

Command Strokes with and without Preview: Using Pen
Gestures on Keyboard for Command Selection

Per Ola Kristensson
Dept. Computer and Information Science

Linköpings universitet, Linköping, Sweden
perkr@ida.liu.se

Shumin Zhai
 IBM Almaden Research Center

650 Harry Road, San Jose, California, USA
zhai@almaden.ibm.com

ABSTRACT
This paper presents a new command selection method that
provides an alternative to pull-down menus in pen-based
mobile interfaces. Its primary advantage is the ability for
users to directly select commands from a very large set
without the need to traverse menu hierarchies. The
proposed method maps the character strings representing
the commands onto continuous pen-traces on a stylus
keyboard. The user enters a command by stroking part of its
character string. We call this method “command strokes.”
We present the results of three experiments assessing the
usefulness of the technique. The first experiment shows that
command strokes are 1.6 times faster than the de-facto
standard pull-down menus and that users find command
strokes more fun to use. The second and third experiments
investigate the effect of displaying a visual preview of the
currently recognized command while the user is still
articulating the command stroke. These experiments show
that visual preview does not slow users down and leads to
significantly lower error rates and shorter gestures when
users enter new unpracticed commands.

Author Keywords
commands, pen gesture, shorthand, keyboard shortcuts

ACM Classification Keywords
H5.2. Information interfaces and presentation: User
Interfaces – input devices and strategies, interaction styles,
theory and methods; I5.1. Pattern recognition:
Implementation – interactive systems.

INTRODUCTION
Advances in mobile computing hardware are rapidly
increasing the processing power, wireless bandwidth, and
storage capacity in handsets, electronic tablets, and other
ultra-mobile computers. Palmtop computers with a 1GHz

processor and 30GB of storage are already available on the
market today. The increasingly limiting bottleneck to
information flow in ultra-mobile computing, however, is
the lack of efficient user interfaces on these devices. In
comparison to desktop or laptop computers, today’s
handsets and tablet PCs are far more cumbersome to use.

When a desktop keyboard and a mouse are not an option, an
electronic pen provides a mobile and flexible alternative
means of input. The current work focuses on pen-based
command selection. The basic and de-facto standard
method of issuing commands on a pen-based computer is
the same as on a desktop PC: hierarchical pull-down menus.
The limitations of pull-down menus on desktop computers
have long been recognized [9]. Pull-down menus are much
more problematic on a pen-based touch-screen computer
for a number of reasons. First, the pen (stylus) and its
holding hand often obscure the very items on the pull-down
menu the user needs to find and select. Second, pen motion
on a screen has to be one-to-one in scale. This is in contrast
to other pointing devices—such as the mouse—whose
control-to-display gain is rate-accelerated, so that one does
not have to move over a large distance to reach a far-away
menu on a large display. Pull-down menus on mobile
devices also pose a space management problem, forcing
application developers to either remove functionality or
introduce an even more complex pull-down menu
navigation system than on their desktop counterparts.

What comes to pull-down menus’ rescue on desktop and
laptop computers are keyboard shortcuts for frequent
commands such as Copy and Paste. Without a keyboard,
these shortcuts are often what the user misses the most on a
pen-based device. Despite the flexibility of the pen,
command selection on mobile devices remains inefficient
and unsatisfactory.

We present a new and practical command entry technique
for pen computers called command stroke (CS). CSs are
pen-gesture traces defined on a graphical keyboard
according to the letters in the commands such as c-o-p-y
and p-a-s-t-e. CSs offer users a complementing method of
directly selecting any command without needing to browse
a menu hierarchy.

The development of CSs followed an iterative process. An
early incarnation of the concept was compared with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2007, April 28–May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1137

traditional pull-down menus. Encouraged by the positive
results and informed by the feedback gained from the
experiment we developed a second iteration of the
technique we call command strokes with preview (CSP).
The structure of this paper reflects the iterative
development process: We first present the initial
incarnation of command strokes and its evaluation.
Thereafter we present the second iteration of the method
and two experiments that investigate how the visual
preview functionality impacts end-users. Last, we compare
our work to previous research and point to future work.

COMMAND STROKES
The concept of CS grew out of SHARK shorthand [5, 14], a
word recognition system also known as ShapeWriter. A
user-drawn CS on a graphical keyboard is recognized by a
pattern recognizer that compares its geometrical shape, not
the keys crossed on the keyboard, with all CS templates to
return the user intended command. Since this pattern
recognition approach takes advantage of the constrained
number of commands (as opposed to the infinite number of
possible shapes or geometric patterns on a keyboard), it has
an inherent error tolerance. We use the same recognition
method that we previously reported for word recognition in
[5], which gives an in-depth explanation of the recognition
process.

Short Command Strokes
In the first design iteration CSs were divided into two
classes: short command strokes and long command strokes.
A short CS is a pen-gesture trace from one or more
modifier keys, such as Ctrl, Alt, Fn, Shift or Command to a
letter key corresponding to the physical keyboard hotkey
conventions, for example, Ctrl-C for Copy. In a desktop
environment frequently used commands such as Copy and
Paste have mnemonic key identifiers indicating the hotkey
shortcut.

