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ABSTRACT 
Fitts’ law models the inherent speed-accuracy trade-off constraint 
in stylus typing. Users attempting to go beyond the Fitts’ law 
speed ceiling will tend to land the stylus outside the targeted key, 
resulting in erroneous words and increasing users’ frustration. We 
propose a geometric pattern matching technique to overcome this 
problem. Our solution can be used either as an enhanced spell 
checker or as a way to enable users to escape the Fitts’ law 
constraint in stylus typing, potentially resulting in higher text 
entry speeds than what is currently theoretically modeled. We 
view the hit points on a stylus keyboard as a high resolution 
geometric pattern. This pattern can be matched against patterns 
formed by the letter key center positions of legitimate words in a 
lexicon. We present the development and evaluation of an 
“elastic” stylus keyboard capable of correcting words even if the 
user misses all the intended keys, as long as the user’s tapping 
pattern is close enough to the intended word. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – input devices and strategies, interaction styles, theory 
and methods; I.5.1 [Pattern Recognition]: Models – geometric; 
I.5.5 [Pattern Recognition] Implementation – interactive systems 

General Terms 
Algorithms, Design, Experimentation, Human Factors 

Keywords 
Text input, stylus keyboard, virtual keyboard, typing errors, 
typing correction, spell checker, Fitts’ law 

1. INTRODUCTION 
The movement towards off-the-desktop computers, including 
hand-held devices and tablet computers, has stimulated a wave of 

invention, design, and research on text entry methods that do not 
require a physical keyboard. The stylus keyboard, also known as 
graphical, virtual, soft, or on-screen keyboard, is one class of 
them. Commercially, stylus keyboards are included in almost all 
hand-held and tablet computers. Academically, researchers have 
invested much time in this topic (see [4],[9],[11],[13],[22] for 
only a few examples). 

One of the first and most prolonged research efforts has been on 
the optimization of the stylus keyboard layout. Getschow and 
colleagues [4] made an early attempt of minimizing the statistical 
movement distance based on character digraph distributions. 
Lewis and colleagues [9],[10] were probably the first to use the 
well known Fitts’ law and digraph frequencies as bases to model 
and design stylus keyboard performance.   MacKenzie and Zhang 
[11] used such a model to manually design their OPTI layout. Zhai 
and colleagues [22] algorithmically optimized their ATOMIK 
layout based on the atomic interactions among all letters as 
defined by a Fitts-digraph energy function. 

One weakness of existing stylus keyboards is the verbatim 
process — the user has to tap letter by letter with complete 
accuracy. It is well known that natural languages have a great deal 
of regularity and redundancy, as Shannon observed in the process 
of introducing his “mathematical theory of communication” [17]. 
From an information theory point of view, tapping all letters with 
100% accuracy is over-specifying the amount of information 
needed. In contrast, other text input methods, such as the T9 
method commonly used in mobile phones, exploits language 
redundancy to resolve ambiguous key strokes. Similarly Green 
and colleagues have recently developed a reduced QWERTY layout 
that exploits language redundancy [6].  Another example is 
Dasher [20] which uses language regularities to dynamically 
align the most likely next letter near the selection cursor so the 
user can visually react and steer through the intended characters.  
A tempting use of language regularity is typing prediction [1]. 
Masui [13] has developed a stylus keyboard that presents a list of 
the most likely words for the user to select based on previous 
inputs. However, an often overlooked aspect of word prediction 
with choices, or utilizing language regularity in general, is the 
cognitive and visual reaction time and effort needed to choose 
from multiple candidates.  The human visual motor reaction is 
about 200 ms minimum, and increases linearly with the amount of 
information in multiple choices as predicted by Hick’s law [7]. In 
comparison, in order to type 60 words per minute (wpm) one has 
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only 200 ms to process each character including all perceptual, 
cognitive, and motor control components. 

Goodman and colleagues [5] proposed a method for stylus 
keyboard error correction that takes advantage of the language 
regularities without using prediction. Inspired by speech 
recognition technology, they calculated the probability of the 
intended key based on a character-level language model (letter 
sequence statistics) and a stylus tapping model derived from 
observations of users’ landing positions on the keys. A user study 
indicated that their model reduced the error rate as compared to 
verbatim tapping [5]. However it is not clear from their study to 
what degree the “tapping model” contributed to the error 
correction. 

