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ABSTRACT 
Nonspeaking individuals with motor disabilities typically have 
very low communication rates. This paper proposes a design 
engineering approach for quantitatively exploring context-
aware sentence retrieval as a promising complementary input 
interface, working in tandem with a word-prediction keyboard. 
We motivate the need for complementary design engineering 
methodology in the design of augmentative and alternative 
communication and explain how such methods can be used to 
gain additional design insights. We then study the theoretical 
performance envelopes of a context-aware sentence retrieval 
system, identifying potential keystroke savings as a function of 
the parameters of the subsystems, such as the accuracy of the 
underlying auto-complete word prediction algorithm and the 
accuracy of sensed context information under varying assump-
tions. We find that context-aware sentence retrieval has the 
potential to provide users with considerable improvements in 
keystroke savings under reasonable parameter assumptions of 
the underlying subsystems. This highlights how complemen-
tary design engineering methods can reveal additional insights 
into design for augmentative and alternative communication. 
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INTRODUCTION 
Nonspeaking individuals with motor disabilities typically rely 
on augmentative and alternative communication (AAC) tech-
nologies to communicate. In this paper we focus on the subset 
of the target audience that is literate. A commonly used AAC 

device for this user group is a keyboard, either a physical key-
board or a touchscreen keyboard, with built-in auto-complete 
and word predictions. When the user has typed a word, phrase 
or sentence the user can speak the text using speech synthesis. 
However, compared to speaking rates of between 125 and 
185 words per minute (wpm; with a word defined as a five 
consecutive characters including space), aided communication 
rates in general are reported at 8–10 wpm without accelera-
tion methods such as prediction (for direct selection). Current 
acceleration techniques range from the use of abbreviations or 
word and phrase encoding to letter, word and phrase predic-
tion. However, there is only a limited increase to rates of up to 
12–18 wpm and usability issues such as having to scan word 
prediction lists visually present challenges when using these 
acceleration methods. Even with acceleration methods, rates 
rarely exceed 20 wpm [14, 4]. In practice, individual rates 
span a wide range and we encourage the reader to explore this 
range using the AT-Node search tool.1 

Traditionally, word prediction presents the user with a list of 
words that can either be selected directly (touchscreen or scan-
ning) or via keyboard shortcuts (for example, function keys). 
Although several research projects have demonstrated the po-
tential of using conversational language models to achieve 
rates of up to 64 wpm, these rates were obtained under partic-
ular circumstances and have not been translated into practical 
applications [21]. 

In this work we make two contributions. First, we propose 
a conceptual design of context-aware sentence retrieval for 
nonspeaking individuals with motor disabilities. Second, we 
explain how methods from design engineering can be used in 
tandem with traditional AAC design to gain design insights 
at the conceptual design stage of an AAC method. We will 
explain why this approach is sometimes even necessary in 
order to progress certain AAC designs, such as context-aware 
sentence retrieval. 

Context-Aware Sentence Retrieval 
We propose augmenting AAC touchscreen keyboards with sen-
tence suggestions retrieved from the user’s set of previously 
spoken sentences. In addition to word predictions, the system 

1https://kpr.pythonanywhere.com/q?diagnosis=*&amp; 
interface=physical_keyboard 
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shows sentence suggestions on the display. If the sentences 
are relevant, the user can save valuable keystrokes by directly 
selecting the desired sentence. If the sentences are not relevant, 
the user may ignore them. Such a system would likely be un-
suitable for regular mobile text entry, as users would spend a 
disproportionate amount of time scanning the sentence sugges-
tions. However, when the communication rate is very low this 
effort is worthwhile—assuming it results in keystroke savings. 

To improve the probability of a suitable sentence suggestion, 
we propose leveraging context tags. A context tag is a label 
that describes aspects of the context of a conversation, such as 
the location, current time or conversation partner. 

Design Engineering for AAC 
The second contribution in this paper is a consequence of 
the first contribution. It is extremely difficult to validate a 
context-aware sentence retrieval system with AAC users and 
this difficulty short-circuits established user-centred design 
practices. First, such a system needs to be bootstrapped with 
sentences for an individual user. Given the rate-limited nature 
of AAC communication, this may demand up to six months of 
usage of the device by an AAC user before the benefits of the 
system can be felt by the user. The logistics involved in hav-
ing even a single AAC user, and their assistant/family/friend, 
switch to a new device for the eventual benefit of being pro-
vided more relevant sentences is very difficult (and perhaps 
ethically wrong) to carry out. The alternative solution of pre-
feeding old sentences to the system might work but these 
would have to have context tags assigned post-hoc, which are 
unlikely to be valid and such a procedure can not be validated 
without ground truth data. Finally, using proxy-users (people 
pretending to have dexterity issues) cannot replicate issues 
we observe in users who have involuntary and idiosyncratic 
movement. 

