

Text Entry Performance of State of the Art Unconstrained
Handwriting Recognition: A Longitudinal User Study

Per Ola Kristensson and Leif C. Denby
Cavendish Laboratory, University of Cambridge

JJ Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
{pok21, lcd33}@cam.ac.uk

ABSTRACT
We report on a longitudinal study of unconstrained
handwriting recognition performance. After 250 minutes of
practice, participants had a mean text entry rate of 24.1
wpm. For the first four hours of usage, entry and error rates
of handwriting recognition are about the same as for a
baseline QWERTY software keyboard. Our results reveal that
unconstrained handwriting is faster than what was
previously assumed in the text entry literature.

Author Keywords
Handwriting, handwriting recognition, software keyboard

ACM Classification Keywords
H5.2. User interfaces: Input devices and strategies.

INTRODUCTION
Unconstrained handwriting recognition means that the
recognizer simultaneously accepts hand-printed characters,
cursive script, and a combination of both. It is not until
recently that unconstrained handwriting recognition has
become accurate enough to be practical. In 1995, Frankish
et al. [4] concludes: “…at present, handwriting recognition
is unlikely to be an effective method for unconstrained text
input…” LaLomia [5] found that users typically require that
only one character out of 100 is wrong (1% error rate)
before sending a text message to their superior. This goal
has been unattainable for unconstrained handwriting
recognition until very recently.

Interestingly, ignoring the problem of recognition errors,
the text entry rate for unconstrained handwriting
recognition has remained an open issue. The early user
studies of handwriting recognition (e.g. [4,6]) only studied
aspects of isolated character-recognition. Many sources
claim that unconstrained handwriting is fundamentally
slow, citing e.g. Card et al. [2] or Seibel [9]. However, none

of the above sources did actual research on handwriting
performance. Instead, they in turn cite Devoe [3]. What
Devoe [3] actually did was to let three participants copy a
100 word long text message using four different text entry
methods over ten sessions. The unconstrained handwriting
method was only used at the first two sessions and at the
last one (reasons unknown). Devoe [3] found that his three
participants had a grand mean text entry rate of 16.4 wpm
for unconstrained handwriting (calculated based on Table 1
in [3]). No handwriting recognizer was used in [3] so this
data point only covers articulation time and ignores any
error correction time (which would inevitably occur if a
handwriting recognizer was used). Occasionally Bailey [1]
is cited as giving a 25 wpm upper bound of unconstrained
handwriting (often as a secondary or even tertiary source).
However, the only plausible source for this number in [1] is
estimation from a log-scale diagram of text entry
measurements in [1], which again refers back to Devoe [3].

In the recent text entry surveys it has been either implicitly
[10] or explicitly [7] assumed that studies of unrecognized
handwriting speed represent an upper bound for
handwriting recognition text entry performance. The
argument is centered on the fact that unrecognized
handwriting lacks a verification and correction phase (since
there cannot be any recognition errors). Therefore, it is
assumed participants are writing as fast as they could if they
were using a 100% accurate handwriting recognizer. Under
this hypothesis, the average handwriting entry rate of 16.4
wpm in Devoe’s [3] study would classify handwriting
recognition as a relatively slow text input method, well
below the QWERTY software keyboard baseline [7,10].
However, without empirical measurements this is just an
educated guess based on a small-scale study.

In this paper we answer two research questions. First, what
is the actual text entry performance of state of the art
unconstrained handwriting recognition? Second, how does
handwriting recognition compare as a text entry method to
the well-understood status-quo QWERTY software keyboard?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

METHOD

Participants
We recruited 12 volunteers from the university campus. We
intentionally wanted a rather broad sample and recruited
participants from many different departments with many

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

567

different backgrounds. Six were men and six were women.
Their ages ranged between 22-37 (mean = 27, sd = 4).
Participants were screened for dyslexia and repetitive strain
injury (RSI). Seven participants were native English
speakers and five participants had English as their second
language. No participant had used a handwriting
recognition interface before. One participant had used a
software keyboard before. No participant had regularly used
a software keyboard before. Participants were compensated
£10 per session.

Apparatus and Software
We used a Dell Latitude XT Tablet PC running Windows
Vista Service Pack 1. The 12.1" color touch-screen had a
resolution of 1280 × 800 pixels and a physical screen size
of 261 × 163 mm. Participants used a capacitance-based
pen to write directly onto the screen in both conditions.

