Design and Analysis of Intelligent Text Entry Systems with
Function Structure Models and Envelope Analysis

Per Ola Kristensson
Department of Engineering
University of Cambridge
Cambridge, United Kingdom
pok21@cam.ac.uk

ABSTRACT

Designing intelligent interactive text entry systems often relies on
factors that are difficult to estimate or assess using traditional HCI
design and evaluation methods. We introduce a complementary
approach by adapting function structure models from engineering
design. We extend their use by extracting controllable and uncon-
trollable parameters from function structure models and visualizing
their impact using envelope analysis. Function structure models
allow designers to understand a system in terms of its functions
and flows between functions and decouple functions from function
carriers. Envelope analysis allows the designer to further study how
parameters affect variables of interest, for example, accuracy, key-
stroke savings and other dependent variables. We provide examples
of function structure models and illustrate a complete envelope
analysis by investigating a parameterized function structure model
of predictive text entry. We discuss the implications of this design
approach for both text entry system design and for critique of
system contributions.

CCS CONCEPTS

+ Human-centered computing — Keyboards; HCI theory,
concepts and models; Text input.

KEYWORDS

text entry design, predictive text entry, computational interaction,
engineering design, computational modeling

ACM Reference Format:

Per Ola Kristensson and Thomas Miillners. 2021. Design and Analysis of
Intelligent Text Entry Systems with Function Structure Models and Envelope
Analysis. In CHI Conference on Human Factors in Computing Systems (CHI
'21), May 8-13, 2021, Yokohama, Japan. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3411764.3445566

1 INTRODUCTION

It is an incredible challenge to design, analyze and evaluate human-
computer interaction (HCI) systems (e.g. [21]) and in particular

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI 21, May 8-13, 2021, Yokohama, Japan

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8096-6/21/05.
https://doi.org/10.1145/3411764.3445566

Thomas Miullners
Department of Engineering
University of Cambridge
Cambridge, United Kingdom
tdm33@cam.ac.uk

intelligent text entry systems that have to infer or predict users’ ac-
tions [17]. One view of design in systems engineering is that design
is about choosing an operating point in a multidimensional design
space. The trade-offs in choosing a particular operating point are ei-
ther explicit (the designer is aware of all critical factors) or implicit
(the designer is unaware of one or more factors and the trade-offs
are decided implicitly rather than explicitly by the designer). The
central contribution in this paper is to propose parameterized func-
tion structures coupled with envelope analysis to assist the design
of intelligent text entry systems by visualizing the consequences of
choosing certain operating points in such a design space.

The approach allows text entry system designers to 1) arrive at
a system map of key functions and parameters; and 2) use this map
to quantitatively model and visualize effects of key controllable
and uncontrollable parameters. This allows system designers to
understand the ways the system’s emergent behavior is sensitive
to parameter choices. Crucially, this approach makes no attempt
to explain or predict actual user behavior directly. It is therefore
a complementary approach to traditional HCI design and evalu-
ation methods. The approach results in an emergent model that
generates all design futures for the system: the model is therefore
only incorrect if the underlying parameterization is fundamentally
incorrect.

As a running example of this system design approach, we use
predictive text entry. Predictive text keyboards use a statistical
language model to predict what the user is typing and presents
these as shortcut options to the user. On mobile devices this is
intended to not only make typing easier and more reliable, but also
to improve the text entry rate.

Whilst in theory the keystroke savings provided by predictions
can facilitate faster text entry, in practice the outcome is not al-
ways favorable, as attending to and selecting suggestions comes
at a cognitive cost. There are many interface and user-dependent
factors that influence text entry [8]. Understanding these factors
and how they interrelate is critical to making informed decisions
for improved system designs. Several studies have observed that
there is a trade-off between costs and benefits in using predictions
[1, 2, 13, 24]. However, the conditions under which the benefits
outweigh the costs are not well understood.

The ability of the language model to make reliable predictions
plays a pivotal role in the performance of any predictive text entry
method. However, to date no study has systematically controlled
for the influence of the language model or related the mechanisms
of word prediction back to system design. A research question that
motivates this work is a desire to gain a better understanding of the
costs and benefits of predictive text entry, the effects of the language

https://doi.org/10.1145/3411764.3445566
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3411764.3445566

CHI ’21, May 8-13, 2021, Yokohama, Japan

model and how these affect the system design aspects of predictive
text. To address this research question we adopt a parameterized
function model commonly used in engineering design [22] to model
hypothetical benefits of word prediction from a systems perspective.
We use this function model to derive a computational model of
predictive text entry that allows us to explore the performance
envelopes of text prediction.

In this paper we therefore present a computational model of typ-
ing with word predictions and use it to carry out such an envelope
analysis. We investigate three parameterized fundamental typing
strategies: minimum word length, type-then-look and persever-
ance. Among other things, our analysis allows us to identify critical
aspects of the design, such as the importance of the ratio of the
physical and cognitive task parameters and the observation that
performance gains are only realized when typing at least two letters
before looking at predictions. We also discuss how function models
can in general be used to guide research and design of Al-infused
text entry systems.

The central contributions of this paper are the following:

e Introducing function structure modeling to text entry sys-
tem design and demonstrating the usefulness of mapping
out functions and flows of signals between functions before
embarking on translating functions to function carriers.

e Explaining how such a model can be parameterized into
a generative model and concretely demonstrating this ap-
proach by creating a function model for predictive text sys-
tems.

e Demonstrating how this approach can be furthered to gener-
ate a quantitative model that allows design parameter explo-
ration to understand possible design futures within a system
envelope.

e Discussing the benefits of this approach to 1) avoid common
errors in text entry system design; and 2) assist in evaluating
system research.

2 RELATED WORK

The limitations of traditional HCI evaluation methods for design
have been reflected on eloquently before [11, 19]. In particular,
Olsen [21] carefully considered the many issues involved in eval-
uating systems research. This paper aims to support design and
evaluation of intelligent text entry systems design by proposing a
complementary design approach that leverages techniques adapted
from design engineering to text entry system design. Specifically
we will adopt a view of design that decouples functions (what is
carried out) from function carriers (how is it carried out). To as-
sist this view of design we will adapt function structure models, a
widely used technique in design engineering (e.g. [22]). Function
structure models allow text entry system designers to arrive at a
schematic system design view of key aspects of a design by identi-
fying one or several key functions and subsequently decomposing
them into critical subfunctions. Signal flows between these func-
tions are indicated by arrows (for two examples, see Figure 2). We
introduce function structures into HCI by parameterizing them
with the most important design parameters. As will be explored
later in this paper, this allows system designers to perform quantita-
tive analysis that allow visualization of the emergent envelope of a

Per Ola Kristensson and Thomas Miillners

system. Kristensson et al. [18] used such envelope analysis to assess
the performance of a sentence retrieval system for nonspeaking
individuals with motor disabilities. This paper expands that work
by proposing and demonstrating parameterized function structure
models and envelope analysis for general text entry system design.

We will use predictive text to demonstrate the efficacy of the
approach. As a consequence we review related work in this appli-
cation area. A recent paper by Quinn and Zhai [24] compared the
performance of mobile keyboards with different ways of presenting
predictions to the user: introverted (no suggestions), extroverted
(always making suggestions) and ambiverted (more reserved in
making suggestions). It demonstrated that the cost of demanding
the user’s attention to attend to suggestions can have a negative
impact on text entry rate—the variant that showed suggestions
most frequently also achieved the slowest entry rates, despite an
increase in keystroke savings. The authors acknowledge that the
observed cost-benefit balance of using predictions would likely
shift under different conditions. We complement this work by simu-
lating performance envelopes under certain modeling assumptions,
including incorporating the strategy of the user. A later user study
[1] also confirmed that word predictions can have a negative effect
on entry rate, although the impact of the language model was not
studied and the authors acknowledge that the outcome of the study
would likely change if a more advanced word prediction model was
used.