We propose a novel approach to exploit language regularities in 
stylus keyboards using geometric pattern matching. By mapping 
all words in a lexicon to the center positions of the keys in a 
stylus keyboard, the user’s tapping pattern can be directly 
compared against a lexicon of words. The mismatch from such a 
comparison may serve as a basis for tapping-precision relaxation, 
as we shall see in the next section. 

2. RELAXING FITTS’ LAW 
Fitts’ law predicts that the mean time T to successfully hit a key 
of size W  over distance D  on a stylus keyboard is  

 bIDaT +=  (1) 
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This means that relative tapping accuracy imposes a certain speed 
ceiling. If the user attempts to go beyond the ceiling, the landing 
points of the stylus will tend to fall outside of a targeted key, 
resulting in a letter different from the intended one. In other 
words, the user will tend to break the W  constraint. This adds to 
the user’s frustration since it takes additional time and effort to 
correct these errors. Accuracy constraints are particularly 
problematic for users with certain motor control disabilities and 
for expert users who push their text entry speed limit.  In the case 
of small mobile devices, the accuracy problem will be more acute.  

Our goal is therefore to relax the accuracy requirement of 
precisely tapping on each letter, effectively widening the 
constraints of W. This is possible based on two observations: 

1. Not all letter combinations are legitimate words, as discussed 
in the introduction. We can therefore exploit these inherent 
constraints in legitimate words. The simplest implementation of 
this constraint is a lexicon which can easily be customized for 
each individual user. Other implementations of letter constraints 
may include a collection of n-grams, syllables, phonemes etc. 

2. The landing point of the stylus on a stylus keyboard is a 
continuous variable recorded by the tablet or the touch screen, in 
contrast to a physical typewriter keyboard which can only record 
discrete key positions. A series of these landing points implicitly 
form a high resolution pattern (a sequence of points) on the stylus 
keyboard. The center positions of all letter keys needed for 
inputting a word also form a pattern on the stylus keyboard. The 
distance between these two patterns can be computed by various 
algorithms. By analyzing such distances to all words in a lexicon 

the most likely word can be found, even if one or more letters are 
mis-tapped, as long as the match passes a certain threshold. 
Otherwise the verbatim letter sequence can be returned. 

The approach is inspired by SHARK [21]. SHARK forms word 
patterns by tracing the letter keys comprising a word and matches 
the user’s continuous gesture against them, essentially creating an 
efficient shorthand writing system. However there are important 
distinctions between self-correcting stylus keyboards and SHARK, 
both in terms of the amount of information in the task, pattern 
recognition technology and actual use behavior: 

1. A user’s tapping pattern contains more information than 
a user’s continuous gesture. This is because a tap contains 
information about the user’s intention – a tap with a pen on a 
stylus keyboard clearly means the user intended to hit a key in the 
proximity of the hit point. No corresponding information exists in 
SHARK where parts of a gesture can mean anything from a 
character, a chunk of characters to just being noise. Hence, a 
specialized system needs to be developed to maximize the utility 
of this extra information. 

2. The recognition approaches in SHARK are tailored to 
recognizing continuous gestures. Using the SHARK approaches to 
recognizing word patterns (e.g. handwriting recognition [21] or a 
specialized multi-channel architecture [8]) would both wash out 
the extra information obtained and considerably complicate the 
recognition approach, adding additional performance overhead. 

3. The interaction aspects of stylus typing correction are 
unknown. Can users take advantage of relaxation? 

4. The UI aspects of the technique are unknown. For 
example, the choice of delimiter between words is crucial as we 
will show later in this paper. 

The rest of this paper will be organized as follows. First we will 
describe the design and evaluation of a first-generation linear 
stylus keyboard correction system. Then we will describe the final 
“elastic” system we developed after gaining insights from user 
evaluations and practical use of the first system. Last we conclude 
by summarizing our experiences in developing and evaluating 
these kinds of correction systems and point to future work. 

3. A LINEAR CORRECTION SYSTEM 
We first experimented with a linear correction algorithm. In 
Figure 1 the user has tapped on the keys r, j and w on a QWERTY 
layout. 

 
Figure 1. An example of accuracy relaxation.  