As a result of the difficulty of validating such a system we 
explore an approach often taken in design engineering. De-
sign engineering (sometimes called Engineering Design) is 
a methodology used in product and integrated system design 
which spans the entire continuum from elaboration of an ini-
tial solution-neutral problem statement to design concerns in 
manufacturing, support and disposal of a product or system. 

Specifically, we elaborate a functional design of context-aware 
sentence retrieval and study a conceptual design of context-
aware sentence retrieval in which the key function of the sys-
tem (sentence prediction) has been translated to three can-
didate function carriers. We then identify a set of control-
lable and uncontrollable system parameters of this conceptual 
design and explore the viable efficacy of such a system by 
quantitative envelope analysis. 

We build a surrogate context model and identify the relevant 
controllable and uncontrollable parameters of the model and 
vary them in an envelope analysis. This allows us to demon-
strate that a context-aware sentence retrieval system can pro-
vide substantial keystroke savings ranging from 50–96%, de-
pending on assumptions on word prediction accuracy, accuracy 
of context tagging and the level of sentence re-use. 

The design engineering approach thus serves two purposes. 
First, it helps define requirements for important function car-
riers, in particular the required accuracy of auto-complete, 
sentence retrieval and context-tagging. Second, it provides 
information on the viability of this approach without a need 
to first build, deploy and monitor a system over a prolonged 
period of time. 

Paper Structure 
The rest of this paper is structured as follows. First we re-
view prior work in AAC sentence prediction. Then we explain 
how we used approaches for design engineering to study the 
system at the conceptual design stage. Then we explain the ap-
proach and modeling assumptions of the work. Thereafter, we 
model the underlying subsystems and observe the achievable 
keystroke savings via envelope analysis. Finally, we discuss 
the implications of this work and conclude. 

RELATED WORK 
Phrase prediction, that is, the prediction of more than two 
words, has become a ubiquitous feature in many text entry 
systems and is probably most prominent in the Google search 
window, where a number of additional search terms are sug-
gested once a character has been typed. Google uses current 
searches on its platform combined with the user’s location and 
their previous searches.2 Another example is writing sugges-
tions in Google’s email product Gmail. 

In the 1970s, phrase-based AAC systems were thought to be 
better equipped in enabling users to communicate at faster 
communication rates. In these early Speech Generating De-
vices3 (SGDs), phrases were encoded using either number 
codes (Phonic Ear) or mnemonic encoding using icon combi-
nations for accessing pre-stored phrases (Minspeak) [18]. 

However, the retrieval of pre-stored phrases places additional 
cognitive burden onto the user and different approaches were 
investigated for allowing the user to find the appropriate 
phrases. 

The TOPIC prototype by Arnott et al. [2] added semantic 
tags to each phrase to allow for easier (manual) retrieval [18]. 
TalksBac added communication partner tags to allow easier 
tailoring of communication according to the conversation part-
ner [20]. 

Prior research suggests that well-designed utterance-based re-
trieval systems which link pragmatic features and user goals 
can lead to faster communication without losing coherence. 
The TALK system [21] is based on a pragmatic model which 
sees the progression of a conversation as a series of grad-
ual shifts of perspectives relating to the speaker, time (past, 
present, future) and event-related information (what, where, 
who, how, and why). By changing perspective, the system 
can predict possible utterances. However, these systems rely 
on handcrafted sentences and the user needs to remember the 
conversational content and the location of this content. 

2https://www.blog.google/products/search/how-google-
autocomplete-works-search/ 
3Also referred to as Voice Output Communication Aids (VOCAs) 
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Whole-message retrieval has also benefited from linguistic 
prediction. Langer and Hickey [9] developed WordKeys, a 
research system which allows the user to retrieve pre-stored 
messages by typing or selecting a key word that can be as-
sociated with any word in the target message. For instance, 
the message ‘I enjoy watching tennis’ could be retrieved by 
entering the word ‘ball’, even though ‘ball’ does not appear 
in the sentence. The associations (for example, a ball is used 
in tennis) are automatically generated by a large semantic 
lexicon, derived from the WordNet database [15]. 

In general, retrieval of stored sentences has proven difficult 
and thus individual words became the main unit to be stored 
in AAC systems. 

Users of current commercial SGDs sometimes pre-store utter-
ances and monologue ‘talks’, but sharing personal experiences 
(stories) interactively using SGDs is rare. The main reasons for 
not using pre-stored utterances and talks despite the evidence 
that this improves communication rates can be described in 
terms of pragmatics (how language is used and the usability 
of the user interface): 

1. It is unnatural for users to anticipate experiences which may 
be used within future conversations, resulting in limited 
pre-stored material. 

2. Experiences are ‘shared’ as interactive conversational narra-

-

tives and not as monologue ‘talk’. 