Early work in characterizing and modeling predictive text sys-
tems, in the context of assistive technology aimed at individuals
with motor disabilities, was carried out by Koester et al. in the 1990s
[12-15]. These studies observed that the cognitive cost of attending
to word predictions often outweighed the benefits of keystroke
savings.

In an orthogonal dimension, the physical aspect of typing
on touchscreen keyboards has been studied and modeled exten-
sively [3, 4, 26]. However, these studies do not incorporate any of
the processes associated with attending to word predictions.

A few papers have looked at modeling performance of text pre-
dictions [7, 9, 12]. This prior work essentially presented a phrase set
to a language model letter-by-letter and recorded the number of let-
ters needed before a correct prediction was found, which was then
used to compute an average achievable keystroke savings across
a phrase set. Keystroke savings is a metric which is often quoted
in this field and although it gives an indication of how capable
the language model is in aiding predictive typing, it is calculated
without any consideration of the process by which text is entered
in practice. As noted in many studies, the use of predictions comes
at a cognitive cost, which may or may not be offset by the time
savings it supposedly provides. Without this context, metrics such
as keystroke savings or error rate do not provide a good indication
of entry rate performance in practice.

There is an awareness, but also a lack of understanding, of the
cognitive costs of using predictions and how this cost trades off
against the physical process of typing. Much of the experimental
research treats text entry as a black box, where many factors, not
least of which the language model, are not adequately controlled.
The conclusions from these studies could very likely change under
different language models [2, 24].

Design and Analysis of Intelligent Text Entry Systems with Function Structure Models...

Koester et al. [15] studied five different typing strategies, Liu et
al. [20] modeled entry of Chinese pinyin and Silfverberg et al. [25]
investigated text entry for phone keypads. These studies only con-
sidered a limited scope of typing strategies, and Koester et al. [15] is
the only work that makes an attempt at controlling for the influence
of the language model.

Koester et al. [15] sets out to produce a model that can be used
to predict what the most effective typing strategy is for a given user
characteristic (keystroke and cognitive variables) and system char-
acteristic (keystroke savings, as facilitated by the language model).
Three word prediction conditions were considered, characterized
by different levels of average keystroke savings: low, average and
high. Crucially, however, the method for controlling keystroke sav-
ings was not by changing the actual language model, but rather by
manipulating the phrase set used as input to the simulation, with
simpler phrase sets resulting in higher keystroke savings. These
three tiers of phrase sets had to be produced in a prior empirical
study [12]. For each tier, the input phrase set was adjusted until
the results showed the desired level of keystroke savings, again,
with simpler phrase sets resulting in higher keystroke savings. The
resulting phrase sets are therefore tightly coupled to the system con-
ditions, the typing strategy and the language model under which
the experiment was conducted. It is uncertain whether this ap-
proach actually produces internally and/or externally valid data,
and whether the simulation model can even be generalized. More
importantly, however, since the approach to controlling the influ-
ence of word predictions relies entirely on empirical studies to be
conducted in advance, it severely limits its practical application as
a theoretical design and modeling tool. Adding a new operating
point to this model would require conducting a new user study in
order to obtain the necessary phrase set.

3 APPROACH

We here introduce a design method based on function structure
models from engineering design [22] to the design of intelligent
text entry systems. This design method is typically used at the
conceptual design stage in product development to allow design
engineers to better understand the system design in terms of its
functions and flows between functions. Importantly it decouples
functions from function carriers. We will use function structures to
extract controllable and uncontrollable parameters that govern any
function at a purely functional level before committing to particular
function carrier solutions.

Figure 1 illustrates the overall process, which may be iterated,
adapted to intelligent text entry system design. Requirements and
design objects, design know-how, etc. is used to first arrive at a
purely functional model of the system (see Figure 2 for two exam-
ples of such function structure models). This functional description
describes the what—what needs to be done by the system in or-
der to carry out its overall function, such as supporting a user
in typing a word. The functional description is then transformed
into a detailed description which describes the how—how does the
system implement the functions in the functional description. In
other words, the process transforms functions into function carriers—
implementations of functions. Once all function carriers have been
decided the detailed description is implemented as a system. At this

CHI ’21, May 8-13, 2021, Yokohama, Japan

Requirements

Detailed
description

1

E Functional
! description
1

1

Transformation Transformation

Design resources Verification Validation

Figure 1: An illustration of the engineering design process
adapted for the design of a software-based interactive sys-
tem, in particular an intelligent text entry system.

point the system can be verified (checking that all requirements
have been met) and validated (evaluating the system in terms of its
benefits to end-users).

In principle, it should be uncontroversial to apply this (simpli-
fied) description of an engineering design process to the design
of intelligent text entry systems. However, we note two common
errors and their consequences.

System design error 1: failing to design a functional description. The
first error is to ignore the functional description step and address
the detailed description immediately. As we will see in this paper,
such a direct approach makes it difficult to carry out an informed
analysis of the underpinning mechanisms that in the end will govern
end-user performance.

System design error 2: carrying out short-circuit evaluations. The
second error is to determine the merits of a single design choice,
such as whether to supply users with word prediction, by evalu-
ating a particular design choice using a complete system without
fully understanding the implications of the fundamental parameter
choices in the underpinning function model. We call this error short-
circuit evaluation. The problem with short-circuit evaluation is that
any result is contingent on a large number of factors and fixed
underlying design parameters. For example, evaluating the merits
of word prediction on a touchscreen phone running a particular
built-in system keyboard, means the observed performance may be
dependent on the interaction context, the form factor of the phone,
the language model, the touch model, the pose and the situation the
user is typing in (walking, sitting, standing), how word predictions
are displayed, the particular text the user is typing, whether users
are transcribing or composing text, etc.

In reality, empirical evaluation is critical for text entry progress
and we are not advocating revisiting the HCI debate about the mer-
its of empirical research (e.g. [11, 19]). However, there are limits
on how many factors that can be reliably controlled in any user
study and it is sometimes difficult to understand how sensitive
any obtained results may be to certain underlying fixed parame-
ter choices that underpin a particular text entry system used in
an evaluation. This paper strives to demonstrate that parameter-
ized function structure models in conjunction with computational

CHI ’21, May 8-13, 2021, Yokohama, Japan

a)
Key Press Observation
""""""""""" Type Key
b)
Word Selection / Select
Word
Prediction
Word
Word Hypotheses{ [~ >

J—
Key Press Observation Predict
""""""""""" \ Type Key [--========"3) Word

Language Context

Figure 2: Two function structures models for text entry.
Dashed arrows indicate signal flows. (a) The overall system
function Type Key outputting an Observation signal in re-
sponse to a Key Press signal. (b) The overall system function
Type Word decomposed into three main functions.

models are useful complementary system design tools in text entry
design to help better understand the underpinning mechanisms
before committing to a particular implementation or user study
design.

4 FUNCTION STRUCTURE MODELS

A function structure model is a graphical technique for illustrating
function and signal dependencies in a design. Figure 2 (a) illustrates
the function structure for the overall system function Type Key.
Dashed arrows reveal input and output signals as well as signal
flows in the internal design (visible in the decomposed function
structure (b) in Figure 2). Figure 2 (a) shows that Type Key outputs
an Observation signal in response to a Key Press signal.

The overall process for arriving at a parameterized function
structure model and subsequent analysis consists of six steps.