Without any error correction “rjw” would be returned as the typed 
word. However, when looking at the hit points and comparing 
them with the corresponding points of the word “the” mapped on 
the keyboard layout (and all other words relevant in the lexicon), 
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a close match is found. Hence we can return “the” despite the fact 
that the user missed all the targeted keys. We now present the first 
pattern matching algorithm we developed. 

3.1 Similarity Measure 
There are many pattern recognition and classification methods 
that can be used for the current problem; however most methods 
rely on large amounts of training data [2]. While such data could 
be collected, it would be a tremendous amount of work and be 
specific to a particular keyboard layout and language. We chose a 
simpler model-driven approach that matches the geometrical 
traces of the user’s input and a word in the lexicon directly using 
an algorithm that has the following properties:  

1. Scalable to a lexicon that practically includes all words 
needed by a user.  

2. No training is required for the recognition algorithm. 

First we need to decide on a delimiter method. Among other 
possible solutions such as a special-purpose physical button on 
the user’s non-dominant hand, we currently use a set of delimiting 
characters. These characters are word delimiters in normal word 
processing, e.g. the tab-character, the space-character, semi-colon, 
etc. 

Next, let X  be an unknown pattern of n  stylus hit points }{ ix , 
and let Y  be a template pattern of n  centers }{ iy  of keys in the 
keyboard corresponding to letters comprising a word w  in the 
lexicon, ∈w {w : w is a word with n  letters}. The average spatial 
similarity between the patterns can then be computed with the 
following formula: 

  ∑
=

−=
n

i
ii yx

n
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1
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where 
2

⋅  denotes the Euclidian norm. To avoid matching 

unlikely words we impose a threshold T  on each point-to-point 
distance. If TYXD >),( , the distance to the word is set to ∞ .  
Among all candidate words we then obtain a subset consisting of 
the words with a D  value below the threshold T . These words 
are returned to the system as a ranked list. The system output is 
the word with the smallest D  value. 

The threshold T  can be a fixed threshold, for example the 
diameter of a key on the keyboard layout, or be made more 
adaptive by, for example, looking at the distribution of the point-
to-point distances. It is also possible to examine the actions of the 
user to determine the threshold dynamically. For instance, if 
many auto-corrections are followed by an immediate deletion by 
the user, the threshold can be increased by some amount. 

The above matching method is simple and conservative. 
Specifically, if the user taps on all the correct keys of a word, no 
other word can be closer. Also, the above scheme is easy to 
implement and since we are comparing very few points, 
exhaustive (linear) search through the lexicon is very fast. 

3.2 Evaluation 
To assess the effectiveness of the linear correction system we 
conducted two experiments. Our main concern was if the simple 

linear correction algorithm was enough to correct the vast 
majority of the errors users make in stylus typing. A second 
concern was to determine if the input speed was increased as a 
result of relaxing the Fitts’ law W constraint. For brevity we will 
omit some details of the experiments. The data presented should 
be interpreted as “lessons learned” which were fed into the next 
iteration of development of our stylus keyboard correction 
system. 

3.3 Experiment I 
3.3.1 Experimental Set-up 
In the first experiment 14 participants of different gender and of 
various ages were recruited. We introduced two conditions: a 
verbatim condition where the user tapped on a stylus keyboard, 
and a “relaxed” condition employing the linear correction 
algorithm. Due to users’ familiarity, we used the regular QWERTY 
layout for the experiment despite being non-optimal for stylus 
typing. 

The experiment consisted of two tasks. Both used the pangram 
“The quick brown fox jumps over the lazy dog” as stimuli. This 
sentence is quite difficult for the linear correction algorithm on 
the QWERTY layout since the words “dog” and “fox” are close 
neighbors with “dig” and “fix”. The lexicon used by the 
correction algorithm consisted of about 57,000 words supplied by 
Pitrelli and Roy [14]. 

The first task was performed in a word mode in which a single 
word at a time from the pangram was repeatedly presented to the 
user. The user was asked to type the word as fast and as 
accurately as possible. The user was not allowed to correct the 
input in this mode. 

The second task was performed in sentence mode. The user was 
asked to copy the entire pangram “The quick brown …” and 
could not proceed until the whole sentence was completely 
correct, thus we forced users to either tap accurately or manually 
correct the input by re-positioning the caret and using the 
backspace key. 