3. The cognitive and physical effort needed to retrieve pre
stored conversational information is high, resulting in users 
resorting to word-for-word typing—users have to invest 
effort into remembering where the vocabulary is stored, or 
in the case of word prediction, there is a cognitive overhead 
in visually scanning the options to find the desired item. 

The need to resort to spelling and word-by-word production 
affects the spontaneous conversational flow and its quality 
because of the slow speed and physical effort to produce text. 

Nandi and Jagadish [12] describe the two main challenges of 
phrase prediction: 

1. The number of possible phrases is considerably larger than 
the number of possible words. 

2. A phrase has no defined boundary compared to a word. 

Phrase prediction can also be seen as word prediction with 
larger words where commonly co-located words are coded 
as one word in the prediction index, for example, New York 
becomes New_York. However, if the phrase corpus consists 
of phrases typed by the user it can be expected that a phrase 
boundary/ending in general is defined by the use of certain 
function or punctuation keys, such as ‘speak’ and ‘full stop’. 

Advances in context sensing technologies have opened up 
opportunities to refine word and sentence prediction using 
information such as location and conversational partner. It is 
anticipated that a so-called context-aware system will predict 
more appropriate lexical items, thereby reducing the cognitive 
and physical effort required to use word and utterance-based 
AAC. 

Very early phrase-based systems, Floor Grabber and 
TALK [17], gave access to a large number of phrases grouped 
by conversation topic, such as ‘Miami Trip’ or ‘my car’. These 
systems contained approximately 500 sentences that could be 
accessed through a topics-based user interface on a desktop 
computer. In a study exploring phrase prediction Garcia et 
al. [3] transcribed a participant’s communication paper note-
books for a corpus of 545 sentences. 

It is notable that no research-based prediction systems (stan-
dard and context-aware) have as of yet been reflected in com-
mercially available systems. Although there is a small number 
of systems that use GPS data to pre-select phrase collections, 
these are restricted to needs-based conversations, for example, 
ordering phrases in a cafe or restaurant (for example, Locab-
ulary4 or TalkRocketGo5). Grid 3 by Smartbox can suggest 
previously typed phrases filtered by the location where the 
phrases were typed previously.6 There is no information avail-
able on the number of phrases stored in these systems. 

Commercially available systems with manual access to phrases 
usually group these by context (for example, in a cafe, at 
the bank, etc.) for selection of a suitable phrase. Systems 
providing phrase prediction suggest phrases that either begin 
with a typed letter, contain a typed word or are identified by 
an acronym. 

Recent systematic reviews of the literature have found little 
evidence for phrase prediction being used: Koester et al. [8] 
reviewed 39 papers on text entry strategies. Although predic-
tion was not at the heart of this review, the authors conclude 
that word prediction in the studies seldom allowed for an in-
creased typing rate. Phrase prediction was not available in any 
of the studies. Polacek et al. [14] reviewed 150 publications 
on text input for users with motor impairments. They only 
refer to one of their own publications for prediction of longer 
text elements. No indication on effectiveness is given [13]. 

This highlights a mismatch between theoretical and practical 
values in typing rate improvements. Although theoretically 
improvements seem apparent for using prediction they do 
not seem to be reflected in practical studies with users with 
disabilities. All these systems have in common that a user 
needs to scan a list visually and read suggested phrases to be 
able to choose a suitable one, justifying the need for improved 
methods for predicting correct phrases. 

In addition, the idea of leveraging context has been incorpo-
rated into AAC design before. An example is the work by 
Kane et al. [7] and others (for example, Mahmud et al. [1]). 
However, our use of context in this paper is different in that the 
context tags are here directly incorporated into an information 
retrieval model for retrieval of stored sentences. 

FUNCTIONAL DESIGN AND FUNCTION CARRIERS 
Design engineering is a set of methodologies for product and 
integrated system design. There are many specialized design 

4http://locabulary.com/ 
5http://myvoiceaac.com/app/talkrocketgo/ 
6https://thinksmartbox.com/product/grid-3/ 
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processes for various domains, such as medical devices or 
aerospace. 

The relevant aspect of the design engineering process for 
this paper is the conceptual design stage. In this stage 
of the design, a product or integrated system is first de-
scribed as a functional design. This typically means iden-
tifying the overall function (which in this case can be de-
noted as Predict Text) and the necessary sub-functions 
(such as Create Context Tags, Auto-Complete Word, 
Retrieve Sentence, Display Word Predictions and 
Display Sentence Predictions) and their interrelation-
ships. 

The second part of the conceptual design stage involves identi-
fying solution principles for translating functions into function 
carriers. In this paper we focus on the conceptual design im-
plications of a single critical function: Retrieve Sentence. 
This function is fundamental as the design of its function car-
rier (in other words, the implementation of sentence retrieval 
in software) is dependent on two other functions in particu-
lar: Auto-Complete Word and Create Context Tags. To 
understand the requirements of a function carrier for the func-
tion Retrieve Sentence it is necessary to evaluate a set of 
candidate function carriers to understand their relative suitabil-
ity. To do this we identify the controllable and uncontrollable 
parameters such potential function carriers must be exposed 
to and vary these parameters to perform envelope analyses. 
These analyses provide information on some of the overall 
requirements the entire system must satisfy for these function 
carriers to be able to carry out the overall function satisfactory. 

