and the majority of ER data were normally distributed, thus 
we used a multi-way repeated measures ANOVA and post hoc compar
isons with Bonferroni adjustment for statistical tests in Study 2. We used 
the partial eta squared statistic η2

p to measure effect size in ANOVA. 

6.5.1. Movement time 
Significant main effects of Speed, Direction, Width, Initial Distance 

and Shadow were found on MT (all p < 0.001). Participants performed 
faster acquisitions when targets: had higher moving speeds; were larger 
in size; were approaching; had a closer initial distance: and had shadow. 
No significant main effects of Alignment (p = 0.750) and Texture (p =
0.063) were found on MT. Table 3 shows all statistical results for the 
factors of Speed, Direction, Width, Initial Distance, Alignment, Shadow 
and Texture. Boxplots in Fig. 4 present MT for each condition of the 
seven factors. 

Significant interaction effects were found for Speed * Direction (p 
< 0.001), Direction * Width (p < 0.001), Direction * Alignment (p =
0.005), Direction * Shadow (p < 0.001), Width * Shadow (p = 0.039), 
and Initial Distance * Shadow (p < 0.001). Other interaction effects 
were not significant. 

6.5.2. Error rate 
Significant main effects of Speed, Direction, Width, Initial Distance, 

Alignment and Shadow were found on ER (all p < 0.001). Participants 
demonstrated higher pointing accuracy (i.e., lower ER) when targets: 
had slower moving speeds; were larger in size; were approaching; had a 
closer initial distance; had motion that was misaligned with viewing 
direction; and had shadow. No significant main effects of Texture (p =
0.469) were found on ER. Table 4 shows all statistical results for the 
factors of Speed, Direction, Width, Initial Distance, Alignment, Shadow 
and Texture. Boxplots in Fig. 5 present ER for each condition of the seven 
factors. 

Significant interaction effects were found for Speed * Width (p 
< 0.001), Speed * Initial Distance (p = 0.019), Speed * Shadow (p =
0.002), Speed * Direction (p < 0.001), Direction * Width (p = 0.008), 
Direction * Shadow (p = 0.021), Direction * Initial Distance (p < 0.001), 
Width * Initial Distance (p = 0.002), Width * Alignment (p = 0.024), 
Width * Shadow (p = 0.018), and Initial Distance * Alignment (p 
< 0.001). Other interaction effects were not significant. 

6.6. Lawful regularities 

To find out whether the acquisition of targets with motion-in-depth 

possess lawful regularities, two established models were used to analyze 
our data: Jagacinski’s model (Jagacinski et al., 1980) and the 
Ternary-Gaussian model (Huang et al., 2018). The first model provides 
estimates of MT while the second model provides estimates of ERs for 
selecting moving targets. 

6.6.1. Jagacinski’s model analysis 
The Jagacinski’s model (Jagacinski et al., 1980) for MT estimation in 

moving target acquisition is given by: 

MT = a + bA + c(V + 1)
(

1
W

− 1
)

(2)  

where A is the initial distance, V and W are the target’s velocity and 
width, and a, b, c, are empirically determined constants. By extracting 
the b from the last two terms and defining a new free parameter d = c/b, 
Jagacinski et al. derived a modified index of difficulty (ID) to charac
terize MT in moving target acquisition: 

ID = A + d(V + 1)
(

1
W

− 1
)

(3) 

As there is a free parameter d in the ID of this model, the ID must be 
empirically determined for different circumstances. In Jagacinski et al’s 
original work, d was determined by fitting the model to all collected data 
yielding a value of 1.594. They also mentioned that a constant “1” is 
subtracted from 1/W so that the interaction with velocity will be min
imal for the widest target (1/W = 1.08 /∘ for the widest target in their 
setting). The subtraction of “1” may therefore be considered as a fourth 
fitting parameter. The model fit our data much better when setting the 
subtraction constant as a free parameter compared to unity. Therefore, 
we chose to fit both d and the constant subtracted from 1/W in this 

Table 3 
Statistical results for the factors of Speed, Direction, Width, Initial Distance, 
Alignment, Texture and Shadow on MT. Asterisks represent pairwise significant 
differences, which are noted as: p < 0.001(**) and p < 0.05(*). The condition 
with the lowest MT is highlighted in bold for each factor that has a significant 
effect.  