The order of the verbatim and relaxed conditions was alternated 
between the subjects to balance any learning effects. The number 
of word (task 1) and sentence (task 2) repetitions was 10 and 12 
respectively. The input devices used in the experiments were a 
Wacom tablet or a touch-sensitive screen with a stylus. The 
conditions were balanced among the two different pen input 
devices. 

3.3.2 Results 
Taking the average of the last three sentences as the final speed, 
we analyzed the difference between the verbatim and relaxed 
stylus keyboard (Keyboard Type). Repeated measure variance 
analysis shows that the only significant factor is Keyboard Type 
×  Order interaction: F1,12 = 22.8, p < .001. Neither order nor 
keyboard type alone was a significant factor in speed. This means 
that there was an asymmetrical skill transfer between the two 
types. As Poulton [15] argued, when there is an asymmetrical 
skill transfer, the only way to find the unbiased result is to take 
the data from the first condition presented, effectively turning the 
experiment to a between subject design, although the power of the 
experiment is much weakened. With such an approach, the 
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difference between the two keyboard types was still insignificant, 
although the average speed of the relaxed stylus keyboard 
condition (29.5 wpm) was 24% higher than the verbatim 
condition (23.7). On average the participants made 8.7 errors in 
the verbatim condition and 5.3 in the relaxed condition. The 
difference was not statistically significant. 

3.4 Experiment II 
The first experiment revealed some but not clear advantage of 
using relaxation. To find out if there is any advantage with the 
technique after extensive learning we conducted a second 
experiment, designed to quickly get users up to speed with the 
technique. The users were only exposed to the sentence mode this 
time and were asked to write the word “computation” five times 
in sequence, ten times. We chose the word “computation” since 
the word is quite long and might be harder to reproduce quickly 
and accurately. Even though the task is artificial, it is appropriate 
for quickly simulating “expert” behavior. 

3.4.1 Pilot Performance 
A user with a total of a few hours of experience (both conditions) 
did a pilot test. The user typed the word “computation” 50 times 
(in 5 groups) in verbatim and relaxed conditions respectively. The 
user’s total number of errors was 18 with the verbatim condition 
and 4 with the relaxed condition, suggesting the auto-correction in 
the relaxed condition had a positive effect.  Counting the speed 
(converted to wpm) of the last 20 correctly typed words (the early 
words served as a buffer for the learning effect in this within 
subject test) the average was 50.1 wpm for the relaxed condition 
and 35.5 wpm for the verbatim. The difference was statistically 
significant (F1,38 = 53, p <.0001, within the subject). This suggests 
that, for advanced users, there could be a significant advantage to 
relaxation. 

3.4.2 Experimental Set-up 
We recruited 26 unpaid volunteers. Some of these had 
participated in the earlier experiment, and these were balanced 
among the two conditions. Each participant entered the word 
“computation” 50 times in 5 groups. The user had to correct errors 
remaining in each group before proceeding. 

3.4.3 Results 
The mean speed of the participants was in favor of the relaxed 
condition. Their average speed was 33 wpm in the relaxed 
condition and 30 wpm in the verbatim condition. However the 
difference was not statistically significant. There were large 
individual differences in speed. Figure 2 plots the speed against 
participant number (ranked by performance, highest rank 
corresponds to the fastest subject). At each corresponding rank, 
the participant in the relaxed condition almost always outperforms 
his or her counterpart in the verbatim condition, but the 
performance is more pronounced with the top performers. It 
appears that some users could take advantage of the relaxation 
and exploit it more than others.  
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Figure 2. Ranked participant wpm scores for both conditions. 
The total numbers of errors that had to be corrected by the user in 
all five sentences were 38 in the verbatim condition and 22 in the 
relaxed condition. The latter does not include errors automatically 
corrected into the correct word by the linear correction system. 
For the relaxed condition, we performed an analysis of the 
corrections on the individual words for the last three sentences of 
each subject. A total of 46 errors were found (including errors 
automatically corrected into the correct word). Table 1 shows a 
classification of these errors. 

Errors automatically corrected 24 52% 

Error corrected by the user before the matcher 17 37% 

Deletions causing erroneous  correction 2 4.5% 

Missed the space key 2 4.5% 

Other 1 2% 
Table 1. Errors in the user study.  