In this paper we study three function carriers, three well-
established information retrieval algorithms, which are de-
scribed in detail later in this paper. 

What the design engineering approach does is allow us to 
identify critical functions and study aspects of some of them 
in isolation. This is normally not required in AAC design, 
but given the difficulty in validating context-aware sentence 
retrieval we alluded to in the introduction, in this particular 
case such an approach becomes critical to make progress. 

Note in particular that we specifically are going to study the 
translation of a key sub-function (Retrieve Sentence) to 
a function carrier without any concern on how to translate 
other key functions, in particular Auto-Complete Word and 
Create Context Tags. Instead, an output of the analysis is 
a set of requirements which can later be used to make informed 
decisions of appropriate function carriers for these functions. 

For brevity, we have only sketched a minimal functional de-
sign to motivate the quantitative parameter exploration we will 
carry out in the next sections in order to understand the poten-
tial of context-aware information retrieval for AAC. A com-
plete functional design is out-of-scope for this paper, however, 
it is worth noting that certain functions, such as the function 
Display Word Predictions, can be studied in isolation 
using more traditional user-centred design methods. 

QUANTITATIVE PARAMETER EXPLORATION 
Our modeling approach treats the sentence retrieval problem 
as an information retrieval (IR) problem. We assume the AAC 
system contains a set of previously typed sentences, where 
each sentence may optionally be associated with one or more 
context tags. We treat both the words and the context tags as 
terms and the collections of terms for a sentence (including 
any associated context tags) form a document, where the terms 
term and document arise from the IR nomenclature. 

In a similar vein, whenever the user desires to write a sentence, 
we call this a query. A query consists of context tags (if 
available) and any words the user has completed. 

Both documents and queries are modeled as bags-of-words. 
A bag-of-words is a multiset of terms which, unlike a set, 
preserves multiplicity of the terms. 

When investigating the performance of context-aware sentence 
retrieval we make an assumption that a hypothetical user has 
500 prior sentences stored in their AAC system. This parame-
ter choice is tentative but representative of AAC practice (see 
the related work section). We then typically select a sentence 
from this set of sentences (we will later in this paper also study 
typing sentences outside this stored sentence set) and model 
the user typing this sentence. 

The user’s typing is modeled both supported and unsupported 
by auto-complete assistance (word prediction). Without auto-
complete assistance, a user must type each individual word to 
completion without aid. As a word is completed, it is added to 
the query as an additional term. 

With auto-complete assistance, with some probability, the 
word is added to the query as a term for every keystroke typed 
that is part of the word. 

Regardless of the typing method, for every keystroke typed 
we form a query with the terms consisting of any present 
context tags and the currently fully-typed, or predicted, words. 
We then score all sentences in the stored sentence set using 
three different IR algorithms (which are explained in the next 
section). Thereafter we rank all the sentences based on their 
relevance scores. If we have several sentences with equal 
relevance scores we choose a sentence at random. This models 
an interaction method where, as the user continues to type, 
the retrieved sentences will match the user intent better. This 
approach was inspired by our observations of actual AAC 
users retrieving stored sentences. 

Unless otherwise stated, we retrieve the four best matching 
sentences and consider a match to be found if one of these 
four retrieved sentences matches the test sentence. We chose 
four sentences as there is sufficient space in a typical AAC 
touchscreen interface to display four sentences above the key-
board. We will later in the analyses in this paper also vary this 
number of sentences. 

This typing process repeats until the system is able to retrieve 
a matching sentence. We then calculate the keystroke savings, 
KS, which is defined as: 
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(1)

where km is the number of keystrokes that need to be typed 
before the model under investigation results in a matching 
sentence and kc is the number of keystrokes in total for the test 
sentence. A higher keystroke savings value is better. 

Unless otherwise stated, we use a set of 500 sentences from a 
publicly available AAC corpus [19] to model sentences stored 
in an AAC user’s AAC device. We will select 40 sentences at 
random from this test set and use the above described model of 
typing behavior to simulate an AAC user typing the sentence 
on their AAC device. Before we retrieve sentences we pass all 
stored sentences and query terms through a porter stemmer, 
remove all punctuation and remove all capitalization. 

SENTENCE RETRIEVAL ALGORITHMS 
We investigate three algorithms for sentence retrieval: Inverse 
Document Frequency (IDF) [16], Best Matching (BM25) [5, 
6] and a Unigram model. For completeness we define the 
models below. For more information on these models and 
how they are used in IR we refer to an IR textbook, such 
as for example Manning et al. [10]. We note that these IR 
algorithms are easily available, simple and robust. While 
more sophisticated algorithms exist, it is important to recall 
that we are performing envelope analyses and we should be 
conservative in our estimations. 