(1) Identify the overall function, for example, Type Key in Figure
2 (a).

(2) Connect any applicable signals. For example, Type Key has
one Key Press input signal and one Observation output signal.

(3) Parameterize the function and its signals. For example, Key
Press can be parameterized as a pair consisting of the cor-
responding letter of the key pressed and the key press time
duration.

(4) Decompose the function into subfunctions and expand the
function structure with additional functions, as required. For
example, Figure 2 (b) shows a function Type Word being
decomposed into its three primary subfunctions: Type Key,
Predict Word and Select Word Prediction.

Per Ola Kristensson and Thomas Miillners

(5) Identify any latent parameters, in particular strategies the
user may use when carrying out the function. For example,
a user may choose to type out each word fully and ignore
any word predictions. Alternatively, a user may choose to
consistently type as few letters as possible and rely on word
predictions as much as possible. Both of these extremes are
possible user strategies that can be represented with param-
eters.

(6) Generate and analyze envelopes. Having identified all key
parameters we construct a computational model of system
outcomes (such as entry rate) and study how the parameters
we have extracted from the function structure model affect
system outcomes.

Figure 2 (b) illustrates a decomposition of the overall system func-
tion Type Word into its three main functions: Type Key, Predict
Word and Select Word Prediction. The system outputs a word
by either the user typing a series of keys or by the user selecting a
word prediction. For clarity, this distinction is not indicated in the
diagram, which is why the signal Word originates from the overall
system function.

To enable the use of word prediction, the Type Key function
must use a Key Press signal to generate an Observation signal which
is fed into the function Predict Word. Predict Word then uses
a Language Context signal to generate a Word Hypotheses signal,
which can be used by the Select Word Prediction function along
with a Word Selection signal to determine the user’s desired word
prediction.

The function structures in Figure 2 are not coupled to any partic-
ular implementation. For example, consider the function Type Key.
It can be implemented using a wide range of function carriers, rang-
ing from choices of hardware (physical keys, touchscreen, mid-air,
etc.) and algorithms, such as identifying the key by nearest neigh-
bor or by using a probabilistic touch model to infer a probability
distribution over all possible keys.

The function structures in Figure 2 are simple but surprisingly
versatile. Consider three common computational techniques for
word prediction. A simple prefix-tree approach would only require
the letter of the detected key and the Language Context signal can
be provided by a prefix-tree [6] trained on a vocabulary of words. A
statistical token-passing decoder [30] requires Type Key to output
an observation that contains a probability distribution over all keys
of the keyboard and the Language Context signal would be provided
by long-span statistical language models over characters and words.
The statistical decoder would then use the likelihood distribution
provided by Type Key and the language model priors provided by
the Language Context signal to perform a token-passing search in
Predict Word and arrive at a posterior probability distribution
over all words in the vocabulary. A neural network architecture
(e.g. [10]) would not have this separation of prior and likelihood
models but instead subsume them into an integrated decoding
process in Predict Word.

Despite the high-level function structure and having made no
commitment to any function carrier solutions, we can still parame-
terize the function structure model in Figure 2 (b) for the purpose of
understanding the utility of word predictions from a system design
perspective. Importantly we make no claim to explicitly model the

Design and Analysis of Intelligent Text Entry Systems with Function Structure Models...

user. From such a system perspective, the user is represented as
merely two distinct signals to the overall function Type Word, sug-
gesting two fundamental parameters: 1) the time it takes the user
to type the desired key—Tg,; and 2) the time it takes the user to
select a predicted word—Teqct- A third parameter is the prediction
accuracy of Predict Word—P,,.q. In addition, there is a latent
set of parameters captured by the user’s typing strategy, which is
a set of rules for deciding whether to type a key or select a word
prediction. We will explain and define all these parameters in the
next section when we present the computational model.

It is also possible to distill additional, more fine-grained, parame-
ters, such as the number of predicted word alternatives the user has
to choose from, and the noise characteristics of the user typing a
key or selecting a word prediction. However, these parameters can,
for the purpose of a system design analysis of the merits of word
predictions, be subsumed into the previously introduced parame-
ters, which we will explain when we introduce the computational
model. In addition, it is possible to parameterize a language model’s
influence on word prediction accuracy. As we will demonstrate,
this influence can be modeled using a construct we call a stochastic
oracle. We will revisit parameter selection for envelope analysis
later in this paper when we discuss the further implications of using
function models in text entry research.

5 PREDICTIVE TEXT ENTRY

We will in this section evolve the parameterized function structure
for predictive text entry to fully demonstrate the potential of using
parameterized function structure models and envelope analyis in
text entry system design.

5.1 Computational Model

Following the parameterization of the function model, fundamen-
tally, the process of entering text on a predictive interface can be
broken down into two main components: pressing keys and re-
sponding to, and possibly selecting, presented word predictions
(sometimes called suggestions). Typing is essentially a varied se-
quence of these two fundamental actions. These interface actions
are followed according to some strategy, this is a decision policy
for choosing among a fixed number of user interface actions. Each
action in the sequence takes some amount of time. It is to be ex-
pected that the cognitive task Treqct, takes somewhat longer than
the time to move to and press a key Ty . The overall text entry rate
is thereby a function of these parameters and the chosen strategy.
A flowchart representation of the text entry process is shown in
Figure 3, which is explained in detail in section 5.2.

The prospective benefit of predictive keyboards is that word com-
pletion suggestions can potentially save some of these key presses,
Tkey- Performance is therefore also a function of the language
model and its ability to make the correct predictions. In its simplest
form this can be represented by the term Py, 4 the probability of
the language model generating the correct prediction.

5.1.1 Stochastic Oracle. We here introduce a method that allows
the prediction probability, Pp,.q of the language model to be con-
trolled. It relies on the fact that the primary procedure of evaluating
performance of text entry methods is through a transcription task,
in which participants are asked to copy stimulus phrases from a

CHI ’21, May 8-13, 2021, Yokohama, Japan

carefully selected phrase set. Because the phrases being typed are
pre-defined, the system can predict with 100% certainty what the
user is attempting to type. The theoretical limit of 100% prediction
accuracy can thereby be emulated—this is known as the oracle. This
oracle can be configured such that it sometimes withholds the per-
fect predictions and instead obtain predictions from a conventional
language model.

By combining the oracle and a conventional language model
we can control the proportion in which they act (defined by the
ratio Rpjenq) This allows a range of Py, g values to be achieved,
where the upper bound on P4 is 100% and the lower bound is set
by the language model. We call this blended model the stochastic
oracle. Whenever the system demands word predictions, a Bernoulli
trial is carried out which decides whether the prediction will come
from the oracle or the language model. The overall performance
of the blended language model is measured by the metric Pp;cq—
prediction accuracy, which is the proportion of queries that yielded
correct predictions:

Nsuccess
Ppred = 5 1)
pre Nsuccess + Nfail

where Nsyccess is the total number of correct predictions and
Nr qi1 is the total number of incorrect predictions recorded during
the simulation of the phrase set.

5.1.2 Phrase Set and Language Model. Transcription-based eval-
uation techniques are by far the most common throughout the
literature, as these have inherently strong internal validity. To also
ensure good external validity, we use the Enron mobile phrase set
[29], which is based on a large collection of emails typed on mobile
devices. The style and language of the content should therefore be
a good representation of mobile text.

The simulations use the language model implementation from
the BerkeleyLM [23] open-source Java library, in conjunction with
a prefix-tree, to implement word predictions. We use an n-gram
language model built from a publicly available model, derived from
a crowdsourced message data set [28].