 
There were 24 instances where an error was auto-corrected to the 
correct word. Hence the error correction method captured most 
mistakes. The majority of the remaining errors were corrected by 
the user before auto-correction was applied. Among all the cases 
where automatic error correction took place the majority was 
successful: 24 instances were corrected correctly, which amounts 
to a success rate of 83%. In two cases deletions (the user omitted 
a character) caused erroneous corrections (“compuation” and 
“computtion” caused the system to correct them into 
“completion”). In two other cases the space key was missed, 
causing concatenation (of two words into one so the user had to 
move the caret between the words and insert a space character 
afterwards). These two categories of errors were very detrimental 
to users’ perception of and performance with the relaxed 
keyboard. They felt they could not really trust the system since it 
may give them implausible results when they (unconsciously) 
missed a key, particularly when the missed key was the space 
key, which acted as the delimiter. This also made them more 
conservative in taking advantage of relaxation algorithm and 
pushing for higher speed.  
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We concluded that the 83% successful error correction rate was 
still too low to be practical. Furthermore, the remaining errors 
were problematic from a user experience point of view since they 
caused the users to trust the system less. Trust is also a general 
challenge to intelligent user interfaces. This led us to develop a 
much improved solution to pattern-based precision relaxation. 

4. AN ELASTIC CORRECTION SYSTEM 
There were a few lessons learned after evaluating the simple 
linear correction system: 

1. The stylus keyboard correction scheme worked in that it 
did correct the majority of the users’ errors. However it will 
probably take a long time before users are proficient enough to 
take advantage of the correction mechanism to gain higher input 
speeds. 

2. The choice of delimiter is crucial. The space key is a 
bad delimiter since it is the most likely key being hit. Erroneous 
delimitations must be avoided since they will result in incorrect 
replacements by the system or no correction at all if the user fails 
to delimit two long words. 

3. The algorithm is too simplistic in that it can only handle 
patterns of the same length. The study revealed that users made 
deletion errors that the algorithm could not correct. Furthermore, 
users requested that the algorithm should handle insertion and 
transposition errors too. In general, the success rate of the 
algorithm must be very high, since erroneous corrections results 
in much more labor for the user than if the algorithm didn’t do 
anything at all. 

Based on the empirical data gathered in the experiments, 
improving delimitation and handling patterns of different lengths 
would directly lead to a 97% error correction success rate. 

4.1 Elasticity in the Matching Process 
In Figure 3 the user has tapped on the keys r, j, n and w (hit points 
indicated as solid circles) on a zoomed-in part of the QWERTY 
layout. Without any error correction “rjnw” would be returned as 
the typed word. With the linear matcher no correction at all or an 
erroneous correction would be returned. We will now present a 
system capable of correcting the input despite the fact that the 
user missed all the targeted keys and accidentally had one 
spurious stylus tap. We call a keyboard employing such a system 
an Elastic Stylus Keyboard (ESK). 

 
Figure 3. An example of error correction: the user tapped on 

r-j-n-w but the intended t-h-e is returned. 

Clearly a certain amount of elasticity is needed in the matching 
algorithm. We use a pattern matching algorithm that has the 
following properties: 

1. Scalable to a lexicon that practically includes all words 
needed by a user. 

2. Can match sequences of different lengths and cope with 
transposition errors. 

3. No training of the classifier is necessary. 
The algorithm finds the minimum distance between two patterns 
by searching for the closest corresponding points between them 
through dynamic programming. 

4.2 Similarity Measure 
Let X  denote an unknown pattern consisting of an ordered 
sequence of n  stylus hit points { ix  } on a stylus keyboard, and 
let Y  denote a template pattern consisting of m  points { iy } that 
are the centers of the corresponding keys for any word  
∈w {w : w is a word in the lexicon}. 