Figure 1. The handwriting recognition interface. Recognized

words are displayed as buttons below the writing area.

The handwriting recognizer (Figure 1) was configured to
learn and adapt to participants’ handwriting style (the
default setting on Windows Vista). Each participant
performed the experiment in a separate user account on the
machine to ensure handwriting adaptation was carried out
on an individual basis. There was a potential confound in
enabling handwriting adaptation since it caused the system,
as well as the user, to learn as a function of usage. In the
interest of external validity we enabled adaptation since in
actual use users would most likely have adaptation turned
on.

Figure 2. A word-edit box is displayed when the user presses

the button for a recognized word.

The handwriting recognizer had two basic modes for
correction. One was to strike out one or more words by
crossing them and then rewriting the misrecognized text
(see Figure 1). Another method was to click on the button
for a recognized word. This action brought up a correction
interface that enabled the user to edit the word character by
character using a letter recognizer (see Figure 2).

For the software keyboard condition we used the default
QWERTY software keyboard on Windows Vista.

Both the handwriting recognizer and the software keyboard
were docked to the lower part of the screen. The
dimensions of the software keyboard were 1266 × 244

pixels and 257 × 50 mm. The dimensions of the
handwriting recognizer writing area measured 1266 × 264
pixels and 257 × 55 mm. The slight additional height
difference was because the handwriting recognizer had a
small INSERT button below the writing area to the right (cf.
Figure 1). The dimensions of both text entry methods’ areas
were held constant during the experiment. A letter key on
the keyboard measured 14 × 11 mm, SPACEBAR measured
72 × 10 mm and BACKSPACE measured 23 × 11 mm.

Procedure
The experiment consisted of one introductory session and
ten testing sessions. In the introductory session the
experimental procedure was explained to the participants.
Participants were shown how to use the software keyboard
and the handwriting recognizer, including demonstrations
of how to correct errors. They also completed the built-in
Tablet PC tutorial.

Each testing session lasted slightly less than one hour.
Testing sessions were spaced at least 4 hours from each
other and subsequent testing sessions were maximally
separated by two days. In each testing session participants
did both conditions (software keyboard and handwriting
recognition). The order of the conditions alternated between
sessions and the starting condition was balanced across
participants. Each condition lasted 25 minutes. Between
conditions there was a brief break. Participants were also
instructed that they could rest at any time after completing
an individual phrase.

In each condition participants were shown a phrase drawn
from the phrase set provided by MacKenzie and Soukoreff
[8]. Each participant had their own randomized copy of the
phrase set. Participants were instructed to quickly and
accurately write the presented phrase using either the
software keyboard or the handwriting recognizer.
Participants were instructed to correct any mistakes they
spotted in their text. In the handwriting condition we
instructed participants to write using their preferred style of
handwriting (e.g. printed, cursive or a mixture of both).
After they had written the phrase they pressed a SUBMIT
button and the next phrase was displayed. The SUBMIT
button was a rectangular button measuring 248 × 16 mm. It
was placed 9 mm above the keyboard and handwriting
recognizer writing area.

RESULTS
In total we collected 100 hours of data. In each session
participants inputted on average 83.2 (sd ≈ 13.7) phrases in
the software keyboard condition and 81.5 (sd ≈ 16.7)
phrases in the handwriting recognition condition. All
statistical analyses were conducted using repeated-measures
analysis of variance (ANOVA) at significance level α = 0.05.

Entry Rate
Entry rate was calculated as words-per-minute, with a word
defined as five consecutive characters. The time required to
write each phrase was defined as the interval between when

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

568

the participants first pressed down the stylus on either
writing interface (software keyboard or handwriting area)
until they pressed the SUBMIT button.

As expected, participants became faster with practice (F9,99
= 2.4616, p < 0.05), see also Figure 3. In the first session,
the mean entry rate was 19.6 wpm (sd ≈ 3.2) for software
keyboard and 21.5 wpm (sd ≈ 3.7) for handwriting
recognition. In the last session, the mean entry rate was
24.9 wpm (sd ≈ 5.0) for software keyboard and 24.1 wpm
(sd ≈ 5.0) for handwriting recognition. As is evident in
Figure 3, the mean entry rate increased faster for the
software keyboard than for the handwriting recognizer. At
session six the software keyboard became faster than the
handwriting recognizer. The mean entry rate difference
between software keyboard and handwriting recognition
was not significant (F1,11 = 0.0699, p = 0.7963).