Taking advantage of the flexibility of the pen, short CSs
transform the physical keyboard hotkeys to a fluid form. A
short CS is typically defined as a straight stroke. The user’s
input can be matched against a collection of pen-gesture
templates: a user needs only to draw an approximate pen-
gesture to invoke a command, as long as it is closer to the
intended pen-gesture template than other templates in the
database. A novice user starts out by tracing the key
sequences. Over time, the pen-gesture becomes ingrained in
the user’s memory and can be quickly executed without
looking much at the keys. The technique can be expanded
to any arbitrary sequence of keys. For instance, Figure 1
shows the hotkey trace Ctrl-Shift-E (for Track Changes in
MS Word).

Short CSs, being directly mapped from the physical
keyboard hotkeys, have limitations due to their heritage.
Hotkey commands typically consist of a very short
sequence of keys (usually two) and some are designed to be
easily reachable with one hand (e.g. Ctrl+C for Copy on a

regular QWERTY desktop keyboard). This causes two
problems. First, very short pattern sequences are confusable
in the recognition process. Second, the pen-gestures of
some different commands can be quite similar from a user’s
point of view. The pen-gestures Ctrl-C for Copy and Ctrl-X
for Cut are in fact very close to each other (cf. Figure 1).

Figure 1. The line traces of Ctrl-C and Ctrl-Shift-E as
short command strokes on a stylus QWERTY keyboard

Long Command Strokes
A long CS is defined by a stylus keyboard trace from a
modifier key through a few or all letters in the name of a
command. Figure 2 shows an example of a long CS for the
action Copy whose template starts on Ctrl and intersects the
letter keys C-O-P-Y in sequence. Since long CSs are richer
in shape features, they should be more error tolerant than
short CSs: as long as the user’s gesture is geometrically
similar to the long command pattern, the command can be
recognized and executed (Figure 2).

Figure 2. The solid red line shows the long CS template for
Copy and the dashed blue line shows a user’s actual pen-

gesture of the command

EXPERIMENT 1
There are many issues with CSs that can be studied. In the
first experiment we focused on a few basic questions: Can
CSs offer any performance advantage over pull-down
menus, the de-facto standard technique for entering
commands on tablet PCs and smart phones? What are the
quantitative tradeoffs between short and long CSs? Which
technique do users prefer?

Procedure and Design
We recruited 12 volunteers for participation in the
experiment. Their ages ranged between 20 and 50. The
experiment was conducted on a 1GHz Tablet PC with a 12"
TFT display with 1024 × 768 pixel resolution. The test
software was written in Java, but the look and feel of the
pull-down menus was set to the standard Windows XP look
and feel which is used on the Tablet PC in other
applications. The de-facto standard QWERTY keyboard
layout was used for the stylus keyboard.

Q W E T

A S D F

Z X C V

Ctrl Alt

SHIFT

Alt

P

H

Q W E R T Y U I

A S D F G J K L

Z X C V B N M

O

Ctrl

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1138

In the experiment the participants used a stylus to enter
various commands in three conditions:

1. Pull-down menu. The participants entered commands by
selecting them in a pull-down menu.

2. Short command stroke. The participants entered
commands by gesturing short CSs, e.g. Ctrl-C for Copy.

3. Long command stroke. The participants entered long
CSs, e.g. Ctrl-C-O-P for Copy.

The order of the three conditions was balanced among the
participants in this within-subject experiment. With each
condition the participants entered 10 (trials) × 5 (command
types) = 50 commands. The trials were randomly shuffled
within each condition so the participant could not predict
which command would appear before the trial started. The
participants were told to rest whenever they wanted
between trials.

To start a new trial the participant had to click on the “Click
for next command” button which brings out a new target
command in the top panel of the experiment software. The
participant then entered a command as fast and as
accurately as possible. The command recognized by the
software was displayed in another panel. If a wrong
command was entered the trial had to be repeated until the
correct command was entered. Incorrect entries (and their
repeated trials) did not contribute when we calculated the
reaction and total time.

In addition to a brief introduction and explanation to each
technique in the beginning of the experiment, the
participants were given a “cheat sheet” (a reminder table) in
all conditions to glance at in case they forgot how to issue a
particular command for the given condition. For example,
the command Copy on the reminder table was “In Edit” in
the pull-down menu condition, “Ctrl-C” in the short CS
condition, and “Ctrl-C-O-P” in the long CS condition.

The five types of commands tested in the experiment were
drawn from the File, Edit, View and Tools menus in
Microsoft Word 2002, and their command sequences were
Ctrl-C, Ctrl-P, Ctrl-T, Ctrl-Shift-E and Ctrl-F for the short
CSs, and Ctrl-C-O-P, Ctrl-P-R-I, Ctrl-T-H-E, Ctrl-T-R-A
and Ctrl-F-I-N for the long CSs. We chose to resemble MS
Word in the pull-down menu condition because it is a
commonly used application. All participants had experience
in using the pull-down menus in MS Word. All items that
had a default hotkey assigned by MS Word in the File, Edit,
View and Tools menus were inserted into the set of
commands the system could recognize. Consequently the
recognition system contained a realistic number of
distracters.