We define ),( YXD  between X  and Y  as the minimum 
stretching cost needed to transform X  into Y . Let 

),(),( mnKYXD =  be the minimum stretching cost of matching 

nxx K1  against myy K1 . Wang and Pavlidis [19] showed that 
),( jiK  for the subsequences ixx K1  against jyy K1  can be 

computed using a recurrent equation of similar form as the 
traditional edit-distance between two strings over a finite 
alphabet. However this form was difficult to use since it involved 
a constant penalty in inserting or ignoring a single point. 
Intuitively the cost of inserting or ignoring a point should depend 
on the distance between the points matched. For this reason, we 
modified the recurrence given by Wang and Pavlidis [19] by 
multiplying the constant penalty τ  for inserting or ignoring a 
point, with the actual distance between the points compared: 
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where 0)0,0( =K , ),( ji yxδ  is the stretching cost ix  to jy , and 
τ  is an empirically determined parameter weighting the cost of 
either ignoring or inserting a single point. We currently set 

0.2=τ . To avoid extreme stretching of a single point we 
currently define ),( yxδ  as 
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where r  is the maximum distance a point may be stretched. It is 
important to constrain the algorithm in this manner since it is 
unclear whether the above algorithm satisfies the triangle 
inequality [3]. Unintuitive matches may result if we do not clearly 
define the point-to-point constraints. See [3] for a comprehensive 
discussion of the subtleties in defining “elastic matching” 
algorithms. 

To be able to make fair comparisons between patterns of unequal 
length we normalize the similarity measure. Since correct 
normalization of Equation 4 is non-trivial [12] we compute a 
pseudo-normalized minimum stretching cost: 
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It is well known that the computation of ),( mnK  for matching 
X  against Y  in Equation 4 can be solved efficiently using 

dynamic programming in )(nmO  time [19]. The best matching 
word is the word whose pattern has the lowest normalized 
stretching cost ND  against the user’s tapping pattern. 

The algorithm presented can be seen as a generalization of a 
minimum edit-distance algorithm where we replace the character 
equivalence function (which in the most simplistic case is either 0 
if the characters match or 1 otherwise) with a Euclidean distance 
between the points. 

4.3 Indexing 
Unlike the linear correction algorithm, the algorithm presented in 
Equation 4 has quadratic complexity. To avoid a resource-
intensive exhaustive search of a large ( 000,57≈  words) lexicon 
we implemented an indexing technique that considerably narrows 
down the search space. Since Equation 5 constrains corresponding 
point-to-point distances between the unknown input and the 
template pattern to be shorter than r , by eliminating template 
patterns whose first and last point do not meet this constraint we 
may reduce the search space significantly. If r  is sufficiently 
conservative, e.g. 1.5 times the radius of an alphabetical key on 
the keyboard, it directly leads to an effective indexing method. 

We construct an ordered k-ary tree data structure of height 2 
where k is the number of alphabetical keys on the keyboard 
layout. Each node at index i  at depth d  represents a circular 
cluster idC  where the i th key center is the cluster center, and r  
is the radius of the cluster. At index i , ki ≤≤1 , 1iC  represents a 
start position cluster and 2iC  represents an end position cluster. A 
pattern Y  of length m  is indexed by a pointer in a cluster 2jC  at 

depth 2 iff 11 iCy ∈ , 2jm Cy ∈  and 2jC  is a child node of 1iC . Set 
membership here is used to denote that a point is contained in the 
circular cluster. When querying the index with an unknown 
pattern X  we walk the tree in breadth-first order and collect the 
set of all patterns in the lexicon indexed at the same depth 2 
clusters as X . This set is then searched exhaustively.  

If r  is too large or all words in the lexicon have patterns mapped 
to the same start and end point clusters, this procedure would still 
result in an exhaustive search. In practice the character 
frequencies are distributed unevenly but with enough spread for 
this indexing procedure to significantly reduce an exhaustive 
search. For our lexicon, containing 57,000 words, the largest 
possible set that needs to be searched exhaustively is about 4,000 
words when 5.1=r  in keyboard key radius units. 

4.4 Threshold 
After pattern classification we obtain a subset consisting of the 
words in the lexicon with a similarity distance ND  to the user’s 
tapping pattern below a set threshold T . These words are then 
returned to the system as a ranked list. The system outputs the 
word with the shortest ND . 

The threshold T  can be a fixed, e.g. to the diameter of a key on 
the keyboard layout, or a more adaptive value, e.g. by looking at 
the distribution of the point-to-point distances. We currently set 

krT ×= 0.1 , where kr  is the radius of a key. 