It is important to emphasize, however, that the exact choice
of language model is not critical in this approach, owing to the
stochastic oracle method described earlier. Nevertheless, this does
provide a sensible baseline from which to start our analysis.

5.1.3 Baseline Conditions. Tkey and Tyeqcr parameters that are
representative of typing on mobile phones can be obtained from
prior studies on Fitts’ law and the Hick-Hyman law. Using pa-
rameter values obtained from the literature, we obtain values of
Trey = 0.26 (based on [4]) and Treqcr = 0.45 (based on [16] and
[5]). These values serve as a baseline for the analysis. The achiev-
able entry rate will depend on these parameters and, specifically,
their relative values are expected to impact the results. The model
is designed with this in mind, allowing for sensitivity analysis of
the simulation results over any desired range of the parameters
Tkey and Treqct-

CHI ’21, May 8-13, 2021, Yokohama, Japan

5.2 Strategies

The typing strategy of the user is determined by three parameters.
These can be combined in a number of ways to capture a broad
range of typing strategies.

5.2.1 Minimum Word Length — L,i,. The minimum word length
strategy restricts the use of predictions to only words above a
certain length, L;,p,. The intuition behind this is that the user is
able to minimize distractions incurred by word predictions, by only
considering predictions for longer words; for which the potential
keystroke savings are greatest.

5.2.2 Type-then-Look —kj,or. When typing a word, the likelihood
of a correct prediction increases with each new letter entered, as
this narrows down the search space for the language model. This
parameter defines how many letters the user types of a word be-
fore looking at any word predictions. By holding off on the use of
predictions early in the typing of a word, such strategies sacrifice
potential keystroke savings for increased reliability of predictions.

5.2.3 Perseverance — pmax. When typing a word, the user is un-
likely to pursue word predictions indefinitely. The model assumes
that predictions are considered at least once, but if the correct pre-
diction is not obtained by the nth letter, predictions are abandoned
and the word is typed out normally. This cut-off is defined by the
parameter pmax.

Given a set of parameters and a phrase to transcribe, the simula-
tor goes through the process of typing the phrase letter-by-letter,
and, where appropriate, uses predictions obtained from a language
model. The steps in the simulator are broken down as a flowchart
in Figure 3. The simulator keeps track of the number of Ty, and
Treact events throughout, as well as keystroke savings for each
typed word and the success and failure counts whenever predictions
are consulted. The entry rate is calculated from the summation of
these time events and the number of characters in the typed phrase.
This process is carried out for each phrase in the set and finally the
simulator calculates the average entry rate and standard deviation
over the phrase set.

We assume users are using their best effort to type each intended
key. However, we do not assume error-free typing as the degree
of error correction assistance by the system is subsumed in the
previously defined parameter Pp,;q.

We calculate keystroke savings, KS, as a percentage, based on
the following definition:

KS = (1 - %) x 100%, @)

where « is the number of keystrokes the user has to type when
assisted with word predictions and f is the number of keystrokes
the user has to type without word prediction assistance. A higher
keystroke savings is better. The two extreme cases are either perfect
word prediction with no demand for the user to type a single key
(in which case % = 0 and the keystroke savings are 100%) and
completely unsuccessful word prediction (in which case % =land
the keystroke savings are 0%). KS is recorded over a single phrase.
The average KS is the mean of all KS recorded over the full phrase
set. This is the measure used in Figure 6.

Per Ola Kristensson and Thomas Miillners

Start phrase
simulation

Move on to FThey (%)
Word of length L., next word
in phrase
Do not use
¥s .word below YES predictions; +They X Lus
minimum length? type whole
Ly < Lmin word out
manually
o
Has end of word Finished
—_— !
been reached? typing word
Has persever- Type out +Tkey X Lremain
ance limit ppas remaining
been reached? letters in word
NO j
Has kjoor been Look at
reached? predictions
+Treact
FTkey 1y i Has correct predic- YES
1 next letter 5 f >
in the word (1 = Pprea) tion been found? (Pyrea)

Figure 3: Flowchart showing the step-by-step process of sim-
ulating typing a phrase. Note (+): The extra Ty, event before
the start of each new word is because the user has to type a
space (or punctuation) before moving on to the next word,
the same T, event also applies when a prediction is found
as it has to be selected by the user.

5.3 Results

The motivation behind this work is to identify under what condi-
tions word predictions provide an advantage over straightforward
typing. Net entry rate is therefore used as the primary performance
metric, which is the difference between the entry rate achieved
using predictions and the entry rate for unassisted typing. Entry
rate is measured in words per minute and uses the convention that
one word is five characters including spaces. The standard devia-
tion of the entry rate provides an indicator of the reliability of a
particular typing strategy; the smaller the standard deviation the
more consistent the performance.

Simulations of the full phrase set were run for different combina-
tions of the strategy parameters: L,;, ranging from 2 to 10, kj,ox

Design and Analysis of Intelligent Text Entry Systems with Function Structure Models...

L min
Parameter ‘ Role Value
Lmin variable 2-10
kiook variable 0-4
Pmax fixed 5
Trey fixed 0.26
Treact fixed 0.45

Figure 4: Net entry rate (difference between predictive and
unassisted text entry rate) in words per minute plotted over
a range of strategies, defined by the parameters L;,;, (min-
imum word length) and k;,,; (number of letters typed be-
fore looking at predictions). Other parameters are fixed at
the values shown in the table. The red hot region indicates
high net positive entry rate and the cool blue region repre-
sents large net negative entry rate. The black dashed line
marks the zero-crossing, above which word predictions pro-
vide a performance gain. The deeper the red the higher the
net entry rate. Under these conditions the highest net entry
rate is attained with L, = 6, kjgor = 3.

from 0 to 4 and pmgx from 1 to 5. This covers a broad range of
conceivable approaches. The results of the simulation are values of
the mean and standard deviation of entry rate as a function of these
three strategy parameters and the parameters Ty, and Treqc:-
The perseverance pmqax is found to have little impact on the
results for values of pmax > 2, as the majority of words were
predicted correctly within the first two to three letters. Therefore
most strategies, regardless of pmax, showed very similar results,
particularly for strategies where koo > 1, which showed a shift in
entry rate of only 1.42 words per minute in the most extreme case
and generally much lower than this across the parameter space.
The entry rate, however, is strongly dependent on the choice of
minimum word length Ly, and type-then-look kj,,% parameters,
which showed shifts of 7.0 and 3.6 words per minute respectively.
Most of the information of interest in the dataset is therefore only
in two of the three parameters. To visualize this data we can fix the
Pmax parameter and plot the results as a heatmap with coordinates
defined by the two strategy parameters: (L in, K10k)- The resulting
maps (Figures 4-7) give an insight into how the parameters are

CHI ’21, May 8-13, 2021, Yokohama, Japan

L min
Parameter ‘ Role ‘ Value
Lmin variable 2-10
Kiook variable 0-4
Pmax fixed 5
Tkey fixed 0.26
Treact fixed 0.45

Figure 5: Standard deviation of net entry rate across the
phrase set in words per minute plotted over a range of
strategies, defined by the parameters L,,;, (minimum word
length) and k;,,r (number of letters typed before looking
at predictions). The ranges of strategy parameters and the
fixed parameter values are the same as in Figure 4. The red
hot color indicates high standard deviation and the cool blue
color represents low standard deviation. A lower standard
deviation is desirable as this indicates a more consistent
level of performance. Typing strategies that make extensive
use of predictions (small L,,;, and k;,,) have a higher stan-
dard deviation than more conservative strategies.

related and identify conditions under which predictive text may be
beneficial, as well as where the limitations are. The data in these
figures is obtained with pyax = 5 and time-cost parameters fixed
at their baseline values: Tyey =0.26 and Tyeqcr = 0.45 seconds.