IDF 
IDF assigns each document in the collection a relevance score, 
and then ranks them accordingly. The relevance is given by 
the sum of each term’s id f , defined as: 

∑ id f t , where id f t = log 
N 
, 

ntt ∈ d 

id f t is a measure of the inverse document frequency. This is 
the log ratio of the size N of the collection and the number 
of documents nt that contain term t. It is summed for every 
term in each document d to calculate the relevance score of 
that document. 

BM25 
The BM25 algorithm is a probabilistic model which also as-
signs each document a relevance score. The relevances are 
given by: 

(k1 + 1) × t ftd∑ id f t . ,
k1(1 − b + b × (Ld /Lave)) + t f tdt ∈ d 

where previously defined symbols remain the same as before, 
and t ftd is the term frequency of a term t in document d, Ld 
is the length of the document d, Lave is the average document 
length in the collection, and k1 and b are parameters which 
throughout this paper will be set to k1 = 1.2 and b = 0.75. 

Unigram 
The Unigram model builds a dictionary of all terms in the 
collection. For each document it finds the probability of each 

Figure 1. Average keystroke savings as a function of the number of sen-
tence suggestions presented to the user for the three IR algorithms with-
out using context tags and without auto-complete assistance. 

term by summing its frequency of occurrence in the document 
and dividing by the total number of terms in the document. It 
then smooths these probabilities by adding a small constant α 
to the numerator and multiplying the denominator by α . This 
set of probabilities attached to each document is the Unigram 
language model based on each document. 

For a given query q the algorithm calculates the product of 
the probabilities of each term in the query according to each 
document’s language model. This acts as a relevance score 
with the highest product corresponding to the most relevant 
document. 

The probability of a query containing m terms is given by: 
m 

P(q) =  ∏P(ti), 
i=1 

where each term probability is: 

×
count(ti)+  α

P(ti) =  . 
m  α 

BASELINE MODEL WITHOUT CONTEXT TAGS 
We first investigate a baseline model without context tags 
where the user is typing the test sentence word by word with-
out auto-complete assistance. Figure 1 shows the average 
keystroke savings obtainable as a function of the number of 
sentence suggestions that are shown to the user. 

SURROGATE AAC CONTEXT MODEL 
We then analyze if the baseline model results can be improved 
by assuming a context-aware AAC IR system. Since no large 
dataset of AAC sentences with context tags exists, real or 
surrogate, we need to create a surrogate AAC context model 
that can generate surrogate AAC sentence sets with associated 
context tags. 

The basic form of this AAC context model is that we have a 
cache of context tags and these context tags are defined by 
the family of context tags they are part of, and their position 
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within the family. For example, an individual context tag may 
be of the form ‘location1’ or ‘person2’ and belong to a tag 
family, such as Location and Person, respectively. 

As the user types, an actual system would provide a real-
time feed of these context tags, for example by using face 
recognition to provide tags of the form ‘person2’ and GPS 
to provide tags of the form ‘location1’. Tags could also be 
inputted manually by an assistant. These tags are then attached 
as terms to the start of the query. This means a query is pre-
loaded with terms even before the user has begun typing. 

To more fully define a surrogate AAC context model, which 
is a form of generative model, we introduce a number of pa-
rameters. We will split these parameters into two groups, 
controllable and uncontrollable. A parameter is controllable if 
it is essentially a design choice for any given system. In other 
words, a controllable parameter is a design parameter in the 
system and the identification of design parameter values cap-
ture requirements for implementing a well-functioning system. 
A parameter is uncontrollable if it will affect the system but 
cannot be directly controlled by the system. We will perform 
envelope analyses to both controllable and uncontrollable pa-
rameters. The envelope analyses of controllable parameters 
inform design objectives for their optimization. The enve-
lope analyses of uncontrollable parameters demonstrate the 
likely variation in performance of any given system (a form of 
sensitivity analysis). 

The controllable parameters are: 

1. The number of context tags attached to each document. 
Unless otherwise stated; this parameter is set to 2. 

2. How each family of context tags is represented in each 
document (stored sentence); this parameter is set as one 
context tag from each family in each document, unless 
otherwise stated. 

3. The average number of context tags per context tag family; 
this parameter is set to 15, unless otherwise stated. 

4. The spread of these context tags between the context tag 
families. Each context tag family will have the same size 
unless otherwise noted. 

Note that the first and second parameters define the number of 
context tag families. 

The uncontrollable parameters are: 

1. The popularity of each individual context tag in each context 
tag family. 

2. The probability of a context tag attached to a sentence be-
ing typed matching the context tag attached to the same 
sentence in the set of stored sentences. 