4.5 Lexicon 
The lexicon used can be constructed with various methods. It can 
be a preloaded standard dictionary, or a list of words extracted 
from the user’s previously written documents, including emails 
and articles, or words added by the user to the list, or a 
combination of all. We have tested our system with a lexicon 
containing about 57,000 words created for handwriting 
recognition applications [14], as well as with a custom lexicon 
extracted from a user’s 7 years of emails sent and received (about 
7,000 words). 

Using indexing an ESK can handle large lexicons, however it is 
important that the lexicon is just large enough (but not larger than 
necessary) to include all words a particular user needs so the 
probability of unwanted corrections is minimized and the capacity 
of correct mapping for “sloppy” stylus typing is maximized. 

Such an “optimized lexicon” can be retrieved by for instance 
supplying a “core lexicon” with the system containing the 5,000-
7,000 most frequent words in the language, and a function to mine 
the user’s documents and email to “fill in” the majority of the 
words missing from the user’s vocabulary. 

4.6 Delimiter 
As mentioned earlier, for the linear correction system we first 
used the most obvious choice of a delimiter — the space key tap 
which proved problematic. 

There are a number of possible solutions. One is to use a special-
purpose physical button. Its drawback is that the user either has to 
use two hands, with the non-dominant hand dedicated to entering 
a space (and hence delimitation), or switch between tapping with 
a stylus and pressing a button. 

We eventually decided to use a pen gesture as a way of entering 
space (and delimitation). Although many other gestures could be 
used alternatively or concurrently, we decided to use a left-to-
right pen stroke anywhere on or near the ESK as a word delimiter. 
This method proves to be quite effective — gesturing is distinctly 
different from a tapping action and yet easy to evoke between 
tapping actions. 

4.7 Advantages 
The advantages of an ESK in comparison to a statistical letter 
sequence approach [5] are numerous. ESK’s matching effect works 
on the word level, and the words explicitly belong to an 
individual user’s lexicon. New words can be added and removed 
in a customized dictionary; different languages such as Chinese 
pinyin, English and Swedish can be mixed without affecting the 
performance or behavior of the ESK. Depending on the size of the 
lexicon, the error tolerance of the ESK can be adjusted, either by 
the user or automatically by the system. Note that if the user aims 
at the correct letters in a word, the resulting shape will tend to 
approximate the ideal word pattern and be correctly matched. A 
user’s input pattern can still be successfully matched to the 
intended word even if some of the hit points are far away from the 
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correct keys, as long as the word patterns in the lexicon are 
sufficiently separated.  Since the system is using the geometrical 
tapping trace, some amazing corrections can be done. It is for 
example possible to correct the user’s input even if the user 
missed all the intended letter keys (see Figure 3 and Figure 4), 
something that is virtually impossible to correct without taking 
the spatial hit point information into account. Furthermore, the 
intuitive spatial interpretation of the matching method may enable 
expert users to consciously take advantage of the error correction 
scheme. 

4.8 Evaluation 
Proficiency in a text entry system such as the ESK is a function of 
practice. The closed-loop action of typing on a regular stylus 
keyboard is limited by the human motor control system and can 
be reliably modeled using letter digraph statistics and Fitts’ law 
[22]. Since an ESK relaxes or “breaks” Fitts’ law we cannot, as of 
today, model expert performance using any known human 
performance law. Also note that the recognition precision of an 
ESK varies with the size and contents of the lexicon. 
Instead of performing a theoretical modeling of the performance 
of an ESK, we simulated expert performance by letting two users 
repeatedly write selected sentences correctly (errors were not 
allowed). The test was carried out on a Tablet PC with an ESK 
using the QWERTY keyboard layout and a lexicon containing 
around 57,000 words. The results are shown in Table 2. Note that 
these numbers are “record” speeds that do not reveal the true 
average and expert typing performance of an ESK, and should only 
be considered a demonstration of the potential of the technique in 
“breaking” Fitts’ law in stylus typing. Also note that we used a 
very large lexicon as a stress test of the technique and our 
implemented system. A smaller “optimized” lexicon (as discussed 
in section 4.5) would increase the probability of desired automatic 
correction. As a reference, the theoretical average expert typing 
speed on a QWERTY stylus keyboard has been estimated to around 
34.2 wpm [23]. 
 

