
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’05, January 9–12, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-58113-894-6/05/0001...$5.00.

Relaxing Stylus Typing Precision by Geometric Pattern
Matching

Per-Ola Kristensson §♦
♦ Department of Computer and Information Science

Linköpings universitet
581 83, Linköping, Sweden

+46 (13) 284476

perkr@ida.liu.se

Shumin Zhai §
§ IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120, USA

+1 (418) 927-1112

zhai@almaden.ibm.com

ABSTRACT
Fitts’ law models the inherent speed-accuracy trade-off constraint
in stylus typing. Users attempting to go beyond the Fitts’ law
speed ceiling will tend to land the stylus outside the targeted key,
resulting in erroneous words and increasing users’ frustration. We
propose a geometric pattern matching technique to overcome this
problem. Our solution can be used either as an enhanced spell
checker or as a way to enable users to escape the Fitts’ law
constraint in stylus typing, potentially resulting in higher text
entry speeds than what is currently theoretically modeled. We
view the hit points on a stylus keyboard as a high resolution
geometric pattern. This pattern can be matched against patterns
formed by the letter key center positions of legitimate words in a
lexicon. We present the development and evaluation of an
“elastic” stylus keyboard capable of correcting words even if the
user misses all the intended keys, as long as the user’s tapping
pattern is close enough to the intended word.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – input devices and strategies, interaction styles, theory
and methods; I.5.1 [Pattern Recognition]: Models – geometric;
I.5.5 [Pattern Recognition] Implementation – interactive systems

General Terms
Algorithms, Design, Experimentation, Human Factors

Keywords
Text input, stylus keyboard, virtual keyboard, typing errors,
typing correction, spell checker, Fitts’ law

1. INTRODUCTION
The movement towards off-the-desktop computers, including
hand-held devices and tablet computers, has stimulated a wave of

invention, design, and research on text entry methods that do not
require a physical keyboard. The stylus keyboard, also known as
graphical, virtual, soft, or on-screen keyboard, is one class of
them. Commercially, stylus keyboards are included in almost all
hand-held and tablet computers. Academically, researchers have
invested much time in this topic (see [4],[9],[11],[13],[22] for
only a few examples).

One of the first and most prolonged research efforts has been on
the optimization of the stylus keyboard layout. Getschow and
colleagues [4] made an early attempt of minimizing the statistical
movement distance based on character digraph distributions.
Lewis and colleagues [9],[10] were probably the first to use the
well known Fitts’ law and digraph frequencies as bases to model
and design stylus keyboard performance. MacKenzie and Zhang
[11] used such a model to manually design their OPTI layout. Zhai
and colleagues [22] algorithmically optimized their ATOMIK
layout based on the atomic interactions among all letters as
defined by a Fitts-digraph energy function.

One weakness of existing stylus keyboards is the verbatim
process — the user has to tap letter by letter with complete
accuracy. It is well known that natural languages have a great deal
of regularity and redundancy, as Shannon observed in the process
of introducing his “mathematical theory of communication” [17].
From an information theory point of view, tapping all letters with
100% accuracy is over-specifying the amount of information
needed. In contrast, other text input methods, such as the T9
method commonly used in mobile phones, exploits language
redundancy to resolve ambiguous key strokes. Similarly Green
and colleagues have recently developed a reduced QWERTY layout
that exploits language redundancy [6]. Another example is
Dasher [20] which uses language regularities to dynamically
align the most likely next letter near the selection cursor so the
user can visually react and steer through the intended characters.
A tempting use of language regularity is typing prediction [1].
Masui [13] has developed a stylus keyboard that presents a list of
the most likely words for the user to select based on previous
inputs. However, an often overlooked aspect of word prediction
with choices, or utilizing language regularity in general, is the
cognitive and visual reaction time and effort needed to choose
from multiple candidates. The human visual motor reaction is
about 200 ms minimum, and increases linearly with the amount of
information in multiple choices as predicted by Hick’s law [7]. In
comparison, in order to type 60 words per minute (wpm) one has

151

only 200 ms to process each character including all perceptual,
cognitive, and motor control components.

Goodman and colleagues [5] proposed a method for stylus
keyboard error correction that takes advantage of the language
regularities without using prediction. Inspired by speech
recognition technology, they calculated the probability of the
intended key based on a character-level language model (letter
sequence statistics) and a stylus tapping model derived from
observations of users’ landing positions on the keys. A user study
indicated that their model reduced the error rate as compared to
verbatim tapping [5]. However it is not clear from their study to
what degree the “tapping model” contributed to the error
correction.

We propose a novel approach to exploit language regularities in
stylus keyboards using geometric pattern matching. By mapping
all words in a lexicon to the center positions of the keys in a
stylus keyboard, the user’s tapping pattern can be directly
compared against a lexicon of words. The mismatch from such a
comparison may serve as a basis for tapping-precision relaxation,
as we shall see in the next section.