Error Rate
Error rate was calculated as the minimum edit-distance
between the phrase shown (stimuli) and the phrase actually
entered by the participant (response), divided by the
number of characters in the stimuli phrase. This means that
if a participant entered the phrase completely correct the
error rate was minimized to zero. If a participant entered a
phrase completely incorrect the error rate was maximized to
unity. Note that this was the corrected error rate, and it was
not a measure of recognition accuracy.

Participants’ error rates did not significantly vary with
practice (F9,99 = 0.8982, p = 0.53). The grand mean error
rate was 1.4% (sd ≈ 1.6%) for software keyboard and 1.0%
(sd ≈ 1.0%) for handwriting recognition. The mean error
rate difference between software keyboard and handwriting
recognition was not significant (F1,11 = 4.668, p = 0.05468).

Error Correction Time
The handwriting recognizer we used did not enable us to
measure recognition accuracy directly. Instead we opted for
estimating participants’ error correction time: the
proportion of their writing time spent correcting errors.
Note that this class of errors includes both recognition
errors and errors caused by participants (e.g. misspellings).

In the handwriting recognition condition we stored
participants’ pen traces. These were later played back so we
could detect when users were crossing out words or
invoking the word-edit box. We built a software tool to
automatically detect participants’ error correction actions
using model fitting techniques. Thereafter we semi-
automatically marked up the log file segments when
participants were correcting the text. Using this data we
then calculated the proportion of participants’ writing time
that was spent correcting errors.

In the keyboard condition the procedure went as follows.
For each phrase we calculated the ratio between
unnecessary keystrokes and total number of keystrokes
needed to form the input the user committed when pressing

SUBMIT. This gave us an estimate of the proportion of time
users spent correcting text because superfluous keystrokes
(that didn’t contribute to the committed text) must have
been either BACKSPACE presses or additional letters inserted
by the participant to make up for previous BACKSPACE
presses. We assumed the time taken to hit any key was
uniformly distributed. In addition to simply correcting
errors by pressing BACKSPACE multiple times, the
participant could also select an entire block of text and
delete it by pressing BACKSPACE once. These cases were
automatically detected and in these instances we retrieved
the correction time by manual inspection of the log files.

●●

●
●

● ●

●

● ●

●

●

15
20

25
30

Session

E
nt

ry
 ra

te
 (w

pm
)

●

●
●

● ●

●

● ●

●

●

1 2 3 4 5 6 7 8 9 10

15
20

25
30

1 2 3 4 5 6 7 8 9 10

● Software keyboard
Handwriting recognition

Figure 3. Mean entry rate (wpm) and 95% confidence

intervals as a function of session number. Note that the y-axis
is cut off at 15 wpm at the bottom.

●●

●
●

●

●
●

●
●

● ●

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Session

P
ro

po
rti

on
 o

f t
im

e
sp

en
t c

or
re

ct
in

g
er

ro
rs

●

●
●

●

●
●

●
●

● ●

1 2 3 4 5 6 7 8 9 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

1 2 3 4 5 6 7 8 9 10

● Software keyboard
Handwriting recognition

Figure 4. Mean proportion of time spent correcting errors and

95% confidence intervals as a function of session number.

Figure 4 plots the proportion of error correction time for
both software keyboard and handwriting recognition as a
function of session. The difference is significant (F1,11 =
5.469, p < 0.05). Participants spent more time correcting

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

569

errors using handwriting recognition than with the software
keyboard. This indicates that there is still room for
improvements in handwriting recognition accuracy.

Subjective Ratings
Table 1 summarizes the mean subjective ratings ranging
from 1 (“Strongly Disagree”) to 7 (“Strongly Agree”) on a
Likert scale. The only clear difference was that participants
perceived handwriting as more fun than software keyboard.

Statement SK HW

It was easy to correct errors. 4.9 (1.4) 4.6 (1.7)

The SK/HW was accurate. 4.7 (1.6) 4.5 (1.5)

It is fun to use SK/HW 4.2 (1.6) 5.3 (1.5)

Table 1. Mean subjective ratings (standard deviations in
parentheses) aggregated over all sessions.