Factors Levels MT (SD) s p F η2
p 

Speed Low (2 cm/s) 0.995 
(0.243) 

<0.001∗∗ 26.867 0.710 

Medium (4 cm/ 
s) 

0.984 
(0.249) 

High (8 cm/s) 0.960 
(0.301) 

Direction Approaching 0.888 
(0.222) 

<0.001∗∗ 311.254 0.966 

Receding 1.071 
(0.275) 

Width Small (1 cm) 1.098 
(0.287) 

<0.001∗∗ 213.998 0.951 

Medium (2 cm) 0.973 
(0.247) 

Large (4 cm) 0.867 
(0.207) 

Initial 
Distance 

Near (10 cm) 0.884 
(0.238) 

<0.001∗∗ 551.771 0.980 

Far (20 cm) 1.075 
(0.259) 

Alignment Collinear 0.981 
(0.275) 

0.750 0.106 0.010 

Parallel 0.978 
(0.285) 

Texture Texture-on 0.986 
(0.264) 

0.063 4.278 0.280 

Texture-off 0.973 
(0.268) 

Shadow Shadow-on 0.952 
(0.239) 

<0.001∗∗ 66.113 0.857 

Shadow-off 1.008 
(0.288)  
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study. For clarity, we define the ID used in this study as follow: 

ID = A + d(V + 1)
(

1
W

− e
)

(4) 

To ensure a fair comparison between different factors and condi
tions, we fit d and e in Eq. (4) with all data in this study to obtain a 
consistent ID. To do that, we binned the MT data with the A (Initial 
Distance) × V (Speed) × W (Size) conditions, yielding 18 sets of data. 
We then calculated the mean MT in each data set and used them to fit the 
Jagacinski’s model. The result showed a 0.904 R2 and the constants of d 
and e were determined to be 2.3320 and 0.7172 respectively. 

With the determined ID, we fit the Jagacinski’s model to our A × V ×
W data sets grouped by different conditions for the factors of Direction, 
Texture, Shadow, and Alignment, respectively. The fits ranged from 
0.746 to 0.918 R2 as shown in Fig. 6. Strong correlations between the 
MT and ID were found when grouping the data by different conditions in 
Texture, Shadow and Alignment, with R2 values above 0.848. However, 
we found relatively low correlations when grouping the data by the two 
moving directions (R2 = 0.769 for approaching and R2 = 0.745 for 
receding). In the task of motion-in-depth, there are two opposite in
fluences of target speed on MT depending on moving direction: i) when 
the target was moving away from the participant, increasing speed in
creases the MT; ii) when the target was moving toward the participant, 
the higher speed leads to shorter MT (see Fig. 8). However, we used the 
same ID to fit the data for both moving directions when examining the 
effect of speed. This led to the poor fits in the two data sets grouped by 
different moving directions. 

In general, the MT in each condition could be mostly accounted for 

by A and the V to W radio in the ID. As shown in Fig. 6(a), the two 
moving directions showed large differences in Jagacinski’s model. In the 
approaching condition, the intercept of the model was only 0.6520 s 
while it increased to 0.8077 s in the receding condition. In addition, the 
approaching condition had a lower slope of 0.0179 s/bit compared to 
0.0199 s/bit in the receding condition. When shadow was enabled, we 
obtained a slope of 0.0172 s/bit in Jagacinski’s model, which was 
notably lower than the 0.0206 s/bit obtained in the shadow off condi
tion as shown in Fig. 6(d). The effects of the other two factors on MT 
reflected by Jagacinski’s model were small, which is consistent with our 
statistical analysis (see Fig. 6(b) and (c)). 

6.6.2. Ternary-Gaussian model analysis 
The second model used to analyze the ER data is the Ternary- 

Gaussian model (Huang et al., 2018), which first models the endpoint 
distribution of moving targets and then calculates the ER via the cu
mulative distribution functions (CDF). In the Ternary-Gaussian model, 
the endpoint distribution is assumed to be a random variable X following 
a Gaussian distribution with mean, μ, and standard deviation, σ: 

X = N
(
μ, σ2) (5) 

The parameters μ and σ in the Gaussian distribution are formulated 
as functions of task variables W and V: 

μ = a + bW + cV (6)  

σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

d + eW2 + fV2 + g
V
W

√

(7) 