Testing phrase User 1 User 2 

the quick brown fox jumps over the lazy dog 46.3 37.7 

ask not what your country can do for you 45.4 40.1 

intelligent user interfaces 51.3 51.8 
Table 2. “Expert” speed estimates (wpm) of two users. 

5. FEEDBACK 
We have implemented and experimented with three feedback 
methods for the ESK. First, for each key tapped the corresponding 
character is outputted, just as in a normal stylus keyboard. To 
help users get an understanding of the geometrical pattern 
approach we experimented with outputting the hit points of the 
stylus taps (slowly fading away by time) as a way to “hint” to the 
user that the proximity information is taken into account. 

Second, since the system replaces the input with something else, 
it is important to inform novice users about the replacements. We 
currently achieve this by drawing the word replaced with a 
distinct background color (Figure 4). 

 

 
Figure 4. Example of correction indication. 

Third, since the matching algorithm outputs normalized scores it 
is possible to collect a ranked list of the best matches (N-best list). 
By pressing on a corrected word with the stylus the user can bring 
up a selection widget allowing direct access to the N-best list. 

6. DISCUSSION AND CONCLUSIONS 
The current ESK system (written in Java) can search a lexicon 
containing about 57,000 words in real time with no perceptible 
delay on a Tablet PC with a 1 GHz processor. Informal testing 
shows that one could type faster with less effort on an ESK than on 
a regular stylus keyboard, due to the reduced need of correcting 
frequent errors and the more relaxed requirement for precision 
tapping. We also observed that it is important to choose an 
appropriate correction threshold and a suitable lexicon, so that 
neither too many errors are left uncorrected nor many input 
strings are changed to unintended words. In general we observed 
that users were more unforgiving when receiving unintended 
words than appreciating correct error corrections. It is hence 
necessary to be conservative.  

We have explored using a geometric pattern recognition approach 
to relax the precision requirements in stylus typing. The first 
implementation of this approach, the linear correction system, 
was tested in two experiments. The data and experiences from 
these experiments guided our development of the ESK. Although 
we have not evaluated the ESK as formally as the first linear 
correction system, informal testing indicates that the ESK performs 
much better. The two key weaknesses observed with the first 
version of the relaxed stylus keyboard (the linear correction 
system) were solved. First, since we now use a gesture 
distinctively different from tapping as the word delimiter, the 
delimitation problem caused by missing the space key found in 
the experiment is eliminated. Second, due to the introduction of 
elasticity in the matching algorithm, the precision relaxation 
system now returns correct results even when a required key tap 
was missed or an extra tap accidentally added, as long as the 
overall shape of the input pattern matches the desired target word 
better than any other alternative. As a result of these 
improvements, a user can trust the system much more and be 
more comfortable in taking advantage of the precision relaxation.  

An ESK is essentially letting users take advantage of the 
regularities in the languages in a novel way – relaxing precision 
constraints by pattern matching, hence “breaking” Fitts’ law. 
Prior techniques have either relied on users consciously 
“compressing” the input [16] or using prediction that demands 
cognitive and visual reaction time. In contrast an ESK does not 
require a user to learn a compression technique or hope for the 
system to predict the desired input. An expert ESK user simply 
taps the word as quickly as possible and relies on the redundancy 
in the language to make sure that word patterns are sufficiently 
separated. 

We see future improvements in primarily two domains. First, we 
noted from the evaluation of the first linear correction system that 
the user corrected the input before the system in 37% of the cases. 
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An extension would be to make the system “eager” – recognizing 
the user’s input before delimitation. Such a feature would signal 
to the user that the system is automatically correcting the input 
right away. Second, an improvement would be to use context or 
common sense information [18] about the text the user is writing 
to constrain the lexicon dynamically, thus increasing the 
probability of correcting the user’s input. In short there are many 
opportunities for intelligent user interfaces in this domain. 

An ESK works with any stylus keyboard layout, either QWERTY or 
an optimized layout. Potentially the ESK technique could also be 
used to correct eye-typing and other text entry interfaces. An ESK 
is a practical and easy-to-implement solution to improve the 
verbatim and error-prone input method of today’s stylus 
keyboards; requiring little, if any, training from the end-user’s 
part. 
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