2. RELAXING FITTS’ LAW
Fitts’ law predicts that the mean time T to successfully hit a key
of size W over distance D on a stylus keyboard is

 bIDaT += (1)

 





 +

=
W

WDID 2log (2)

This means that relative tapping accuracy imposes a certain speed
ceiling. If the user attempts to go beyond the ceiling, the landing
points of the stylus will tend to fall outside of a targeted key,
resulting in a letter different from the intended one. In other
words, the user will tend to break the W constraint. This adds to
the user’s frustration since it takes additional time and effort to
correct these errors. Accuracy constraints are particularly
problematic for users with certain motor control disabilities and
for expert users who push their text entry speed limit. In the case
of small mobile devices, the accuracy problem will be more acute.

Our goal is therefore to relax the accuracy requirement of
precisely tapping on each letter, effectively widening the
constraints of W. This is possible based on two observations:

1. Not all letter combinations are legitimate words, as discussed
in the introduction. We can therefore exploit these inherent
constraints in legitimate words. The simplest implementation of
this constraint is a lexicon which can easily be customized for
each individual user. Other implementations of letter constraints
may include a collection of n-grams, syllables, phonemes etc.

2. The landing point of the stylus on a stylus keyboard is a
continuous variable recorded by the tablet or the touch screen, in
contrast to a physical typewriter keyboard which can only record
discrete key positions. A series of these landing points implicitly
form a high resolution pattern (a sequence of points) on the stylus
keyboard. The center positions of all letter keys needed for
inputting a word also form a pattern on the stylus keyboard. The
distance between these two patterns can be computed by various
algorithms. By analyzing such distances to all words in a lexicon

the most likely word can be found, even if one or more letters are
mis-tapped, as long as the match passes a certain threshold.
Otherwise the verbatim letter sequence can be returned.

The approach is inspired by SHARK [21]. SHARK forms word
patterns by tracing the letter keys comprising a word and matches
the user’s continuous gesture against them, essentially creating an
efficient shorthand writing system. However there are important
distinctions between self-correcting stylus keyboards and SHARK,
both in terms of the amount of information in the task, pattern
recognition technology and actual use behavior:

1. A user’s tapping pattern contains more information than
a user’s continuous gesture. This is because a tap contains
information about the user’s intention – a tap with a pen on a
stylus keyboard clearly means the user intended to hit a key in the
proximity of the hit point. No corresponding information exists in
SHARK where parts of a gesture can mean anything from a
character, a chunk of characters to just being noise. Hence, a
specialized system needs to be developed to maximize the utility
of this extra information.

2. The recognition approaches in SHARK are tailored to
recognizing continuous gestures. Using the SHARK approaches to
recognizing word patterns (e.g. handwriting recognition [21] or a
specialized multi-channel architecture [8]) would both wash out
the extra information obtained and considerably complicate the
recognition approach, adding additional performance overhead.

3. The interaction aspects of stylus typing correction are
unknown. Can users take advantage of relaxation?

4. The UI aspects of the technique are unknown. For
example, the choice of delimiter between words is crucial as we
will show later in this paper.

The rest of this paper will be organized as follows. First we will
describe the design and evaluation of a first-generation linear
stylus keyboard correction system. Then we will describe the final
“elastic” system we developed after gaining insights from user
evaluations and practical use of the first system. Last we conclude
by summarizing our experiences in developing and evaluating
these kinds of correction systems and point to future work.

3. A LINEAR CORRECTION SYSTEM
We first experimented with a linear correction algorithm. In
Figure 1 the user has tapped on the keys r, j and w on a QWERTY
layout.

Figure 1. An example of accuracy relaxation.

Without any error correction “rjw” would be returned as the typed
word. However, when looking at the hit points and comparing
them with the corresponding points of the word “the” mapped on
the keyboard layout (and all other words relevant in the lexicon),

152

a close match is found. Hence we can return “the” despite the fact
that the user missed all the targeted keys. We now present the first
pattern matching algorithm we developed.

3.1 Similarity Measure
There are many pattern recognition and classification methods
that can be used for the current problem; however most methods
rely on large amounts of training data [2]. While such data could
be collected, it would be a tremendous amount of work and be
specific to a particular keyboard layout and language. We chose a
simpler model-driven approach that matches the geometrical
traces of the user’s input and a word in the lexicon directly using
an algorithm that has the following properties:

1. Scalable to a lexicon that practically includes all words
needed by a user.

2. No training is required for the recognition algorithm.

First we need to decide on a delimiter method. Among other
possible solutions such as a special-purpose physical button on
the user’s non-dominant hand, we currently use a set of delimiting
characters. These characters are word delimiters in normal word
processing, e.g. the tab-character, the space-character, semi-colon,
etc.