The selection of these five types of target commands in the
study was biased in favor of the traditional pull-down
menus. Only one of the five target commands was located
in a submenu which obviously was more difficult to reach
in the pull-down menu condition. CSs in contrast are not

hierarchical so a submenu item in a pull-down menu is not
necessarily more difficult for CSs. In comparison MS Word
2002 by default contains 117 top-level menu items and 136
submenus item (56 in the AutoText sub-menu).

Results

Selection Time
Selection time was defined as the time it took to issue a
command, from pen down to pen up for both the pull-down
menu and CS conditions. Figure 3 shows the successful
selection time with each of the three methods as a function
of the trial number. Repeated measures variance analysis
shows that the selection time difference between the three
methods was statistically significant (F2, 22 = 99.9, p
<.0001). Post hoc tests indicate all pair-wise comparisons
were significant (p <.0001). Taking the average of the last
four trials as an example, short and long CSs were 3.8 and
1.6 times faster than the pull-down menu method
respectively.

There was a significant interaction between different
commands and the three methods (F8, 88 = 39.38, p <.0001,
Figure 4). In particular, although the pull-down menu was
slower for all commands tested, it was particularly slow
with Thesaurus, which was a nested sub-menu item (Tools-
Language-Thesaurus).

Menu
Long

Short

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0

500

1000

1500

2000

2500

3000

3500

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

A

A
A A

A
A

A A A A

A

A A

A A
A A A A A

A
A A A

A A A A A A

Figure 3. Mean and 95% confidence interval of selection time
(ms) of the three methods as a function of trial number.

Reaction Time
It is conceivable that although CSs were faster than pull-
down menus, they may take longer to prepare before the
movement starts. We hence measured reaction time, which
was defined as the time duration from the moment a new
target command was presented to the moment of the first
stylus contact with the pull-down menu or the stylus
keyboard when selection time starts. Since occasionally the
participants could be distracted or wanted to ask questions
during this period, resulting in an excessively long reaction
time, we truncated these cases (two cases) at 32676 ms,
which was the largest number our statistics software could
accept. There was no statistically significant difference

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1139

between the three methods in reaction time (F2, 22 = 0.35, p
= .71). Reaction time decreased significantly with practice
F9, 99 = 20.9, p <.0001) particularly during the first two
trials, and eventually stabilized at or just below 2000 ms. It
is interesting to note that although novel to the participants,
the CS methods did not have a longer reaction time than
pull-down menus.

Menu

Long

Short

Copy
Find

Print
Thesaurus

Track Changes

0

500

1000

1500

2000

2500

3000

3500

]

]

]

]

]

]

]
]

]

]

]

]

]

]

]

Figure 4. Selection time (ms) of the three methods and
different commands.

Total Time
Total time was the sum of reaction time and selection time,
from the moment a new target command was presented to
the moment the system received a command.

Repeated measures variance analysis showed that the total
time difference between the three methods was also
statistically significant (F2, 22 = 21.57, p <.0001). Post hoc
tests indicate all pair comparisons were significant (p <
.0001).

The average total time of long CSs was similar to that of the
pull-down menu in the beginning, but decreased to about
two thirds of it. The differences between the three methods
were quite large after a few trials of practice. Taking the
average of the last four trials as an example, short and long
CSs were 1.8 (1840 ms) and 1.3 (2609 ms) times faster than
the pull-down menu (3380 ms) method respectively. It is
remarkable that the time for command selection using the
pull-down menu, whose layout and components were
identical to Microsoft Word hence should be familiar to
most of our participants, also decreased significantly during
the first few trials but was still overall much longer than
CSs both in selection time and total time.

Error
The error rates were 2.8% for pull-down menus, 6.5% for
short CSs and 3.5% for long CSs. Repeated measures
variance analysis shows that error rate differed significantly
across methods (F2, 22 = 6.12, p = .0077).

Fisher’s PLSD post hoc tests indicated that short CSs were
significantly more error prone than long CSs and pull-down

menus (p <0.05) but the difference between long CS and
pull-down menus was not significant (p = .64).

Menu

Long

Short

Copy
Find

Print
Thesaurus

Track Changes

0

5

10

15

20

]

]

]
]

]

]

]

]

]

]]

]
]

]

]

Figure 5. Error rates (%) in different conditions.

Note that (Figure 5) when selecting a sub-menu command
(Tools-Language-Thesaurus), the pull-down menu was no
better than short CS and worse than long CS in error rate.
Note also that the error rate of long CS was comparable to
pull-down menu except in the case of the Print command.
This was because another command in the lexicon, Go To
(Ctrl-G-O-T-O), forms a similar pattern as Print (Ctrl-P-R-
I) on the QWERTY layout. This confusion would not arise
with CSP, to be described in the next section.

User Ratings
No participants preferred pull-down menus and they all
consistently rated pull-down menus as the most physically
demanding technique. Five participants preferred long CS,
five preferred short CS, and two stated that they preferred
different modes for different situations, using short CS for
very frequent actions such as Copy and using long CS for
less frequent commands. When asked for their reasons for
preferring a specific technique, participants who preferred
short CS said they were already familiar with the typing
pattern of traditional hotkeys. Participants who preferred
long CS stated better accuracy and/or the ease of
remembering the commands as the main reason for their
preference.