Fig. 4. Boxplots of MT for the seven factors of speed, direction, width, initial distance, shadow, texture and alignment. The “x” in the plots indicates the mean value. 
Asterisks represent pairwise significant differences, which are noted as: p < 0.001(**) and p < 0.05(*). 
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where a, b, c, d, e, f and g are empirically determined constants. Notice 
that in the Ternary-Gaussian model, the initial distance A was consid
ered to have no significant effect on the endpoint distribution, thus the 
model does not include the term A (Huang et al., 2018). Given the 
endpoint distribution, the ER can be estimated via the cumulative dis
tribution functions as followed: 

ER(μ, σ) = 1 − [P(x1) − P(x0)]

= 1 −
1
2

[

erf
(

x1 − μ
σ

̅̅̅
2

√

))

− erf
(

x0 − μ
σ

̅̅̅
2

√

)

)]
(8)  

where x0 and x1 represent the boundaries (in any one dimension) of the 
target and erf(x) is the error function encountered in integrating the 
Gaussian distribution. To see how the investigated factors affect the 
speed-accuracy trade-off in terms of ER and endpoint distribution, we fit 
the Ternary–Gaussian model to V × W data sets grouped by different 
Direction, Texture, Shadow, and Alignment conditions, respectively. 
The model obtained high fits ranging from 0.940 to 0.994 R2 in our data. 
The ER spectrum predicted by the model are illustrated in Fig. 7. 

From the ER spectrum, we can clearly see that the ERs increased as 
speed increased and width decreased. As shown in Fig. 7(a), compared 
with the receding condition, the ER in the approaching condition 
showed a gentler growth curve under the influence of speed, especially 
for the large targets. In higher speed conditions, approaching targets 
could have up to 20% lower ERs compared to receding ones. In Fig. 7(b), 
although the ERs in the collinear condition were higher (about 10%) as a 
whole, the ER curves of the two conditions show roughly the same trend 
under the influence of size and speed. In Fig. 7(d), although not very 
clear, we can see bigger deltas of ERs (about 10%) by taking the shadow 
off in speed = 4 cm/s conditions compared to 2 cm/s and 8 cm/s. It may 

indicate that shadow has a greater influence on selection accuracy at 
medium speed. Finally, there was only a slight reduction of the 
increasing trend of ERs by enabling texture in the scene as shown in 
Fig. 7(c). 

6.7. Discussion 

In this section we discuss and interpret the findings from Study 2. 

6.7.1. Movement time 
The results from Study 2 show that targets with higher moving 

speeds were acquired significantly faster than targets with lower moving 
speeds. This finding is not consistent with the finding of Jagacinski 
et al.’s study (Jagacinski et al., 1980) which found that participants 
were, conversely, slower at capturing faster moving targets. 

In order to understand this contradiction, we examined how MT 
changes with moving speed under different settings of the other six 
factors. We found that for different moving directions, MT had two 
completely different trends with respect to target speed. As illustrated in 
Fig. 8, when the target was moving away from the participant, which 
was similar to the setting in Jagacinski’s study, increasing speed 
increased MT. In contrast, when the target was moving toward the 
participant, the higher speed produced shorter MT. This conclusion is 
supported by previous works from Tresilian (2005) and Tresilian and 
Lonergan (2002), who found that MT is not always positively correlated 
with target speed. Despite the fact that there are two opposite influences 
of speed on MT, there is still a general trend that faster speed results in 
shorter MT overall. We attribute this to the fact that participants 
generally had to move faster when acquiring faster moving targets, 
resulting in an overall shorter MT. 

Our data also reveals that some aspects of performance for targets 
motion-in-depth are similar to static targets. Specifically, participants 
were observed to be faster at acquiring closer initialized and larger 
targets. Enabling shadow also helped to reduce the time needed to ac
quire the targets. 

6.7.2. Error rate 
We found that target Moving Direction had a significant effect on ER. 

In Study 1, participants were found to have lower perception accuracy 
for receding targets but higher perception accuracy for approaching 
targets. This reduced perception accuracy for receding targets likely 
explains the observation that participants made more errors when 
acquiring receding targets than when acquiring approaching targets. 