The map of net entry rate in Figure 4 illustrates that performance
is strongly tied to the choice of typing strategy. The black dashed
line in Figure 4 is the zero-crossing and marks the boundary be-
tween performance gain and loss due to predictions. In general, any
strategy that looks at word predictions without typing at least one
letter, i.e. kjook = 0, is shown to slow the user down. Performance
gains are only realized if kj,0f > 2, that is, the user types at least
the first two letters of each word before looking at predictions. The
reliability of predictions increases with the number of letters typed.

The net entry rate can range from —8.8 to +2.9 words per minute
solely as result of the choice of typing strategy. The highest point
identifies the optimal typing strategy: Liin = 6, kjook = 3. This
point is marked in Figures 4-7.

Looking at the map of standard deviation in Figure 5, the highest
values are found when Ly,;, and kjyor are small. The language

CHI ’21, May 8-13, 2021, Yokohama, Japan

45%
Kiook 6
Lmin :3 40%
value : 9.4%
u] 35%
30%
25%
20%
15%

10%

5%

L min
Parameter ‘ Role Value
Lmin variable 2-10
kiook variable 0-4
Pmax fixed 5
Tkey not applicable —
Treact not applicable —

Figure 6: Average keystroke savings plotted over a range
strategies, defined by the parameters L;,;, (minimum word
length) and k;,,x (number of letters typed before looking at
predictions). The same ranges of typing strategy parameters
are used as in Figures 4 and 5. Note that the keystroke sav-
ings measure is independent of Ty, and Tr¢qc:- The typing
strategy that achieved the highest net entry from Figure 4
is highlighted, for which the average keystroke savings is
only 9.4% per word. The highest keystroke savings are to-
wards the bottom left side of the graph, with average key-
stroke savings of over 40% per word. However, this region
correspond to a net negative entry rate in Figure 4. This high-
lights the lack of correlation between keystroke savings and
entry rate.

model is a source of variance, therefore the greater the reliance
on the predictions, the more of this variance is reflected in the
resulting entry rates. Small values for minimum word length Ly, in
mean that predictions are used for a larger proportion of words,
hence the increased standard deviation. The value of k.1 sets how
many letters of a word are typed before predictions are considered.
The reliability of predictions increases with the number of letters
typed, hence standard deviation decreases as kj, o increases. A low
standard deviation is desirable as this implies a more consistent
typing experience, which is less likely to frustrate the user. This
objective has to be balanced with the desire for a high net entry
rate. Fortunately, from comparing Figures 4 and 5, these are not
conflicting objectives.

Comparing the pattern of keystroke savings in Figure 6 to that
of entry rate in Figure 4 indicates that strategies that attempt to
maximize keystroke savings do not necessarily translate well into
increased performance (as measured by entry rate). In fact, to the

Per Ola Kristensson and Thomas Miillners

0.8
0.7
0.6
0.5
0.4
0.3
0.2
L min

Parameter ‘ Role ‘ Value

Lmin variable 2-10

Kiook variable 0-4

Pmax fixed 5

Tkey not applicable —

Treact not applicable —

Figure 7: Success rate of predictions plotted over a range
strategies, defined by the parameters L;,;; (minimum word
length) and k;,,; (number of letters typed before looking at
predictions). The same parameter ranges are used as in Fig-
ures 4 and 5. Whenever the user consults the predictions,
successful and unsuccessful outcomes are tallied. The suc-
cess rate is simply the proportion of outcomes that were
successful, as defined in Equation 1. As expected, higher val-
ues of kj,or have higher prediction success rate, as more in-
formation is available to the language model before it has
to make a prediction. Higher values of L,,;, lead to lower
success rates as the language model is expected to predict
longer, likely less frequently occurring words.

contrary, it suggests that pursuing such a policy is detrimental to
performance.

As expected, Figure 7 shows that the rate of success of using
predictions improves as the kj,,x parameter increases. Looking
at the gradient in the Ly, axis shows that success rate decreases
with Lp,in, as longer words are less frequent and therefore harder
to predict for the language model which, because it is based on a
mobile device phrase set, favors predicting short, simple words.

5.3.1 Sensitivity Analysis. The results in Figures 4 through 7 are
only for the baseline time-cost conditions. The optimal strategy
identified in Figure 4 is therefore only optimal for the given baseline
time-cost parameters and base language model. The optimal strat-
egy is likely to be different depending on the relative magnitude
of the physical and cognitive constraints, Tkey and Tyeqcr. These
constraints depend on aspects of the interface as well as the motor
ability and experience level of the user. To see how the optimal

Design and Analysis of Intelligent Text Entry Systems with Function Structure Models...

10
9 L 4
Baseline
8 conditions —
o 7 1
=)
g 6 |
Q
2> |
c 4
©
o 3 i
2 4
—e— Minimum word length, L
l min i
—e— Type-then-look, klook
Ov L L L L L L
1 3 4 5 6
Ratio of T IT
react key
Parameter ‘ Role Value
Lmin observed —
Kiook observed —
Pmax observed —
Tkey variable 0.15-0.65
Treact variable 0.2-1.0

Figure 8: A plot revealing how the optimal typing strat-
egy changes as a function of the ratio of the cognitive and
physical parameters, T,cqcr/ Trey- The baseline condition is
marked Treact/Tkey = 0.45/0.26 = 1.73. The results are from
simulations without the stochastic oracle. The graph shows
that as the ratio increases the optimal strategy shifts to-
wards restricting to longer words (L,;, increases) and pro-
viding more characters before checking predictions (k;,,x in-
creases). This is because the larger the ratio the more Tyeqcr
dominates the typing process and therefore the greater the
relative cost of attending to predictions.

strategy changes under different Ty, and Treqcr constraints we
carried out a sensitivity analysis.

Across the same range of typing strategies (Lmin: 2-10; kjook:
0-4; pmax: 1-5) entry rate is calculated for different values of the
constraints Ty, : 0.15-0.65 and Tyeqcr: 0.2—1.0. For each combina-
tion of Ty, and Treqcr We recorded the highest performing typing
strategy and calculated the ratio Tyegcr/ Tkey- The results of this
analysis are plotted in Figure 8, which shows how the optimal typ-
ing strategy parameters change as a function of the ratio of the
time-cost parameters.

5.3.2 Stochastic Oracle Results. A series of simulations were run
over the same range of parameters as before (Lyin: 2—-10; kjook:
0-4; pmax: 1-5), using baseline conditions, but for a range of oracle
blends—Rp e, q in a range from 0 to 1 in increments of 0.05, where
Rplend = O is the base language model only, Rpjenqg = 1 is the
oracle only, and intermediate values are a mixture of both. Simi-
lar to the sensitivity analysis, the optimal typing strategy (highest
entry rate) was recorded as a function of Ry, 4. The prediction
performance P, .q was calculated using Equation 1. The results
of this analysis are plotted in Figure 9. Note that the x-axis is not

CHI ’21, May 8-13, 2021, Yokohama, Japan

8 : : : :
—o— Minimum word length me
4 —o—Type-then-look, k.
61 J
q)
=}
TS5 J
>
9]
B4 1
IS
©3r H_T 1
©
D_
2 L
10 J
0 L L L & X
0.5 0.6 0.7 0.8 0.9 1
Prediction accuracy, P
pred
Parameter ‘ Role ‘ Value
Lmin observed —
Kiook observed —
Pmax observed —
Tey fixed 0.26
Treact fixed 0.45

Figure 9: A plot revealing how the optimal values for the typ-
ing strategy parameters L,,;, and k;,,; change as a function
of the prediction accuracy P, .4 (as defined in Equation 1)
achieved by the blended language model. The plotted points
correspond to blend ratio, Ry}, 4, values ranging from 0 to 1
in increments of 0.05. The Ry, values themselves are not
of interest, but rather the prediction accuracy P,,.q of the
resulting blended language models; hence P, .4 is chosen
as the x-axis. The first data point, at around P, .4 = 0.5, is
for the base language model (Ryj.,q = 0). These results are
all under baseline conditions: Trey = 0.26 and Tyeqcr = 0.45.

of the oracle blend ratio Rpj.,4, but of the prediction accuracy,
Pyreq- Smaller values of Ly, ;, mean that predictions are used more
frequently. As expected Ly,i, decreases as prediction accuracy in-
creases. ko also decreases because the increased reliability of
predictions means that, on average, fewer letters are needed before
the correct predictions are found.