In conclusion, CSs performed much faster than pull-down
menus. While short CSs were the fastest, they were also the
most error prone. Long CSs were faster than pull-down
menus without significant accuracy loss. Users subjectively
preferred CSs but differed in their view of short vs. long
CSs. Overall CSs are clearly a viable selection alternative
that can co-exist with pull-down menus for pen-based
interfaces.

COMMAND STROKES WITH PREVIEW
Although CSs were rather successful in Experiment 1,
through the experiment and our own use experience we
realized that novel, interesting and possibly advantageous

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1140

improvements could be made. The result of our second
design iteration is command strokes with preview (CSP).

Basic Idea
The overall goal in CSP was to give the user more
flexibility and more certainty when using command strokes.
For flexibility, each command can be entered with as long
as, or as short as, a stroke on its complete path (e.g.
Command-C, Command-C-U or Command-C-U-T can all
do Cut), as long as the stroke is unambiguous to the pattern
recognizer. Consequently CSP effectively merges short and
long command strokes. For certainty, the system displays
what the command would be (a preview, see Figure 6) if the
pen would be lifted from the current location. Through
testing we found it better to display a preview only if the
stroke movement is relatively slow.

Example
Suppose the user wants to issue the command Copy. The
user starts by landing the pen on the Command key, and
then drags it to the first letter key in the command, in this
case the C key. Since Command-C matches another
command (Cut) that is shorter and/or more frequently used,
Cut is now previewed (Figure 6 top). Other commands that
also match the sequence Command-C, in this case Copy,
Close and Comment, are shown in a list of alternatives to
the left of the center panel. To enter Copy the user either
quickly slides the pen towards Copy in the leftmost box (see
the Quick Pick subsection below) or continues to gesture
towards the second letter key O. Since Command-C-O
matches Copy the command Copy is now previewed
(Figure 6 bottom). When the user lifts up the pen the Copy
command is issued. We want to emphasize that CSP still
uses a pattern recognizer. For instance if the user is
gesturing a pen trace geometrically close to Command-P-R-
I the command Go To could appear instead because from
the pattern recognizer’s point-of-view Command-G-O-T-O
is very similar to Command-P-R-I.

Cancellation
An important feature when previewing is the ability to
cancel the gesture. By dragging and releasing the pen over
the semi-transparent cancellation icon (see Figure 6) the
current gesture is cancelled and no command is executed.

Dynamic Visual Preview
An important design goal was to make preview as
unobtrusive as possible when the user already knows the
gesture for a command. Therefore pattern recognition and
subsequent visual preview is only triggered if the user
moves the pen slower than an empirically determined
threshold. In our implemented system any movement
slower than 2.5 letter keys per second triggers pattern
recognition and visual preview. This check is performed by
the system every 20 ms (50 Hz).

Quick Pick
Any commands shown in the alternative list to the left of
the center panel (Figure 6) can be directly selected by
quickly dragging the pen towards the command name. The
system can unambiguously separate gestures from
alternative list selections since once the pen tip leaves the
keyboard area it does not constitute a valid gesture. Since
movement dynamics is taken into account when deciding if
pattern recognition and update of the preview should be
performed, the alternative list will not suddenly change
despite the user gesturing over the keyboard while heading
towards the desired command. This functionality worked
very well in practice, as shown in the results later.

An important aspect of all user interfaces is behavioral
consistency. For this reason it is also possible to “quick
pick” the currently previewed command (e.g. Cut in Figure
6 top). In other words, either lifting the pen from its current
location or dragging the pen to the preview box results in
the same command.

Figure 6. When the user gestures Command-C the command
Cut is previewed (top). When the user gestures Command-C-O

Copy is previewed (bottom).

Disambiguation
Some applications have many commands that start with the
same letters. For instance, in MS Word Cut, Copy and
Comment start with the letter C. When the system detects
such a conflict a disambiguation procedure is invoked. First
the system checks if any command has priority. For
instance, if Copy is used more in the active application than
Cut (as determined by the user’s actions in the system) then
Copy will be shown as the primary command previewed. If
two commands have been used the same number of times
the system prefers the shorter command, in this case Cut.

Conceptual Advantages

What You See Is What You Get
Preview allows the user to be certain about what command
will be executed. This alleviates the fear of unintentionally
invoking irreversible commands.

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1141

Minimizes User Effort
For many commands, one or two letters in a command
would uniquely differentiate it from other commands.
However without preview it is impossible for the user to
discover the minimum number of letter keys needed for a
given command without trial-and-error. With preview the
user can learn the shortest path needed without the
frustration of trial-and-error, hence the amount of motor
effort needed in articulating the gestures is reduced. CSP
therefore gracefully and flexibly merges short and long
CSs.

Encourages Exploration
Without preview the user would need to try out commands
to see if they existed in the active application. With preview
frequently a command will appear either in the preview or
in the alternative list after only one or two letters of the
command is gestured. For instance, if the user gestures
Command-S the command Save is likely shown in preview
or in the alternative list along with the other best matching
commands. If it is not, the user can continue gesturing on
the path Command-S-A-V-E and the system will display
Save in preview or in the alternative list at some point as
long as Save is a valid command. If Save is still not
displayed when the complete path of Command-S-A-V-E is
finished, the user would know that Save is not available in
this particular application. During this exploration the user
can always stroke to the cancellation icon to abort the
procedure and prevent an unintended command (if currently
previewed) from being executed.

