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ABSTRACT 
We report on a longitudinal study of unconstrained 
handwriting recognition performance. After 250 minutes of 
practice, participants had a mean text entry rate of 24.1 
wpm. For the first four hours of usage, entry and error rates 
of handwriting recognition are about the same as for a 
baseline QWERTY software keyboard. Our results reveal that 
unconstrained handwriting is faster than what was 
previously assumed in the text entry literature. 
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INTRODUCTION 
Unconstrained handwriting recognition means that the 
recognizer simultaneously accepts hand-printed characters, 
cursive script, and a combination of both. It is not until 
recently that unconstrained handwriting recognition has 
become accurate enough to be practical. In 1995, Frankish 
et al. [4] concludes: “…at present, handwriting recognition 
is unlikely to be an effective method for unconstrained text 
input…” LaLomia [5] found that users typically require that 
only one character out of 100 is wrong (1% error rate) 
before sending a text message to their superior. This goal 
has been unattainable for unconstrained handwriting 
recognition until very recently. 

Interestingly, ignoring the problem of recognition errors, 
the text entry rate for unconstrained handwriting 
recognition has remained an open issue. The early user 
studies of handwriting recognition (e.g. [4,6]) only studied 
aspects of isolated character-recognition. Many sources 
claim that unconstrained handwriting is fundamentally 
slow, citing e.g. Card et al. [2] or Seibel [9]. However, none 

of the above sources did actual research on handwriting 
performance. Instead, they in turn cite Devoe [3]. What 
Devoe [3] actually did was to let three participants copy a 
100 word long text message using four different text entry 
methods over ten sessions. The unconstrained handwriting 
method was only used at the first two sessions and at the 
last one (reasons unknown). Devoe [3] found that his three 
participants had a grand mean text entry rate of 16.4 wpm 
for unconstrained handwriting (calculated based on Table 1 
in [3]). No handwriting recognizer was used in [3] so this 
data point only covers articulation time and ignores any 
error correction time (which would inevitably occur if a 
handwriting recognizer was used). Occasionally Bailey [1] 
is cited as giving a 25 wpm upper bound of unconstrained 
handwriting (often as a secondary or even tertiary source). 
However, the only plausible source for this number in [1] is 
estimation from a log-scale diagram of text entry 
measurements in [1], which again refers back to Devoe [3].  

In the recent text entry surveys it has been either implicitly 
[10] or explicitly [7] assumed that studies of unrecognized 
handwriting speed represent an upper bound for 
handwriting recognition text entry performance. The 
argument is centered on the fact that unrecognized 
handwriting lacks a verification and correction phase (since 
there cannot be any recognition errors). Therefore, it is 
assumed participants are writing as fast as they could if they 
were using a 100% accurate handwriting recognizer. Under 
this hypothesis, the average handwriting entry rate of 16.4 
wpm in Devoe’s [3] study would classify handwriting 
recognition as a relatively slow text input method, well 
below the QWERTY software keyboard baseline [7,10]. 
However, without empirical measurements this is just an 
educated guess based on a small-scale study. 

In this paper we answer two research questions. First, what 
is the actual text entry performance of state of the art 
unconstrained handwriting recognition? Second, how does 
handwriting recognition compare as a text entry method to 
the well-understood status-quo QWERTY software keyboard? 
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METHOD 

Participants 
We recruited 12 volunteers from the university campus. We 
intentionally wanted a rather broad sample and recruited 
participants from many different departments with many 
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different backgrounds. Six were men and six were women. 
Their ages ranged between 22-37 (mean = 27, sd = 4). 
Participants were screened for dyslexia and repetitive strain 
injury (RSI). Seven participants were native English 
speakers and five participants had English as their second 
language. No participant had used a handwriting 
recognition interface before. One participant had used a 
software keyboard before. No participant had regularly used 
a software keyboard before. Participants were compensated 
£10 per session. 

Apparatus and Software 
We used a Dell Latitude XT Tablet PC running Windows 
Vista Service Pack 1. The 12.1" color touch-screen had a 
resolution of 1280 × 800 pixels and a physical screen size 
of 261 × 163 mm.  Participants used a capacitance-based 
pen to write directly onto the screen in both conditions. 

 
Figure 1. The handwriting recognition interface. Recognized 

words are displayed as buttons below the writing area. 

The handwriting recognizer (Figure 1) was configured to 
learn and adapt to participants’ handwriting style (the 
default setting on Windows Vista). Each participant 
performed the experiment in a separate user account on the 
machine to ensure handwriting adaptation was carried out 
on an individual basis. There was a potential confound in 
enabling handwriting adaptation since it caused the system, 
as well as the user, to learn as a function of usage. In the 
interest of external validity we enabled adaptation since in 
actual use users would most likely have adaptation turned 
on. 

 
Figure 2. A word-edit box is displayed when the user presses 

the button for a recognized word. 