DISCUSSION
As alluded in the introduction, text entry performance of
unconstrained handwriting recognition has not been well
studied before. In comparison to Devoe [3] our participants
were much faster, even after the first session (21.5 wpm vs.
16.4 wpm in [3]). At the last session, our participants had a
mean entry rate of 24.1 wpm. Last, our participants’ final
text had a character-level mean error rate of 1%. This error
rate level has been previously described by users as the
acceptable error level for communicating with superiors [5].

We believe the difference in relation to Devoe [3] can be
attributed due to primarily two factors. First, Devoe [3]
studied fewer participants (n = 3) and let them write less
text. Second, we hypothesize that the presence of
recognition feedback resulted in a positive feedback-loop
between the recognizer’s output and participants’ behavior.
This pushed our participants to write faster and less precise
as they observed how much the recognizer could tolerate. In
comparison, in [3] participants received no such feedback
and most likely felt they had to write legibly enough for
another person to be able to transcribe their handwriting.

CONCLUSIONS
In the recent text entry surveys [7,10] handwriting
recognition is hypothesized to be relatively slow at around
16 wpm (excluding a 25 wpm upper-bound estimation
derived from a mistaken secondary reference to [1] in [7])
and the QWERTY software keyboard to be faster at 25-40
wpm. However, we found that handwriting recognition
performs almost identical to a QWERTY software keyboard,
at least for the first hours of usage. During the first 25
minutes of use, participants wrote text using the
handwriting recognizer at 21.5 wpm. This was 2 wpm faster
than the software keyboard. After 250 minutes of writing,
participants wrote text at 24.1 wpm with the handwriting
recognizer and 24.9 wpm with the software keyboard. We
found no statistical difference between handwriting
recognition and software keyboard in either text entry rate

or error rate. Further, the 95% confidence intervals of both
methods’ mean entry rates were very close (Figure 3).
Taken together, text entry performance of state of the art
unconstrained handwriting recognition appears to have been
underestimated in the literature. In addition, our participants
also thought handwriting recognition was more fun to use
than the software keyboard. We hope our findings inspire
designers, developers and researchers to re-consider the role
of handwriting recognition in interactive systems.

ACKNOWLEDGEMENTS
We express our gratitude towards the participants. We also
thank Keith Vertanen for his assistance. L.D.’s
undergraduate internship, the apparatus, and compensation
to participants were funded by a donation from Nokia. The
following applies to P.O.K. only: The research leading to
these results has received funding from the European
Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement number 220793.

REFERENCES
1. Bailey, R.W. Human Performance Engineering: Using

Human Factors/Ergonomics to Achieve Computer
System Usability. Prentice Hall (1989).

2. Card, S.K., Moran, T.P. and Newell, A. The Psychology
of Human-Computer Interaction. Lawrence Erlbaum
Associates (1983).

3. Devoe, D.B. Alternatives to handprinting in the manual
entry of data. IEEE Transactions on Human Factors in
Electronics HFE-8, 1 (1967), 21-32.

4. Frankish, C., Hull, R. and Morgan, P. Recognition
accuracy and user acceptance of pen interfaces. Proc.
CHI 1995, ACM Press (1995), 503-510.

5. LaLomia, M.J. User acceptance of handwritten
recognition accuracy. Conference Companion CHI
1994, ACM Press (1994), 107.

6. MacKenzie, I.S. and Chang, L. A performance
comparison of two handwriting recognizers. Interacting
with Computers 11, 3 (1999), 283-297.

7. MacKenzie, I.S. and Soukoreff, R.W. Text entry for
mobile computing: models and methods, theory and
practice. Human-Computer Interaction 17 (2002), 147-
198.

8. MacKenzie, I.S. and Soukoreff, R.W. Phrase sets for
evaluating text entry techniques. Ext. Abstracts CHI
2003, ACM Press (2003), 754-755.

9. Seibel, R. Data entry devices and procedures. In Van
Cott, H.P. and Kinkade, R.G. (Eds.). Human
Engineering Guide to Equipment Design. John Wiley &
Sons (1972), 311-344.

10. Zhai, S., Kristensson, P.O. and Smith, B.A. In search of
effective text input interfaces for off the desktop
computing. Interacting with Computers 17, 3 (2005),
229-250.

CHI 2009 ~ Non-traditional Interaction Techniques April 7th, 2009 ~ Boston, MA, USA

570

	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	METHOD
	Participants
	Apparatus and Software
	Procedure

	RESULTS
	Entry Rate
	Error Rate
	Error Correction Time
	Subjective Ratings

	DISCUSSION
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