Reveals the Space of Possible Commands
A problem with the first iteration of CSs is discovery
support: how does a user know the space of available
commands except by consulting co-existing pull-down
menus (which most likely exist due to legacy compatibility)
or the application help system first? With preview, some
commands other than the intended one will inevitably be
shown in the preview or the alternative list while the user is
gesturing. This increases the likelihood that the user notices
other available commands. For instance, if Print is gestured
as the sequence Command-P-R, Properties might appear as
the next best matching command, informing the user that
this command is available in the active application.

Benefits the Novice and the Expert
Since CSP consider the movement dynamics of gesturing, a
true expert that knows how to quickly gesture the
commands will not be disrupted with any visual feedback.
If a user writes an unfamiliar command the natural
slowdown of the pen motion causes preview to be
automatically displayed, aiding novices and experts alike on
just how much of the command stroke path needs to be
completed for the command to be accurately recognized.
Furthermore, if an expert user is very certain of a command
stroke, the preview display can be ignored, reverting back
to basic CS behavior.

EXPERIMENT 2
While there are many conceptual advantages with preview
as outlined above which motivated the development of the
technique, we were also concerned with possible adverse
effects of preview. For example the display of preview
could be distracting or over-demanding on the user’s visual
attention therefore significantly slowing down input speed
and/or inflicting a higher error rate. Clearly an empirical
study was needed to reveal any measurable performance
impact of preview, particularly an adverse performance
impact if any. Note that not all of the conceptual
advantages outlined above, such as the ability to explore
and discover, should necessarily result in measurable
performance differences.

Procedure and Design
We recruited 16 volunteers for this within-subject
experiment. None of them had participated in Experiment 1.
The experiment was carried out on a Fujitsu-Siemens
Tablet PC with a screen set to landscape orientation and
with a screen resolution of 1024 × 768 pixels. The QWERTY
keyboard layout was used for the stylus keyboard.

In the experiment participants used a stylus to enter
commands in one of two conditions:

1. No Preview. The participant entered commands with the
preview interface (preview, alternative list and cancellation
icon) disabled. When the participant lifted the pen the
recognized command was displayed above the keyboard.

2. Preview. The participant entered commands with the full
implementation of the preview interface as described
earlier.

In this experiment we decided to simulate realistic
document editing in which commands were interleaved
with common word processor (MS Word) tasks. Our goal
was to be able to observe and measure both speed and error
of the two versions of CSs. We developed two task scripts
and instructions so the second condition would not repeat
the same script. Our system was made to work with real
applications in MS Windows. For example, a part of the
first script read: “Scroll down to the bottom of the
document. Invoke Paste.” If the participant correctly
activated Paste the contents of the clipboard would be
pasted into the active document. All 114 commands in MS
Word 2002 available in the main pull-down menus (e.g.
Open, Paste, etc.) and all other menu items that had an
assigned hot key (e.g. Thesaurus, Visual Basic Editor, etc.)
were implemented and could be recognized by the
experimental system. 10 commands were used in the first
script: Open, Properties, Copy, Paste, Select All, Word
Count, Date and Time, Undo, Track Changes, Print and 10
in the second script: New, Styles and Formatting, Symbol,
Paragraph, Font, About Microsoft Word, Versions, Page
Setup, Break, Close.

If a user made a mistake in following the instructions, the
user was asked to repair the mistake. For example, if the

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1142

user accidentally executed the command Styles and
Formatting to the word processor, the user was asked to
close the panel that appeared.

After a brief demonstration of the system the participant
was asked to follow one of the scripts with preview either
disabled or enabled. After the script had been repeated 10
times, the participant was asked to follow a second script
and test command strokes with the second preview type.
The order of the two methods and the two scripts were
balanced among the participants.

Results

Error
The average error rate with the Preview condition (7.5%)
was lower than with No Preview (11.3%). However the
difference was not statistically significant (F1, 15 = 2.0, p =
0.178).

Selection Time
Selection time was calculated as the time duration from
pen-down to pen-up when articulating a correctly
recognized command gesture. Repeated measures variance
analysis showed that the difference in selection time was
not statistically significant (F1, 15 = 0.207, p = .656), see
Figure 7. There were considerable individual differences in
performance. For instance, the fastest participant had an
average selection time of 1126 ms with Preview and 1583
ms with No Preview while the slowest participant had an
average selection time of 2451 ms with Preview and 3900
ms with No Preview.

No Preview

Preview

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

0

1000

2000

3000

4000

W

W

WW

WW WW
W
W WW WW WW WW W

W

A

A A
A

A
A A

A
A A

A

A
A

A A
A A A

A
A

Figure 7. Mean and 95% confidence interval of selection time

(ms) as a function of trial number.

Trial Completion Time
Trial completion time was defined as the time taken to
complete one repetition of one of the scripts with 10
commands. Average trial completion time was 105.2
seconds with the No Preview method and 105.6 seconds
with Preview. The difference was not statistically
significant (F1, 15 = 0.004, p = .952).