5.4 Discussion

Prior work has looked at modeling different aspects related to mo-
bile text entry in considerable detail: the physical process of typing
on touchscreen keyboards [3, 4, 26] and the performance of text
predictions measured through keystroke savings [7, 9]. These stud-
ies, however, have mostly been done in isolation. There are few
studies that model text entry with word predictions in a complete
context [12, 15, 20, 25]. These only explore a limited scope of typ-
ing strategies and none of these account for the influence of the
language model.

We have used a parameterized function structure model of pre-
dictive text entry to build a comprehensive model of the predictive

CHI ’21, May 8-13, 2021, Yokohama, Japan

text entry process that accommodates a wide range of typing strate-
gies, as well as a mechanism for controlling the performance of the
language model. We observe that the typing strategy adopted by the
user plays a critical role in realizing the full potential of a predictive
text entry system. For the baseline constraints the optimal strategy
identified is to use word predictions only for words of at least six
letters in length (Lin = 6) and to type out the first three letters of
a word before attending to predictions (kjoox = 3).

We found that keystroke savings as a performance measure does
not correlate well with text entry rate. In particular, the relative
magnitude of physical and cognitive costs, described by the ratio
Treact /Tkey> Was found to govern the optimal strategy, with higher
ratios generally favoring strategies that are more reserved in their
use of predictions.

The results from the stochastic oracle simulations substantiate
the feasibility of using an oracle blended with a language model as
means of systematically controlling the effect of prediction quality.

5.5 Design Implications

Some general design implications for text entry systems can be
derived from the findings presented here. When designing a text
entry system a useful starting point is to estimate the ratio of the
physical and cognitive cost parameters Treact /Tkey Of the system.
These parameter values can be obtained from published Fitts’ law
and Hick-Hyman law models, as outlined previously in this paper,
or by empirical studies. The Treact /Tkey ratio provides a baseline
operating point from which to begin analyzing the cost-benefit
trade-offs in the system.

A plot of performance envelopes, such as Figure 4, can then help
identify both typing strategies that result in performance loss and
should be avoided, as well as typing strategies that are theoretically
optimal. Whilst changing the user’s typing behavior directly might
not be possible, it is plausible that the user can be steered away
from poor typing behavior and towards adopting more favorable
strategies by adjusting the behavior of the typing interface with
these performance boundaries in mind.

For example, from Figure 4 we find performance gains are only
realized when typing at least two letters before looking at predic-
tions (kjook = 2). The text entry system could be made to withhold
predictions completely until at least the first two letters of a word
are typed. This gives rise to another question: should a predictive
keyboard show completion suggestions for one-, two- or three-letter
words at all when the cognitive cost of attending to the prediction
outweighs the benefits of keystroke savings for these words? Simi-
larly, the analysis of the optimal typing strategy as a function of
Treact/Tkey, as in Figure 8, revealed that for any ratio above 1,
the minimum word length (Ly,;,) should be at least 3, and at the
baseline conditions this rises to 6 letters. It is worth considering
biasing word predictions in favour of words > 6 letters to try to
push the user’s operating point to higher values of Ly ip.

5.6 Function Models in Text Entry

In addition to assisting system design of predictive text by providing
computational modeling results, this work has highlighted how
developing high-level parameterized function models can assist text
entry system design in two ways: 1) a structural design contribution,

Per Ola Kristensson and Thomas Miillners

S
Key Press) i
4 Observation Auto- Word
Uncertainty Type Key | Uncertainty Correct
L - \ Word

Language Context

Figure 10: A sketch of an overall system function Type
Auto-Corrected Uncertainty-Regulated Word decomposed
into two main functions: Type Key and Auto-Correct Word.
The dashed arrows indicate signal flow.

which means an established function structure is redesigned; and 2)
a parameter analysis design contribution, which means a function
structure is parameterized and the designer analyzes the effects of
the controllable and uncontrollable parameters on expected system
outcomes.

As an example of this versatility in early system design analysis,
consider the sketch of a function model for the overall function Type
Auto-Corrected Uncertainty-Regulated Word shown in Figure
10. A well-known problem with auto-correct is the so-called auto-
correct trap [31]—the auto-correct algorithm incorrectly replacing
text the user intended to type. Weir et al. [31] introduced a solution
to this problem that allowed users to communicate their uncertainty
in their own key presses to the system by pushing harder on the
keys they wanted to prevent the system from auto-correcting.

Figure 10 demonstrates how this uncertainty regulation can be
modeled as a function model by connecting one additional Uncer-
tainty signal to the Type Key function, which is then propagating
the Uncertainty signal along with the usual Observation signal to
the function Auto-Correct Word. This illustrates a structural de-
sign contribution—the function structure model is redesigned to
incorporate additional functionality.

The function model in Figure 10, already suggests several anal-
yses that can be carried out. First, the medium of the Uncertainty
signal can be investigated. For example, Weir et al. [31] used pres-
sure while later work used touch duration [27]. Both choices im-
ply more fine-grained function models with functions, such as
Measure Pressure or Measure Touch Duration. Second, the func-
tion Auto-Correct Word can be decomposed into its own function
structure model, detailing concerns such as how user uncertainty
around a key press should be modulated by the auto-correct algo-
rithm. For example, integration of uncertainty can be a mixture
weight applied when calculating the posterior probability of a word
in the decoding process [31], or it can be thresholded [27]. As in
this paper, follow-up computational modeling can then be used to
comprehensively answer how these and other design parameters
affect performance and help guide informed user studies at well
understood operating points of the system design space. This il-
lustrates a parameter analysis design contribution—the designer
parameterizes the function structure and analyzes the effects of the
controllable and uncontrollable parameters.

The function model for word prediction in this paper can simi-
larly be extended to explicitly model auto-correct, sentence predic-
tion and the use of interaction context, such as the current location
of the text entry system, time-of-day or nature of the text.

Design and Analysis of Intelligent Text Entry Systems with Function Structure Models...

6 DISCUSSION

We have explained how parameterized function structures coupled
with envelope analysis can guide the design of intelligent text entry
systems. We demonstrated this approach with a detailed example
illustrating how it can be used to help understand the underlying
variables underpinning a word prediction system. In this section
we discuss the general implications of this work.

6.1 Using Parameterized Function Structures to
Critique User Interface Systems Research

While the approach presented in this paper is intended to support
system design, it is also suitable for critiquing user interface system
research from two perspectives. First, a system’s function struc-
ture models and their underpinning controllable and uncontrollable
parameters can serve as system contributions in their own right,
demonstrating how a new functional design, or a new parameteri-
zation of an existing functional design, can result in new emergent
user interface system solutions. Examples of such hypothetical con-
tributions are discussed in Section 5.6 for the function structure
model illustrated in Figure 10. Second, an existing parameterized
function structure model provides insights into controllable and
uncontrollable design parameters governing the system. This opens
up for a discussion on all these parameters: their importance and
influence on system performance, the ability to model them, and
scope for investigating their role in the system using quantitative
and qualitative methods. This is possible as the approach forces all
these design parameters to be explicitly defined as integral parts of
the system rather than some of them serving as implicit tacit vari-
ables that govern performance but are not explicitly acknowledged
as part of the system.