3. The number of stored sentences (the size of the document 
collection). 

ANALYZING UNCONTROLLABLE PARAMETERS 

Popularity of Individual Context Tags 
We first investigate how often each individual context tag will 
appear. This depends on how often the user, whose data we 

Figure 2. Average keystroke savings for three IR algorithms as a func-
tion of varying the power law parameter ω (without auto-complete assis-
tance). 

are assuming we have, is situated in different contexts and 
therefore we will not be able to control it and it will also 
most likely change between users. Therefore, we will first 
assume that within each context tag family the probability of 
each context tag being associated with each sentence follows a 
discrete power-law distribution. This assumption is motivated 
by the observation that even very simple generative typing 
processes will result in power law distributions [11]. We 
will then perform an envelope analysis of different power-law 
parameters in order to observe potential keystroke savings. 
For the rest of this paper we have set the power-law parameter 
to 4 as this proved a robust choice. 

The power-law distribution is defined by the density function: 

P(x,ω) =  ωxω−1 | x ∈ Z+ and x ≤ γ, 

where x is the position of the context tag within the family 
(e.g., ‘location1’ ‘location2’), ω is a parameter that defines 
the distribution and γ is the number of tags in the family. The 
effect of varying the power law parameter is shown in Figure 2. 

Probability of Matching Context Tagging 
Another uncontrollable parameter is the probability of a test 
sentence’s context tags matching the context tags of a sentence 
among the stored sentences. This parameter covers a range of 
different real-world scenarios where either the tag has been 
incorrectly assigned by the context tagging system (possibly 
due to classification errors) or the user is writing a sentence 
that exists among the stored sentences but in a new context and 
therefore the context tagging system may be either correct or 
incorrect but nonetheless the assigned context tag is different. 

We perform an envelope analysis of this parameter as follows. 
Each time a test sentence is chosen from the collection, we 
sample from a uniform random distribution and if the sample is 
higher than a set probability parameter a context tag in the test 
sentence is randomly reassigned according to the previously 
defined power-law model. Otherwise, the context tag in the 
test sentence is left as it is. We vary the probability parameter 
between 0 and 1. Note that for the rest of this paper we 
are effectively setting the probability parameter to 1, which 
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Figure 3. Average keystroke savings as a function of varying the proba-
bility of matching context tagging without auto-complete assistance. 

Figure 4. Average keystroke savings as a function of varying the number 
of stored sentences without auto-complete assistance. 
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assumes perfect context tagging. The results from varying the 
probability parameter are shown in Figure 3. 

Stored Sentences 
The final uncontrollable parameter is the number of stored sen-
tences in the AAC system (or the number of documents using 
IR terminology). Figure 4 shows the effect of this parameter 
when varying it between 500 and 5,000 sentences. 

OPTIMIZING CONTROLLABLE PARAMETERS 
The analysis of the uncontrollable parameters revealed the 
performance gains that are likely to be obtained in an unopti-
mized system. However, further gains can possibly be made 
by optimizing the controllable parameters. We carried out four 
investigations: 

1. The effect of varying the size of the context tag families. 

2. The effect of varying the number of context tags per sen-

-

tence (document). 

3. The effect of unevenly assigning the context tag families to 
sentences. We begin by using only one context tag family 
and thereafter increasing the number of context tags per sen
tence (document), and then, using two context tag families, 

Figure 5. Average keystroke savings as a function of varying the number 
of context tags per context tag family without auto-complete assistance. 

Figure 6. Average keystroke savings as a function of varying the number
of context tags per sentence without auto-complete assistance. 

assigning one context tag from one of them, and then vary 
the number of context tags per sentence (document), adding 
context tags only from the other context tag family. 

4. The effect of assigning unevenly sized context tag families. 
This is defined by varying an offset parameter with one 
context tag family increasing its number of context tags by 
the offset amount and another context tag family decreasing 
by the same amount. 

The respective results are shown in Figures 5–8. As is evident 
in the envelopes, there are design parameter choices that can 
further improve overall system performance in terms of av-
erage keystroke savings. These insights can be captured as 
part of an improved requirements specification of the overall 
system. 

EFFECT OF WORD PREDICTION 
Throughout this paper the envelope analyses are based on 
the user typing individual words to completion without auto-
complete assistance, also known as word prediction. This 
provides easily interpretable baseline keystroke savings and 
demonstrate the substantial keystroke savings that can be 
achieved using even modest context tagging. 



Figure 7. Average keystroke savings as a function of varying the number 
of context tags per sentence without auto-complete assistance. 

Figure 8. Average keystroke savings as a function of the size offset of the 
context tag families without auto-complete assistance. 

However, AAC users typically rely on auto-complete7 and 
we therefore also studied the impact of auto-complete on 
keystroke savings. This allows us to capture requirements 
on the important function Auto-Complete Word, which we 
identified in the conceptual design of the system earlier in this 
paper. 