Trace Lengths
Trace length, the distance the pen traveled over the
keyboard, was measured in multiples of key width. If only
the minimum paths were gestured, the average trace length
of the commands tested would be 9.0 keys. If the complete
paths were gestured the average trace length of the tested
commands would be 27.3 keys. Results show that the traces
in the Preview condition were significantly shorter (10.7
keys) than the traces in No Preview (15 crossed keys). The
40% difference was statistically significant (F1, 14 = 31.7, p
<.0005). Evidently participants took advantage of the visual
feedback and did not over-specify the gestures much.

Quick Pick
In Preview two participants used quick pick almost
exclusively (96% and 93% of the responses respectively).
One participant used quick pick ¼ of the time. The other
participants used quick pick considerably less (0-5%).
Pearson’s r showed no significant correlation between
quick pick usage and error rate (r = -.139, n = 16, p = .608,
two-tailed).

User Ratings
After each condition participants were asked to rate their
confidence on a 1-7 scale (1 = “Very unconfident”, 7 =
“Very confident”), and after the experiment they were
asked to rate their preference of each method on a 1-7 scale
(1 = “Strongly dislike it”, 7 = “Strongly prefer it”).
Friedman’s repeated measures non-parametric test showed
that neither confidence (χ2 = 2.273, df = 1, p = .132) nor
preference (χ2 = 2.571, df = 1, p = .109) varied significantly
between the methods.

The comments from the participants in the study were
positive towards both interfaces. One participant declared
“Wow! This is amazing! How can it know what I want to
write?” One participant that really liked the preview version
stated that “without preview I felt unsure if I was doing the
right thing. With it enabled I felt I was guided [by it]”
(translated from Swedish).

In summary, Experiment 2 did not show any adverse effect
with CSP that concerned us. It also revealed that
participants could take advantage of some features of CSP,
such as using quick pick and taking a shorter stroke path
due to the guidance of the preview display. On the other
hand, when the same task procedure was repeated in
succession as in this experiment, hence intensifying the
participants’ familiarity with the sets of command strokes to
an “expert” level, neither speed nor accuracy was
significantly different between the two conditions. We
hypothesized that users might take greater advantage of the
preview functions when they encounter commands that are
new or unfamiliar, which frequently happens in a real use
situation.

EXPERIMENT 3
We decided to conduct a follow-up study with the same
participants as in Experiment 2 and investigate how users

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1143

familiar with the technique tackle new commands they have
not previously gestured – with and without preview.

Procedure and Design
The same 16 participants in Experiment 2 were recruited
the week after to take part in Experiment 3. They were
asked to enter commands in one of two conditions: Preview
or No Preview with the same properties as described in
Experiment 2.

Two sets of 10 commands were used. The sets of
commands and the experimental order of the two conditions
were balanced. The commands were randomly chosen from
MS Word with the constraint that they had not been
previously used in Experiment 2. The commands in the first
set were: Fullscreen, Office Clipboard, Table AutoFormat,
Macros, Theme, Text Box, Borders and Shading, Drop Cap,
Word Perfect Help, Ruler, and in the second set: Object,
Thesaurus, Draw Table, Reveal Formatting, Office on the
Web, Heading Rows Repeat, Hide Gridlines, Bullets and
Numbering, Find, Paste as Hyperlink.

No Preview

Preview

T1 T2

0

10

20

W

W

W

W

A

A

A A

Figure 8. Mean and 95% confidence interval of error rate (%)
as a function of trial number.

In one condition the participants entered all commands
from a first set of commands and repeated the set once
again. If a mistake was made the participants were asked to
try again. Next the procedure was repeated in the other
condition with the second set of commands.

Results

Error
Error rate differed dramatically between the conditions with
average error rates as low as 1% in both trials in the
Preview condition (Figure 8) but on average 10.5% in the
No Preview condition. Repeated measures variance analysis
showed that the difference in error rates between the
conditions were statistically significant in the first trial (F1,

15 = 8.99, p = .009) as well as in the second (F1, 15 = 9.22, p
= .008). The results show that users benefited from preview
when executing unfamiliar command strokes.

Selection Time
There was no significant difference found in selection time
(as defined in Experiment 1) in either trial 1 (F1, 15 = 2.815,
p = .114) or trial 2 (F1, 15 = 3.624, p = .076), see Figure 9.
The slower selection times compared to the ones in
Experiment 1 and Experiment 2 are not surprising given
that the majority of the commands tested in this experiment
were longer and less frequently used.

Trace Lengths
The trace lengths (as defined in Experiment 2) in Preview
condition were significantly shorter than in No Preview
condition in both trial 1 (F1, 14 = 25.043, p <.0005) and trial
2 (F1, 15 = 25.671, p <.0005), see Figure 10. Clearly visual
preview aided the participants in gesturing shorter CSs.

No Preview

Preview

T1 T2

0

1000

2000

3000

4000 W

W W

W

A

AA

A

Figure 9. Mean and 95% confidence interval of selection time
(ms) as a function of trial number.

User Ratings
After Experiment 3 the participants were asked which
method they preferred and why. All participants preferred
the Preview method. When asked to explain their
preference all participants stated that with the Preview
method they knew when they could stop and lift up the pen.
One participant stated that dyslexia made it difficult for him
to spell out the commands without visual guidance.

In summary, Experiment 3 clearly demonstrated the
advantage of CSP when dealing with unfamiliar commands,
as indicated by shorter stroke path and higher accuracy.