6.2 The Role of Evaluation

The strength of the approach in this paper is a change of perspec-
tive: it allows a calculation of a range of operating points for many
parameter values and strategies, where each specific parameter set
and choice of strategy corresponds to a particular empirical inves-
tigation. The purpose of this work is not to predict individual user
behavior but to elucidate emergent system behavior of a function
structure model as a consequence of variations in controllable and
uncontrollable parameters. This results in a emergent map of the
system’s behavior which can then be used to either: 1) revisit the
function structure model or parameterization; 2) consider the effect
of different function carriers (for instance, different algorithms or
sensors); or 3) empirically study and validate outcomes for particu-
lar parameter settings, carefully chosen using envelope analysis as
opposed to the de-facto practice of implicitly choosing operating
points for user studies by determining levels of the independent
variables largely based on intuition instead of by analysis.

6.3 Integration of Parameterized Function
Structures in Design Practice

A common design activity, either implicitly or explicitly, is

optimization—identifying a set of key parameters in the design

and finding their optimal values. Fundamentally, such a process fo-

cuses on identifying the most suitable operating point of the system

CHI ’21, May 8-13, 2021, Yokohama, Japan

design. In contrast, the approach in this paper visualizes the impact
of all operating points emerging from all system configurations.
While this approach does require some effort by the designer, it can
assist the design process in at least five ways.

First, analyzing the effects of controllable system parameters
helps the designer identify design parameters that can be optimized
for better performance.

Second, the process itself of identifying key functions and their
signals can help the designer in creating a map of the system. Such a
system map can both assist the designer in considering new designs
and help the designer explaining the system to other team members,
stakeholders and end-users.

Third, envelope analyses can provide insight into plausible op-
erating points in the design and thereby assist the design of user
studies. This can save time and effort, as envelope analyses make
it easy to identify unpromising operating points in the design and
thereby discourage user studies that are unlikely to yield any use-
ful design insights. It can also help deciding on a particular study
design as envelope analyses can reveal regions in the design space
where the performance impact is particularly large given a few
parameter variations, which suggests studying these parameter
variations in, for example, a controlled experiment.

Fourth, the approach can assist in eliciting system requirements.
Controllable parameters are design parameters the designer can
influence and an understanding of achievable performance under
certain controllable parameter configurations can guide require-
ments on their values in the finalized design. For example, the
number of word prediction slots in a word prediction interface is
a controllable parameter and its effect can be studied in envelope
analysis. In contrast, uncontrollable parameters cannot be directly
influenced by the designer. An understanding of the system’s per-
formance under certain uncontrollable parameter configurations
allows sensitivity analysis of the system’s performance when influ-
enced by parameters the designer cannot directly govern. Such an
understanding may help defining requirements on the robustness of
the system when exposed to such parameters. For example, an un-
derstanding of an auto-correct function’s resilience to typing errors
(an uncontrollable parameter) can help set realistic requirements on
the system’s expected performance when exposed to typing errors.

Fifth, as illustrated by Kristensson et al. [18], envelope analysis
can allow the study of the performance potential of a system design
that is difficult to assess in user studies, for example, because the
system has to be deployed to nonspeaking individuals with motor
disabilities for a prolonged amount of time [18].

Finally, while envelope analysis is by its very nature quantitative,
an interesting avenue of future work is to investigate whether pa-
rameterized function structures can also be used as scaffolding for
qualitative research, such as non-directed interviews and observa-
tions. In such inquiries it is often helpful for the researcher to know
what to look for and having a system broken down into essential
functions, signals and parameters may help focus such investiga-
tions. For example, a qualitative study might focus on reasons why
users do not leverage word predictions when the operating points
in the envelope analyses are indicating a clear benefit. Hypotheti-
cally, such an inquiry might for instance find that some individuals
find it stressful to look at word predictions, even though they would
be clearly beneficial at their individual operating points.

CHI ’21, May 8-13, 2021, Yokohama, Japan

7 CONCLUSIONS

There are many factors influencing the success or failure of a text
entry system, such as a word prediction system. These factors are
difficult to control for experimentally and, consequently, drawing
conclusions about the design implications of the empirical results is
often an unreliable process. Further, such studies lack a theoretical
common ground, which makes comparisons between studies im-
practical or impossible. In contrast to empirical studies, the strength
of the modeling approach in this paper is a change of perspective:
we calculate a range of operating points for many parameter values
and strategies, where each specific parameter set and choice of
strategy would correspond to a condition in an empirical study.
These calculations are carried out by a computational model un-
derpinned by a parameterized function structure model that at a
high-level identifies the key design parameters of the system.

This paper has illustrated this approach by introducing a param-
eterized function structure model of predictive text entry, which
allowed us to derive a computational model that enabled a system-
atic exploration of the design space of predictive text entry. The
approach taken in this paper complements traditional text entry
system design techniques and can assist designers in identifying
and justifying operating points for designs. Once an operating point
has been decided, it can be further explored in quantitative and
qualitative user studies. In this way, function models and computa-
tional models provide scaffolding for better motivating the system
design context of user studies and can help explore areas of the
design that are poorly understood.

ACKNOWLEDGMENTS

This work was supported by EPSRC (grants EP/R004471/1 and
EP/S027432/1).

REFERENCES

[1] Ohoud Alharbi, Wolfgang Stuerzlinger, and Felix Putze. 2020. The effects of pre-
dictive features of mobile keyboards on text entry speed and errors. Proceedings
of the ACM on Human-Computer Interaction 4, ISS, Article 183 (2020), 16 pages.
https://doi.org/10.1145/3427311

Kenneth C Arnold, Krzysztof Z. Gajos, and Adam T. Kalai. 2016. On suggesting

phrases vs. predicting words for mobile text composition. In Proceedings of the

29th Annual ACM Symposium on User Interface Software and Technology. 603-608.

https://doi.org/10.1145/2984511.2984584

Shiri Azenkot and Shumin Zhai. 2012. Touch behavior with different postures on

soft smartphone keyboards. In Proceedings of ACM MobileHCI. 251-260. https:

//doi.org/10.1145/2371574.2371612

Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts law: modeling finger touch

with Fitts’ law. In Proceedings of the 31st ACM Conference on Human Factors in

Computing Systems. 1363-1372. https://doi.org/10.1145/2470654.2466180

[5] Andy Cockburn, Carl Gutwin, and Saul Greenberg. 2007. A predictive model of
menu performance. In Proceedings of the 25th ACM Conference on Human Factors
in Computing Systems. 627-636. https://doi.org/10.1145/1240624.1240723

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms. MIT press.