We found a significant effect for Initial Distance on ER when 
acquiring targets with motion-in-depth. This result appears inconsistent 
with previous studies in 1D moving target selection (Huang et al., 2018), 
which have demonstrated that the initial distance of moving targets in 
the lateral direction has a minimal effect on ERs. However, in our 
motion-in-depth setting involving 3D projection in a VR display, a more 
distant target is visually smaller. This smaller visual size results in lower 
accuracy in reaching movements and is likely responsible for the 
different effect observed between motion-in-depth and 1D/2D tasks 
(Huang et al., 2018; 2019a) for initial target distance. 

The results reveal that Alignment had a significant effect on the 
pointing ER. Setting the target motion to be misaligned from the par
ticipants’ viewing direction can not only provide a clearer view of the 
target location but also a clearer view of the boundary of the target. It is 
likely that this improved observability of the target was responsible for 
the increased pointing accuracy. 

Similar to previous results on static targets, participants demonstrate 
lower ER for targets with larger sizes, and targets with shadow. As 
observed in the context of moving target acquisition in 1D/2D settings 
(Huang et al., 2018; 2019a), increasing target speed was found to in
crease selection ER. 

Table 4 
Statistical results for the factors of Speed, Direction, Width, Initial Distance, 
Alignment, Texture and Shadow on ER. Asterisks represent pairwise significant 
differences, which are noted as: p < 0.001(**) and p < 0.05(*). The condition 
with the lowest ER is highlighted in bold for each factor that has a significant 
effect.  

Factors Levels ER (SD) % p F η2
p 

Speed Low (2 cm/s) 43.24 
(26.85) 

<0.001∗∗ 51.271 0.823 

Medium (4 cm/ 
s) 

47.66 
(27.04) 

High (8 cm/s) 54.53 
(28.72) 

Direction Approaching 45.37 
(27.32) 

<0.001∗∗ 40.018 0.784 

Receding 51.59 
(28.19) 

Width Small (1 cm) 65.65 
(23.38) 

<0.001∗∗ 290.132 0.963 

Medium (2 cm) 46.85 
(24.95) 

Large (4 cm) 32.93 
(25.15) 

Initial 
Distance 

Near (10 cm) 46.21 
(27.79) 

<.001∗∗ 69.567 0.863 

Far (20 cm) 50.69 
(27.93) 

Alignment Collinear 52.31 
(27.74) 

<0.001∗∗ 38.550 .778 

Parallel 44.65 
(27.60) 

Texture Texture-on 48.78 
(27.41) 

0.469 0.563 0.049 

Texture-off 48.17 
(28.45) 

Shadow Shadow-on 46.12 
(28.19) 

<0.001∗∗ 42.758 0.795 

Shadow-off 50.84 
(27.48)  
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6.7.3. Lawful regularities 
The data from Study 2 reveals strong lawful regularities in the 

acquisition of targets with motion-in-depth. Excluding the conditions 
where the data was grouped according to different moving directions, 
the MT can be largely accounted for by Jagacinski’s ID showing an 
overall R2 of 0.904. High fits were also found when fitting the Ternary- 
Gaussian model to the ER with R2 ranging from 0.940 to 0.994. 

As illustrated by Jagacinski’s model, the moving direction and 
shadow have a large impact on the intercepts and slope of the MT 
function. According to the model, changing the moving direction from 
receding to approaching reduces the absolute time needed for acquiring 
targets by approximately 0.15 s and reduces the rate at which MT in
creases with task difficulty by at least 10%. The model also suggests that 
enabling shadow can reduce the rate at which MT increases with task 
difficulty by more than 16%. 

Inspecting the ER spectrum predicted by the Ternary-Gaussian 
model, the ER in the approaching condition showed a gentler growth 
curve under the influence of speed. In higher speed conditions, the 
model suggests that approaching targets may have up to 20% lower ER 
compared to receding ones. According to the Ternary-Gaussian model, 
setting the target motion to be misaligned with the user’s viewing di
rection may reduce ER by approximately 10%. 

7. General discussion 

In this section, we review the studies’ key findings and derive 
informative design implications based on those findings. Finally, we 
describe how our findings can be applied to real-world interaction 

scenarios. 