DISCUSSION
Experiment 1 showed that both short and long CSs are
significantly faster than pull-down menus. Between the
two, short CSs were faster but more error prone than long
CSs. Short CSs based on traditional keyboard shortcuts are
only applicable to menu items that have a keyboard shortcut
assigned, whereas long CSs can be applied to all commands
in an application. Long CSs should also be easier to
remember and use, since they are based on the name of the
command instead of a randomly assigned keyboard
sequence such as Ctrl+Y for Redo.

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1144

With the preview display, CSP simultaneously takes
advantage of both short and long CSs. CSP is still based on
command name traces on the keyboard, but with the visual
preview the user knows how much of the entire trace needs
to be gestured for a command to be recognized.
Experiments 2 and 3 showed that users’ trace lengths were
significantly shorter when using preview (also Figure 10).

A critical concern with visual preview is whether it
demands so much visual attention that it interferes with
expert users’ speed performance. Experiment 2 showed that
the CSP preview mechanism, which was carefully designed
not to distract fast users, did not impede users’ performance
for well practiced familiar commands. For unfamiliar
commands tested in Experiment 3 the visual preview did
not only leave participants’ speed performance unchanged,
but also significantly reduced error rates. Overall, our
experiments show that visual preview has real significant
benefits and does not slow down input speed.

RELATED WORK
Many researchers have previously tackled the pen-based
command selection problem. For instance, Kobayashi and
Igarashi [7] demonstrated a technique that makes pull-down
menu traversal easier when navigating through sub-menus,
and Kurtenbach et al. [8] have developed a technique called
Hotbox which combines linear, radial and pop-up menus to
create a graphical user interface that can handle a large
number of commands for the Maya modeling application.

No Preview

Preview

T1 T2

0

10

20

30

40

W

W

W

W

A A

A A

Figure 10. Mean and 95% confidence interval of trace length
(in key widths) as a function of trial number. The dashed
bottom and top reference lines indicate the minimum and

maximum possible trace length.

Pie menus have been demonstrated as a competitive
alternative to pull-down linear menus [3]. Marking menus,
studied and advocated by Kurtenbach and Buxton [6],
further improve pie menus. Embodying a critical thought in
UI design, marking menus are pie menus augmented with a
pen-gesture recognizer that encourages behavior transition
from novice to expert use. Novice users select items in the
pie menu structure as if using a regular pie menu (with

delayed display). Over time, users learn the angular pen-
gestures for selecting a command. This allows expert users
to quickly flick the pen-gesture of the command without
needing to visually traverse a pie menu hierarchy. To
encourage users to learn the fast mode of gesturing
commands instead of using slower visual feedback-based
navigation, marking menus do not “pop-up” until after a
time delay. A problem with marking menus observed by
Zhao and Balakrishnan [15] is that some selections are
ambiguous when marks are articulated independent of
scale. Zhao and Balakrishnan investigated the use of
consecutive single line marks instead of compound marks
in marking menus and found that single line marks are
unambiguous and more compact. However, it remains an
open question whether users will memorize a sequence of
disconnected single line marks as easily as compound
marks that can be perceived and remembered as a whole.
Another variant of the marking menu is FlowMenu [4].
Originally made for wall-sized displays, FlowMenu
combines the Quikwriting text entry method [11] with
marking menus. Although a practical method for many
specialized applications, the down-side of the method is
that the pen-gestures are long and complicated.

The contrast between CSs and marking menus is interesting
and multifaceted. First, marking menus replace linear
menus while CSs are designed to co-exist with or
complement linear menus. With CS interfaces, the user can
use the traditional pull-down menus to explore the existence
of certain functions or commands (although with CSP one
can also often discover CSs by trying out tracing the letters
of a command and observe the visual preview) but rely on
CSs to efficiently evoke known commands. Second, the
learning mechanisms in the two systems are different. In
CSs the user incrementally learns the gestures on the
keyboard with use, starting by slowly tracing the keys with
visual guidance then, over time, gradually (partially)
transitioning into open-loop gesturing by recall. The
graphical keyboard is always present as a visual map. In
contrast, using the marking menu novice-expert bridging
technique, the transition is binary – either with the
displayed (and delayed) menu hierarchy or gesturing the
mark without any visual assistance. This may force the user
to memorize the gesture faster at the cost of reduced novice
performance due to the delay. On the other hand, marking
menus have a relatively easy transition from browsing
commands via the displayed menu to selecting commands
by gestures. In this regard, CSs requires an additional
conscious step by the user to transition from menu
browsing to gesturing CSs, although the visual preview
system in CSP may encourage exploration.

In comparison to all menu selection methods, one
advantage of CSs is consistency. Commands tend to be
named in a similar manner in all user interfaces but are
often placed differently in menu structures, shifting
locations from application to application. Hotkeys for the
same function can also vary between applications. The flat

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1145

hierarchy with CSs allows hundreds of commands to be
specified directly by the user rather than being accessed
from browsing a hierarchy. Large capacity in a small space
is another advantage with CSs. Since a stylus keyboard
does not require much screen estate, CSs can be used in
specialized domains, such as Unmanned Aerial Vehicle
(UAV) control [12], where a large number of commands
need to be entered on a size-constrained handheld
computer.