[7] Andrew Fowler, Kurt Partridge, Ciprian Chelba, Xiaojun Bi, Tom Ouyang, and
Shumin Zhai. 2015. Effects of language modeling and its personalization on
touchscreen typing performance. In Proceedings of the 33rd ACM Conference on
Human Factors in Computing Systems. 649-658. https://doi.org/10.1145/2702123.
2702503

[8] Nestor Garay-Vitoria and Julio Abascal. 2006. Text prediction systems: a survey.
Universal Access in the Information Society 4, 3 (2006), 188-203. https://doi.org/
10.1007/s10209-005-0005-9

&

[3

=

[4

=

—_

9]

[10

(1]

(12]

(13]

[14]

(15]

[16]

(17]

(18]

[26

[27

(28]

[29

[30

(31]

Per Ola Kristensson and Thomas Miillners

Nestor Garay-Vitoria and Julio Abascal. 2010. Modelling text prediction systems
in low- and high-inflected languages. Computer Speech and Language 24, 2 (2010),
117-135. https://doi.org/10.1016/j.cs1.2009.03.008

Shaona Ghosh and Per Ola Kristensson. 2017. Neural networks for text correction

and completion in keyboard decoding. arXiv:1709.06429 (2017).
Saul Greenberg and Bill Buxton. 2008. Usability evaluation considered harmful

(some of the time). In Proceedings of the 26th ACM Conference on Human Factors
in Computing Systems. 111-120. https://doi.org/10.1145/1357054.1357074

Heidi Horstmann Koester and Simon P. Levine. 1994. Modeling the speed of
text entry with a word prediction interface. IEEE Transactions on Rehabilitation
Engineering 2, 3 (1994), 177-187. https://doi.org/10.1109/86.331567

Heidi Horstmann Koester and Simon P Levine. 1995. Validating quantitative
models of user performance with word prediction systems. In Proceedings of the
18th Annual Conference on Rehabilitation Technology. 127-129.

Heidi Horstmann Koester and Simon P. Levine. 1996. Effect of a word prediction
feature on user performance. Augmentative and Alternative Communication 12, 3
(1996), 155-168. https://doi.org/10.1080/07434619612331277608

Heidi Horstmann Koester and Simon P. Levine. 1998. Model simulations of user
performance with word prediction. Augmentative and Alternative Communication
14, 1 (1998), 25-35. https://doi.org/10.1080/07434619812331278176

Ray Hyman. 1953. Stimulus information as a determinant of reaction time.
Journal of Experimental Psychology 45, 3 (1953), 188-196. https://doi.org/10.
1037/h0056940

Per Ola Kristensson. 2009. Five challenges for intelligent text entry methods. Al
Magazine 30, 4 (2009), 85-94. https://doi.org/10.1609/aimag.v30i4.2269

Per Ola Kristensson, James Lilley, Rolf Black, and Annalu Waller. 2020. A de-
sign engineering approach for quantitatively exploring context-aware sentence
retrieval for nonspeaking individuals with motor disabilities. In Proceedings of
the 38th ACM Conference on Human Factors in Computing Systems. Paper 398.
https://doi.org/10.1145/3313831.3376525

Henry Lieberman. 2003. The tyranny of evaluation. CHI Fringe (2003).

Ying Liu and Kari-Jouko Réiha. 2010. Predicting Chinese text entry speeds on
mobile phones. In Proceedings of the 28th ACM Conference on Human Factors in
Computing Systems. 2183-2192. https://doi.org/10.1145/1753326.1753657

Dan R. Olsen Jr. 2007. Evaluating user interface systems research. In Proceedings
of the 20th Annual ACM Symposium on User Interface Software and Technology.
251-258. https://doi.org/10.1145/1294211.1294256

Gerhard Pahl and Wolfgang Beitz. 2013. Engineering Design. Springer.

Adam Pauls and Dan Klein. 2011. Faster and smaller n-gram language models.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics. 258-267.

Philip Quinn and Shumin Zhai. 2016. A cost-benefit study of text entry suggestion
interaction. In Proceedings of the 34th ACM Conference on Human Factors in
Computing Systems. 83-88. https://doi.org/10.1145/2858036.2858305

Miika Silfverberg, I. Scott MacKenzie, and Panu Korhonen. 2000. Predicting
text entry speed on mobile phones. In Proceedings of the 18th ACM Conference
on Human Factors in Computing Systems. 9-16. https://doi.org/10.1145/332040.
332044

William R. Soukoreff and I. Scott Mackenzie. 1995. Theoretical upper and lower
bounds on typing speed using a stylus and a soft keyboard. Behaviour & Informa-
tion Technology 14, 6 (1995), 370-379. https://doi.org/10.1080/01449299508914656
Keith Vertanen, Dylan Gaines, Crystal Fletcher, Alex M. Stanage, Robbie Watling,
and Per Ola Kristensson. 2019. VelociWatch: designing and evaluating a vir-
tual keyboard for the input of challenging text. In Proceedings of the 37th
ACM Conference on Human Factors in Computing Systems. Paper 591. https:
//doi.org/10.1145/3290605.3300821

Keith Vertanen and Per Ola Kristensson. 2011. The imagination of crowds:
conversational AAC language modeling using crowdsourcing and large data
sources. In Proceedings of the 2011 Conference on Empirical Methods in Natural
Language Processing. 700-711.

Keith Vertanen and Per Ola Kristensson. 2011. A versatile dataset for text entry
evaluations based on genuine mobile emails. In Proceedings of ACM MobileHCL
295-298. https://doi.org/10.1145/2037373.2037418

Keith Vertanen, Haythem Memmi, Justin Emge, Shyam Reyal, and Per Ola Kris-
tensson. 2015. VelociTap: investigating fast mobile text entry using sentence-
based decoding of touchscreen keyboard input. In Proceedings of the 33rd
ACM Conference on Human Factors in Computing Systems. 659-668. https:
//doi.org/10.1145/2702123.2702135

Daryl Weir, Henning Pohl, Simon Rogers, Keith Vertanen, and Per Ola Kristensson.
2014. Uncertain text entry on mobile devices. In Proceedings of the 32nd ACM
Conference on Human Factors in Computing Systems. 2307-2316. https://doi.org/
10.1145/2556288.2557412

https://doi.org/10.1145/3427311
https://doi.org/10.1145/2984511.2984584
https://doi.org/10.1145/2371574.2371612
https://doi.org/10.1145/2371574.2371612
https://doi.org/10.1145/2470654.2466180
https://doi.org/10.1145/1240624.1240723
https://doi.org/10.1145/2702123.2702503
https://doi.org/10.1145/2702123.2702503
https://doi.org/10.1007/s10209-005-0005-9
https://doi.org/10.1007/s10209-005-0005-9
https://doi.org/10.1016/j.csl.2009.03.008
https://doi.org/10.1145/1357054.1357074
https://doi.org/10.1109/86.331567
https://doi.org/10.1080/07434619612331277608
https://doi.org/10.1080/07434619812331278176
https://doi.org/10.1037/h0056940
https://doi.org/10.1037/h0056940
https://doi.org/10.1609/aimag.v30i4.2269
https://doi.org/10.1145/3313831.3376525
https://doi.org/10.1145/1753326.1753657
https://doi.org/10.1145/1294211.1294256
https://doi.org/10.1145/2858036.2858305
https://doi.org/10.1145/332040.332044
https://doi.org/10.1145/332040.332044
https://doi.org/10.1080/01449299508914656
https://doi.org/10.1145/3290605.3300821
https://doi.org/10.1145/3290605.3300821
https://doi.org/10.1145/2037373.2037418
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2702123.2702135
https://doi.org/10.1145/2556288.2557412
https://doi.org/10.1145/2556288.2557412

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Function Structure Models
	5 Predictive Text Entry
	5.1 Computational Model
	5.2 Strategies
	5.3 Results
	5.4 Discussion
	5.5 Design Implications
	5.6 Function Models in Text Entry

	6 Discussion
	6.1 Using Parameterized Function Structures to Critique User Interface Systems Research
	6.2 The Role of Evaluation
	6.3 Integration of Parameterized Function Structures in Design Practice

	7 Conclusions
	Acknowledgments
	References