7.1. Key findings 

One of the most interesting findings from this study is that the effect 
of target speed on MT depends on moving direction of the target: if the 
target moves away from the user, higher speed leads to longer MT. 
Conversely, if the target moves toward the users, higher speed leads to 
shorter MT. This result suggests that the participants adopt different 
acquisition strategies when dealing with targets in different moving 
directions. In Study 2, the initial position of the cursor was set between 
the participants and the initial position of the target. For receding tar
gets, the participants are likely to choose the “pursue and capture” 
strategy (Jagacinski et al., 1980), while for approaching targets, the 
participants may choose the “anticipate and strike” strategy (Tresilian 
and Lonergan, 2002). The difference between the two behavior strate
gies is likely responsible for the contrasting effect of target speed on MT. 

Another empirical result we found to be distinct from moving target 
acquisition in previously examined 1D/2D tasks (Huang et al., 2018; 
2019a) refers to the significant effect of initial distance on selection ER. 
Because of the 3D projection, more distant targets are visually smaller, 
which in turn produces lower accuracy in reaching movements. For 
1D/2D target acquisition with movement in the lateral direction, how
ever, the target’s visual size does not substantially change during 
movement. This distinction between the 1D/2D and 3D settings is likely 
responsible for the different effect of initial distance. 

We found that Speed had the greatest impact on participants’ 
perception accuracy, followed by Shadow and Direction. Given the 
relatively large design range for moving speed, it could be that this is the 

Fig. 5. Boxplots of the ER for the seven factors of speed, direction, width, initial distance, shadow, texture and alignment. The “x” in the plots indicates the mean 
value. Asterisks represent pairwise significant differences, which are noted as: p < 0.001(**) and p < 0.05(*). 
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dominant factor to consider when manipulating perception accuracy in 
VR applications. 

Acquisition of targets with motion-in-depth shows strong lawful 
regularities. MT in this task can be largely accounted for by Jagacinski’s 
ID showing an overall R2 of 0.904. Meanwhile, the ERs observed in 
Study 2 fit well with the Ternary-Gaussian model with R2 ranging from 
0.940 to 0.994. 

7.2. Design implications 

The above findings could not only enrich the literature on moving 
target acquisition in the context of VR interaction, but also provide 
recommendations for VR interface design. We present the following 
implications and takeaways that could be helpful for creating VR user 
interfaces involving targets with motion-in-depth.  

1. Moving speed is the most effective design factor influencing the 
user’s perception accuracy of targets with motion-in-depth. For VR 
applications that require users to make an accurate judgment on the 
location of targets with motion-in-depth, designers should consider 
using technical means to reduce the moving speed of the targets.  

2. Moving direction of target in depth dimension (approaching/ 
receding) significantly affects pointing accuracy. For VR applications 
that contain targets requiring motion-in-depth, designers should give 
priority to the use of approaching movement, as it may reduce ER by 
up to 20%.  

3. In the condition that a target is moving towards the user, designers 
can consider increasing moving speed of the target which will 
shorten the MT.  

4. Initial distance in the acquisition of targets with motion-in-depth is 
much more important than in conventional user interfaces. Designers 
should be aware of the effects of initial distance on moving target 
acquisition.  

5. Enabling shadow improves the user’s perception accuracy, reduces 
MT and ER. VR designers should consider enabling shadow where 
possible to enhance the user experience of acquiring targets with 
motion-in-depth.  

6. Making target motion misaligned with the user’s viewing direction 
can steadily reduce ER by about 10%. If the application scenario 
requires high pointing accuracy, designers should consider setting 
the target motion to be misaligned with the user’s viewing direction. 
However, such a design decision may not help to reduce the time 
needed to select the target.  

7. Acquisition of targets with motion-in-depth shows strong lawful 
regularities. MT and ER in acquiring targets with motion-in-depth 
can be largely accounted for by Jagacinski’s model and by the 
Ternary-Gaussian model, respectively. Designers can consider using 
these models to assist with user interface design. 

We should mention that the aforementioned implications can not 
only work in targets with motion purely in the depth dimension. These 
implications could also be applied in content with combined 3D motion 
in VR. 

7.3. Applications 

The findings of this study may inform the development of VR ap
plications in terms of two alternative design goals: 1) improving inter
action efficiency; and 2) increasing the challenge of specified tasks. 