We model auto-complete with a word prediction accuracy 
parameter which determines the probability that for a given 
keystroke the intended word would be auto-completed. This 
model is a simplification of a true auto-complete system as 
we thereby assume the probability of auto-complete assistance 
predicting the intended word as being the same regardless of 
how many keystrokes the user has typed. In reality, the prob-
ability of an intended word being accurately predicted will 
increase as a function of the number of the keystrokes. How-
ever, as we perform an envelope analysis this effect will, in the 
limit, average out. Setting a fixed probability is a compromise 
between over-parameterization and simplicity (Occam’s razor) 
and represents an “uninformative prior” that avoids us having 

7To be precise, most AAC users rely on typing assisted by word 
prediction, which is not the same as typing assisted by auto-complete. 
We assume AAC users are willing and able to use auto-complete in 
this analysis. 

Figure 9. Average keystroke savings with auto-complete assistance as a 
function of word prediction accuracy for data with context tags. 

Figure 10. Average keystroke savings with auto-complete assistance as a 
function of word prediction accuracy for data without context tags. 

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 398 Page 8

to make elaborate distributional assumptions, which would be 
difficult to justify. 

We carry out the envelope analysis both using context tags 
and without to assess the effect of keystroke savings with auto-
complete assistance using a non-context aware system and a 
context-aware system. Figure 9 shows that under very rea-
sonable estimations of word prediction accuracy (around the 
80% word prediction accuracy point), the average keystroke 
savings are substantial at around 96%, assuming two context 
tags are used and they both match the context tags of the test 
sentence. In reality such a high performance will reduce in 
practice, as the context tags will inevitably not always match. 

For calibration, Figure 10 repeats the analysis without the aid 
of context tags. At the 80% word prediction accuracy point, 
performance drops to around 80%. 

UNOBSERVED SENTENCES 
We have observed that under reasonable parameter assump-
tions, two context tags per sentence, a stored set of 500 sen-
tences, and each context tag family having 15 members, sub-
stantial keystroke savings can be achieved by retrieving a 
stored sentence using standard IR algorithms. Word prediction 
further improves the performance. 
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(a) 500 stored sentences 

(b) 4,500 stored sentences 
Figure 11. Average keystroke savings as a function of thresholded WER 
when the system is requested to retrieve unobserved sentences from a) 
500 stored sentences; and b) 4,500 stored sentences. 

The reason the keystroke savings are substantial is because we 
are retrieving sentences that are already stored in the system. 
Such retrieval is common in AAC and therefore motivates the 
analysis. However, we were also interested in investigating 
how well a context-aware sentence retrieval system would be 
able to predict unobserved sentences, that is, sentences that are 
not stored in the system. Such unobserved sentences are by 
definition unlikely to perfectly match stored sentences. How-
ever, the system could find similar sentences and occasionally 
these sentences may be useful to the user. For example, if the 
user is attempting to communicate: “I want to go to school”, 
a completion of: “Can I go to school”, might be perceived as 
good enough by an individual user. 

To get some indication of the performance of using the system 
in this mode, we defined a permissible word error rate (WER) 
which determined whether or not a retrieved sentence was 
considered as correct. WER is the minimum number of word 
insertions, deletions and substitutions necessary to transform a 
source sentence into a target sentence, divided by the number 
of words in the target sentence. We perform an envelope anal-
ysis by varying this WER threshold and observe the average 
keystroke savings. 

Figure 12. Average keystroke savings as a function of probability of ob-
served sentences and correct tags with auto-complete set to 80% for sen-
tences inside the sentence cache and 20% for sentences outside the sen-
tence cache. 

The test sentences were drawn from the same source as the 
other sentences in our previous analyses [19] but not present 
among the stored sentences. The total number of sentences in 
this sentence set source [19] is 5,000. While this set is small, 
the sentences in this set also tend to be distinct in terms of 
word usage and topic and therefore an unobserved sentence 
is unlikely to match a stored sentence well. In this sense, our 
analysis is conservative and erring on the side of caution. 

Since the analysis is dependent on the system in some sense 
getting “lucky” that a test sentence happens to reasonably 
match a stored sentence, we carried out this investigation 
for two sentence sets. First, a conservative number of 500 
stored sentences and, second, a large number of 4,500 stored 
sentences. This allowed us to observe how much performance 
would improve if more sentences are available. Auto-complete 
was turned off and two perfect context tags were used in this 
analysis. The results are shown in Figure 11. As expected, the 
threshold WER has to be relaxed to around 60–80% for the 
system to be able to generate meaningful keystroke savings. 
We also observe a slight increase in performance with the 
larger sentence set. 