The handwriting recognizer had two basic modes for 
correction. One was to strike out one or more words by 
crossing them and then rewriting the misrecognized text 
(see Figure 1). Another method was to click on the button 
for a recognized word. This action brought up a correction 
interface that enabled the user to edit the word character by 
character using a letter recognizer (see Figure 2). 

For the software keyboard condition we used the default 
QWERTY software keyboard on Windows Vista. 

Both the handwriting recognizer and the software keyboard 
were docked to the lower part of the screen. The 
dimensions of the software keyboard were 1266 × 244 

pixels and 257 × 50 mm. The dimensions of the 
handwriting recognizer writing area measured 1266 × 264 
pixels and 257 × 55 mm. The slight additional height 
difference was because the handwriting recognizer had a 
small INSERT button below the writing area to the right (cf. 
Figure 1). The dimensions of both text entry methods’ areas 
were held constant during the experiment. A letter key on 
the keyboard measured 14 × 11 mm, SPACEBAR measured 
72 × 10 mm and BACKSPACE measured 23 × 11 mm. 

Procedure 
The experiment consisted of one introductory session and 
ten testing sessions. In the introductory session the 
experimental procedure was explained to the participants. 
Participants were shown how to use the software keyboard 
and the handwriting recognizer, including demonstrations 
of how to correct errors. They also completed the built-in 
Tablet PC tutorial. 

Each testing session lasted slightly less than one hour. 
Testing sessions were spaced at least 4 hours from each 
other and subsequent testing sessions were maximally 
separated by two days. In each testing session participants 
did both conditions (software keyboard and handwriting 
recognition). The order of the conditions alternated between 
sessions and the starting condition was balanced across 
participants. Each condition lasted 25 minutes. Between 
conditions there was a brief break. Participants were also 
instructed that they could rest at any time after completing 
an individual phrase. 

In each condition participants were shown a phrase drawn 
from the phrase set provided by MacKenzie and Soukoreff 
[8]. Each participant had their own randomized copy of the 
phrase set. Participants were instructed to quickly and 
accurately write the presented phrase using either the 
software keyboard or the handwriting recognizer. 
Participants were instructed to correct any mistakes they 
spotted in their text. In the handwriting condition we 
instructed participants to write using their preferred style of 
handwriting (e.g. printed, cursive or a mixture of both). 
After they had written the phrase they pressed a SUBMIT 
button and the next phrase was displayed. The SUBMIT 
button was a rectangular button measuring 248 × 16 mm. It 
was placed 9 mm above the keyboard and handwriting 
recognizer writing area. 

RESULTS 
In total we collected 100 hours of data. In each session 
participants inputted on average 83.2 (sd ≈ 13.7) phrases in 
the software keyboard condition and 81.5 (sd ≈ 16.7) 
phrases in the handwriting recognition condition. All 
statistical analyses were conducted using repeated-measures 
analysis of variance (ANOVA) at significance level α = 0.05. 

Entry Rate 
Entry rate was calculated as words-per-minute, with a word 
defined as five consecutive characters. The time required to 
write each phrase was defined as the interval between when 
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the participants first pressed down the stylus on either 
writing interface (software keyboard or handwriting area) 
until they pressed the SUBMIT button. 

As expected, participants became faster with practice (F9,99 
= 2.4616, p < 0.05), see also Figure 3. In the first session, 
the mean entry rate was 19.6 wpm (sd ≈ 3.2) for software 
keyboard and 21.5 wpm (sd ≈ 3.7) for handwriting 
recognition. In the last session, the mean entry rate was 
24.9 wpm (sd ≈ 5.0) for software keyboard and 24.1 wpm 
(sd ≈ 5.0) for handwriting recognition. As is evident in 
Figure 3, the mean entry rate increased faster for the 
software keyboard than for the handwriting recognizer. At 
session six the software keyboard became faster than the 
handwriting recognizer. The mean entry rate difference 
between software keyboard and handwriting recognition 
was not significant (F1,11 = 0.0699, p = 0.7963). 

Error Rate 
Error rate was calculated as the minimum edit-distance 
between the phrase shown (stimuli) and the phrase actually 
entered by the participant (response), divided by the 
number of characters in the stimuli phrase. This means that 
if a participant entered the phrase completely correct the 
error rate was minimized to zero. If a participant entered a 
phrase completely incorrect the error rate was maximized to 
unity. Note that this was the corrected error rate, and it was 
not a measure of recognition accuracy. 

Participants’ error rates did not significantly vary with 
practice (F9,99 = 0.8982, p = 0.53). The grand mean error 
rate was 1.4% (sd ≈ 1.6%) for software keyboard and 1.0% 
(sd ≈ 1.0%) for handwriting recognition. The mean error 
rate difference between software keyboard and handwriting 
recognition was not significant (F1,11 = 4.668, p = 0.05468). 