Another class of command articulation techniques is free-
form pen-gestures, such as the Rubine recognizer [13].
Free-form pen-gestures are often “arbitrary” pen-gestures
that denote different actions in a user interface. The
similarity aspects of pen-gestures have also been studied
[10]. In general, free form pen-gestures are limited in the
number a user can remember and reproduce, due to their
arbitrary definition to the user. In contrast to free-form pen-
gestures, CSs use the keyboard as a mnemonic map.

It is clear that each technique has its own pros and cons.
Users are familiar with pull-down menus and they are
backwards compatible with virtually all existing desktop
and mobile programs. Special techniques such as the
Hotbox [8] can be used when an application needs to
provide access to over 1,000 commands but it takes a large
amount of screen space. Free-form pen-gestures are most
advantageous in application domains that have a strong
convention, such as copy editing, or in places where pen-
gestures can be highly metaphorical, such as crossing a
series of words to cause the words to be deleted.

CONCLUSIONS
Based on the conceptual analysis and the empirical study
presented in this paper, we expect CSs to be a very useful
complement to pull-down menus in future mobile
computing devices. Pull-down menus tend to be slow and
tedious, but offer an effective way for the user to discover
the commands available in an application. Users will
continue to use pull-down menus to access a large number
of infrequent functions. For a known command, particular
frequently used commands such as Cut, Copy, Paste, Find,
and Print, CSs provide fast, fluid and convenient access
when used in conjunction with a stylus keyboard. Our
evaluation shows that on average CSs can be much faster
than pull-down menus, particularly if the commands are
located in sub-menus. In the first experiment we found a
speed-accuracy trade-off between long and short CSs. The
latter is faster but more error prone. We further developed
command strokes with preview (CSP) which conceptually
could improve certainty, reduce effort, and encourage
exploration and command discovery. Empirically CSP
proved capable of reducing users’ gesture lengths without
impacting speed or accuracy for familiar CSs. For
unfamiliar commands, preview dramatically reduced error
rate. These results indicate that as long as the input
interface does not force users to look at the visual feedback,
high input speed and low error rates can be obtained even

though visual feedback is introduced that guides novice
users towards the expert mode.

ACKNOWLEDGMENTS
This work was in part sponsored by the Santa Anna IT
Research Institute (SICS Linköping) and IBM Research.
We thank Alison Sue for her assistance.

REFERENCES
1. Accot, J. and Zhai, S. Beyond Fitts’ Law: Models for

Trajectory-Based HCI Tasks. Proc. CHI 1997, pp. 295-
302.

2. Bernard, P., Hammond, N., MacLean, A. and Morton,
J. Learning and Remembering Interactive Commands.
Proc. CHI 1982, pp. 2-7.

3. Callahan, J., Hopkins, D., Weiser, M. and
Shneiderman, B. An Empirical Comparison of Pie vs.
Linear Menus. Proc. CHI 1988, pp. 95-100.

4. Guimbretière, F. and Winograd, T. FlowMenu:
Combining Command, Text and Data Entry. Proc.
UIST 2000, pp. 213-216.

5. Kristensson, P.O. and Zhai, S. SHARK2: A Large
Vocabulary Shorthand Writing System for Pen-based
Computers. Proc. UIST 2004, pp. 43-52.

6. Kurtenbach, G. and Buxton, W. The Limits of Expert
Performance Using Hierarchic Marking Menus. Proc.
CHI 1993, pp. 482-487.

7. Kobayashi, M. and Igarashi, T. Considering the
Direction of Cursor Movement for Efficient Traversal
of Cascading Menus. Proc. UIST 2003, pp. 91-94.

8. Kurtenbach, G., Fitzmaurice, G., Owen, R.N. and
Baudel, T. The Hotbox: Efficient Access to a Large
Number of Menu-items. Proc. CHI 1999, pp. 231-237.

9. Landauer, T.K. and Nachbar, D.W. Selection from
Alphabetic and Numeric Menu Trees Using a Touch
Screen: Breadth, Depth, and Width. Proc. CHI 1985,
pp. 73-78.

10. Long, A.C., Landay, J.A., Rowe, L.A. and Michiels, J.
Visual Similarity of Pen Gestures. Proc. CHI 2000, pp.
360-367.

11. Perlin, K. Quikwriting: Continuous Stylus-Based Text
Entry. Proc. UIST 1998, pp. 215-216.

12. Quigley, M., Goodrich, M.A. and Beard, R.W. Semi-
Autonomous Human-UAV Interfaces for Fixed-Wing
Mini-UAVs. Proc. Intl. Conf. Intelligent Robots and
Systems 2004, pp. 2457-2462.

13. Rubine, D. Specifying Gestures by Example. Proc.
SIGGRAPH 1991, pp. 329-337.

14. Zhai, S. and Kristensson, P.O. Shorthand Writing on
Stylus Keyboard. Proc. CHI 2003, pp. 17-24.

15. Zhao, S. and Balakrishnan, R. Simple vs. Compound
Mark Hierarchical Marking Menus. Proc. UIST 2004,
pp. 33-42.

CHI 2007 Proceedings • Novel Navigation April 28-May 3, 2007 • San Jose, CA, USA

1146