Figure 12 illustrates a more representative scenario. Figure 12 
shows average keystroke savings as a function of the proba-
bility the user is typing an observed (stored) sentence for all 
IR algorithms. We set the threshold WER to 50%, assume 
perfect context tags and have added auto-complete. As with 
previous analyses, we set the auto-complete probability to 80% 
for stored sentences inside the sentence cache. However, such 
a high auto-complete probability is unrealistic for unobserved 
sentences outside the cache and we therefore lowered it to 
20% for those sentences. Figure 12 shows expected keystroke 
savings ranging from 20% with 0% observed sentences to 
between 40% and 60% for 50% observed sentences depending 
on the IR algorithm. 

Overall, a context-aware sentence retrieval system does not 
need a large degree of sophistication to provide tangible 
keystroke savings, even for sentences that are not present 
in the sentence cache. 

Paper 398 Page 9
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DISCUSSION 
Many nonspeaking individuals with motor disabilities rely 
on word prediction and simple sentence mechanisms to com-
municate. The communication rates are typically very low. 
In this work we have suggested a context-aware sentence re-
trieval model which leverages the fact that many AAC users 
reuse previously typed sentences. In our model the user starts 
typing a sentence as usual but is in addition to word predic-
tions presented with a number of retrieved previously typed 
sentences. 

We used a design engineering approach to identify the key 
functions and then decided to investigate three widely used IR 
algorithms which have open implementations and are easy to 
integrate into AAC systems: IDF, BM25 and a Unigram lan-
guage model. We further assumed that very few context tags 
would be assigned to sentences (typically, two) and a relatively 
small number of retrieved sentences would be presented to the 
user (typically, four). These parameter choices are deliberately 
conservative. 

We created a surrogate AAC context model and identified the 
controllable and uncontrollable parameters of the system. We 
then carried out envelope analyses that on the whole demon-
strate very high keystroke savings assuming perfect context 
tagging. Assuming two perfect context tags, we typically 
obtain a keystroke savings range of 94–97% when the word 
prediction accuracy is assumed to reside at around 80%, which 
forms an important requirement on this particular sub-system. 

We also investigated the sensitivity of these keystroke savings 
when context tagging was imperfect, and as demonstrated in 
Figure 3, even with a context tagging error of 50%, average 
keystroke savings are expected to be above 70%. This demon-
strates how useful a context-aware sentence retrieval system 
can be for a nonspeaking individual with motor disabilities 
whose rate-limitation necessitates slow and perhaps inaccurate 
typing. 

The high keystroke savings are achievable because the system 
is retrieving sentences that have already been typed before. 
For completeness, we also investigated hypothetical keystroke 
savings when a user typed sentences that were not stored in the 
system. First, we varied a threshold WER and experimented 
with two different sizes of the sentence sets, 500 and 4,500. 
We found that if a threshold WER between 60–80% is accept-
able to the user, such a mode of operation can potentially result 
in 50% keystroke savings. Then we varied the level of sen-
tence re-use. Figure 12 illustrates potential average keystroke 
savings with context tagging and auto-complete as a function 
of the level of sentence re-use. 

Another important aspect we have demonstrated in this pa-
per is the usefulness of functional design, envelope analysis 
and modeling in AAC. It would be very difficult to carry 
out traditional A/B testing or user-centred designs around a 
context-aware sentence retrieval system without first gaining 
an understanding of the controllable and uncontrollable pa-
rameters of the underlying model. The heterogeneity among 
the AAC user population and the fact that a context-aware 
sentence retrieval system would need to be field tested over a 

period of several months further necessitates a new approach 
in AAC text entry design. We hope this design engineering 
approach will inspire further research in this direction as a 
complementary method to traditional AAC user-centred de-
sign. 

CONCLUSIONS 
Many nonspeaking individuals with motor disabilities have 
difficulties communicating due to low communication rates. 
In this paper we suggest context-aware sentence retrieval as 
a potentially useful complementary technology alongside a 
touchscreen keyboard with word predictions. We have built a 
surrogate AAC context model and identified both controllable 
and uncontrollable parameters and visualized the design space 
using envelope analysis. We have shown that such a system 
can realize substantial keystroke savings ranging from 50– 
96%, depending on assumptions on word prediction accuracy, 
accuracy of context tagging and the level of sentence re-use. 

The IR algorithms investigated in this paper are relatively 
simple and openly available, thereby making it easy for AAC 
device manufacturers to implement context-aware sentence 
retrieval functionality. Further, the context tags need not rely 
on overly sophisticated sensing. Context tags generated by, 
for example, GPS, the time of day and face identification are 
examples of context sensing which is widely available today. 
Our next step is to perform a longitudinal observational study 
with an AAC user group to study the nature of sentences stored, 
the accuracy of context tagging in practice and the realizable 
gains achieved in the field. We hope this work will find its way 
into AAC devices as a complementary technology that can 
provide substantial keystroke savings when the user simply 
wants to retype a previously typed sentence. 
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