Error Correction Time 
The handwriting recognizer we used did not enable us to 
measure recognition accuracy directly. Instead we opted for 
estimating participants’ error correction time: the 
proportion of their writing time spent correcting errors. 
Note that this class of errors includes both recognition 
errors and errors caused by participants (e.g. misspellings). 

In the handwriting recognition condition we stored 
participants’ pen traces. These were later played back so we 
could detect when users were crossing out words or 
invoking the word-edit box. We built a software tool to 
automatically detect participants’ error correction actions 
using model fitting techniques. Thereafter we semi-
automatically marked up the log file segments when 
participants were correcting the text. Using this data we 
then calculated the proportion of participants’ writing time 
that was spent correcting errors. 

In the keyboard condition the procedure went as follows. 
For each phrase we calculated the ratio between 
unnecessary keystrokes and total number of keystrokes 
needed to form the input the user committed when pressing 

SUBMIT. This gave us an estimate of the proportion of time 
users spent correcting text because superfluous keystrokes 
(that didn’t contribute to the committed text) must have 
been either BACKSPACE presses or additional letters inserted 
by the participant to make up for previous BACKSPACE 
presses. We assumed the time taken to hit any key was 
uniformly distributed. In addition to simply correcting 
errors by pressing BACKSPACE multiple times, the 
participant could also select an entire block of text and 
delete it by pressing BACKSPACE once. These cases were 
automatically detected and in these instances we retrieved 
the correction time by manual inspection of the log files. 
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Figure 3. Mean entry rate (wpm) and 95% confidence 

intervals as a function of session number. Note that the y-axis 
is cut off at 15 wpm at the bottom. 
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Figure 4. Mean proportion of time spent correcting errors and 

95% confidence intervals as a function of session number.  

Figure 4 plots the proportion of error correction time for 
both software keyboard and handwriting recognition as a 
function of session. The difference is significant (F1,11 = 
5.469, p < 0.05). Participants spent more time correcting 
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errors using handwriting recognition than with the software 
keyboard. This indicates that there is still room for 
improvements in handwriting recognition accuracy. 

Subjective Ratings 
Table 1 summarizes the mean subjective ratings ranging 
from 1 (“Strongly Disagree”) to 7 (“Strongly Agree”) on a 
Likert scale. The only clear difference was that participants 
perceived handwriting as more fun than software keyboard. 

Statement SK HW 

It was easy to correct errors. 4.9 (1.4) 4.6 (1.7) 

The SK/HW was accurate. 4.7 (1.6) 4.5 (1.5) 

It is fun to use SK/HW 4.2 (1.6) 5.3 (1.5) 

Table 1. Mean subjective ratings (standard deviations in 
parentheses) aggregated over all sessions. 

DISCUSSION 
As alluded in the introduction, text entry performance of 
unconstrained handwriting recognition has not been well 
studied before. In comparison to Devoe [3] our participants 
were much faster, even after the first session (21.5 wpm vs. 
16.4 wpm in [3]). At the last session, our participants had a 
mean entry rate of 24.1 wpm. Last, our participants’ final 
text had a character-level mean error rate of 1%. This error 
rate level has been previously described by users as the 
acceptable error level for communicating with superiors [5]. 

We believe the difference in relation to Devoe [3] can be 
attributed due to primarily two factors. First, Devoe [3] 
studied fewer participants (n = 3) and let them write less 
text. Second, we hypothesize that the presence of 
recognition feedback resulted in a positive feedback-loop 
between the recognizer’s output and participants’ behavior. 
This pushed our participants to write faster and less precise 
as they observed how much the recognizer could tolerate. In 
comparison, in [3] participants received no such feedback 
and most likely felt they had to write legibly enough for 
another person to be able to transcribe their handwriting. 

CONCLUSIONS 
In the recent text entry surveys [7,10] handwriting 
recognition is hypothesized to be relatively slow at around 
16 wpm (excluding a 25 wpm upper-bound estimation    
derived from a mistaken secondary reference to [1] in [7]) 
and the QWERTY software keyboard to be faster at 25-40 
wpm.  However, we found that handwriting recognition 
performs almost identical to a QWERTY software keyboard, 
at least for the first hours of usage. During the first 25 
minutes of use, participants wrote text using the 
handwriting recognizer at 21.5 wpm. This was 2 wpm faster 
than the software keyboard. After 250 minutes of writing, 
participants wrote text at 24.1 wpm with the handwriting 
recognizer and 24.9 wpm with the software keyboard. We 
found no statistical difference between handwriting 
recognition and software keyboard in either text entry rate 

or error rate. Further, the 95% confidence intervals of both 
methods’ mean entry rates were very close (Figure 3). 
Taken together, text entry performance of state of the art 
unconstrained handwriting recognition appears to have been 
underestimated in the literature. In addition, our participants 
also thought handwriting recognition was more fun to use 
than the software keyboard. We hope our findings inspire 
designers, developers and researchers to re-consider the role 
of handwriting recognition in interactive systems. 
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