Fig. 6. Jagacinski’s models for different conditions for the factors of a) Direction, b) Alignment, c) Texture and d) Shadow.  
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For the first design goal, our findings may help to improve the design 
of objects that are presented in VR, such as for moving objects presented 
in sporting games or animated elements presented in simulation or data 
visualization applications. As an example, consider a VR application for 

the dynamic simulation or real-time monitoring of an urban environ
ment (Ketzler et al., 2020; Rudskoy et al., 2021). Such an application 
may simulate all vehicle movements in the city and allow users to 
observe and interact with each vehicle in real time. Users may wish to 

Fig. 7. ER spectrum for different conditions predicted by the Ternary-Gaussian model. Dash lines are predicted ERs while circles mark the actual data.  

Fig. 8. Interaction between Speed and Direction on MT. Error bars indicate the 95% confidence interval.  
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observe the traffic flow on a highway in detail and obtain vehicle in
formation at any time. Based on the findings of this study, it would be 
sensible to constrain the observation point of the user such that: i) they 
are above or on the side of the highway rather than collinear with the 
highway; and ii) the traffic flow move towards the user rather than 
away. Applying these constraints in combination with choosing an 
appropriate speed for traffic flow simulation, would improve the user’s 
ability to clearly observe the dynamic traffic flow, as well as their ability 
to quickly and accurately select any of the vehicles. Similar scenarios 
can be found in many other fields, such as surgery training (Kühnapfel 
et al., 2000), astronomy education (Chen et al., 2007), and 
manufacturing simulations (Ong and Mannan, 2004). 

The second design goal is most relevant to the design of VR games. 
Designers could use the findings presented as a basis for modulating the 
challenge level in game play. For example, in a VR baseball game like 
Everyday Baseball VR,1 perhaps the most obvious way to increase the 
challenge is to speed up the movement of the baseball or reduce the size 
of the ball. However, our findings also reveal that animating the ball’s 
approach such that it is collinear with the user’s viewing direction would 
likely make it more difficult to perceive or hit than offsetting the ball by 
a certain distance from the user. Our findings could inspire game de
signers to create a scene with weakened depth clues, such as less obvious 
shadows caused by dim lighting, thereby making the game play more 
challenging. Similar scenarios can be found in the popular VR game Beat 
Saber,2 in which players must hit the blocks that are constantly flying 
towards them. Aside from speeding up the blocks, our findings suggest 
the another way to make the game more difficult is to generate some 
blocks that move away from the player or fly directly towards the player 
along the player’s viewing direction. 

7.4. Limitations and future work 

This work did not cover many other potential factors that could 
affect motion-in-depth, such as blur (Held et al., 2010), depth of field 
(Zhang et al., 2014) and occlusion (Zhai et al., 1996). These factors 
affect participants’ depth perception since they convey information for 
spatial relations by different means. Given that the previous studies 
examining these factors were carried out on static objects only, it would 
be interesting to investigate what effect these factors might have on the 
perception and acquisition of moving targets. It is also worthy to 
investigate how the effects of blur, depth of field, and occlusion interact 
with the target’s moving speed and moving direction as the status of 
these factors could change dynamically as the target moves in depth. 

In this paper, we have not considered fully-3D-motion that combines 
motion-in-depth with motion in the x and y dimensions. We see such a 
study as a challenge due to its potentially large problem space: there is a 
large number of moving directions, and the conditions generated across 
moving direction and other factors would be numerous. It is challenging 
to empirically investigate such a problem using a conventional factor 
analysis approach. We therefore see the potential for the development of 
a new descriptive model to appropriately analyze such data. 

8. Conclusions 

In this work, we first defined the concept of motion-in-depth in VR 
interfaces. Following this, we investigated the effects of texture, shadow, 
alignment, moving speed and moving direction on perception accuracy 
and user performance for content with motion-in-depth in the context of 
VR. Two studies were conducted to identify how various design factors 
affect perception accuracy and performance when selecting 3D objects 
with motion-in-depth in VR. Our results indicate that target speed has 
the greatest impact on users’ perception accuracy, followed by shadow 

and moving direction. We identified effects of moving speed, moving 
direction, initial distance, shadow and alignment on MT and ER that are 
distinct from previous studies examining conventional user interfaces. 
Further, the good fits of Jagacinski’s model and the Ternary-Gaussian 
model to the MT and ER data show that the motion-in-depth task 
abides by lawful regularities. In summary, this paper advances our un
derstanding of how users perceive and interact with moving targets in 
VR. 
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