Next, let X be an unknown pattern of n stylus hit points }{ ix ,
and let Y be a template pattern of n centers }{ iy of keys in the
keyboard corresponding to letters comprising a word w in the
lexicon, ∈w {w : w is a word with n letters}. The average spatial
similarity between the patterns can then be computed with the
following formula:

 ∑
=

−=
n

i
ii yx

n
YXD

1
2

1),((3)

where
2

⋅ denotes the Euclidian norm. To avoid matching

unlikely words we impose a threshold T on each point-to-point
distance. If TYXD >),(, the distance to the word is set to ∞ .
Among all candidate words we then obtain a subset consisting of
the words with a D value below the threshold T . These words
are returned to the system as a ranked list. The system output is
the word with the smallest D value.

The threshold T can be a fixed threshold, for example the
diameter of a key on the keyboard layout, or be made more
adaptive by, for example, looking at the distribution of the point-
to-point distances. It is also possible to examine the actions of the
user to determine the threshold dynamically. For instance, if
many auto-corrections are followed by an immediate deletion by
the user, the threshold can be increased by some amount.

The above matching method is simple and conservative.
Specifically, if the user taps on all the correct keys of a word, no
other word can be closer. Also, the above scheme is easy to
implement and since we are comparing very few points,
exhaustive (linear) search through the lexicon is very fast.

3.2 Evaluation
To assess the effectiveness of the linear correction system we
conducted two experiments. Our main concern was if the simple

linear correction algorithm was enough to correct the vast
majority of the errors users make in stylus typing. A second
concern was to determine if the input speed was increased as a
result of relaxing the Fitts’ law W constraint. For brevity we will
omit some details of the experiments. The data presented should
be interpreted as “lessons learned” which were fed into the next
iteration of development of our stylus keyboard correction
system.

3.3 Experiment I
3.3.1 Experimental Set-up
In the first experiment 14 participants of different gender and of
various ages were recruited. We introduced two conditions: a
verbatim condition where the user tapped on a stylus keyboard,
and a “relaxed” condition employing the linear correction
algorithm. Due to users’ familiarity, we used the regular QWERTY
layout for the experiment despite being non-optimal for stylus
typing.

The experiment consisted of two tasks. Both used the pangram
“The quick brown fox jumps over the lazy dog” as stimuli. This
sentence is quite difficult for the linear correction algorithm on
the QWERTY layout since the words “dog” and “fox” are close
neighbors with “dig” and “fix”. The lexicon used by the
correction algorithm consisted of about 57,000 words supplied by
Pitrelli and Roy [14].

The first task was performed in a word mode in which a single
word at a time from the pangram was repeatedly presented to the
user. The user was asked to type the word as fast and as
accurately as possible. The user was not allowed to correct the
input in this mode.

The second task was performed in sentence mode. The user was
asked to copy the entire pangram “The quick brown …” and
could not proceed until the whole sentence was completely
correct, thus we forced users to either tap accurately or manually
correct the input by re-positioning the caret and using the
backspace key.

The order of the verbatim and relaxed conditions was alternated
between the subjects to balance any learning effects. The number
of word (task 1) and sentence (task 2) repetitions was 10 and 12
respectively. The input devices used in the experiments were a
Wacom tablet or a touch-sensitive screen with a stylus. The
conditions were balanced among the two different pen input
devices.

3.3.2 Results
Taking the average of the last three sentences as the final speed,
we analyzed the difference between the verbatim and relaxed
stylus keyboard (Keyboard Type). Repeated measure variance
analysis shows that the only significant factor is Keyboard Type
× Order interaction: F1,12 = 22.8, p < .001. Neither order nor
keyboard type alone was a significant factor in speed. This means
that there was an asymmetrical skill transfer between the two
types. As Poulton [15] argued, when there is an asymmetrical
skill transfer, the only way to find the unbiased result is to take
the data from the first condition presented, effectively turning the
experiment to a between subject design, although the power of the
experiment is much weakened. With such an approach, the

153

difference between the two keyboard types was still insignificant,
although the average speed of the relaxed stylus keyboard
condition (29.5 wpm) was 24% higher than the verbatim
condition (23.7). On average the participants made 8.7 errors in
the verbatim condition and 5.3 in the relaxed condition. The
difference was not statistically significant.

3.4 Experiment II
The first experiment revealed some but not clear advantage of
using relaxation. To find out if there is any advantage with the
technique after extensive learning we conducted a second
experiment, designed to quickly get users up to speed with the
technique. The users were only exposed to the sentence mode this
time and were asked to write the word “computation” five times
in sequence, ten times. We chose the word “computation” since
the word is quite long and might be harder to reproduce quickly
and accurately. Even though the task is artificial, it is appropriate
for quickly simulating “expert” behavior.

3.4.1 Pilot Performance
A user with a total of a few hours of experience (both conditions)
did a pilot test. The user typed the word “computation” 50 times
(in 5 groups) in verbatim and relaxed conditions respectively. The
user’s total number of errors was 18 with the verbatim condition
and 4 with the relaxed condition, suggesting the auto-correction in
the relaxed condition had a positive effect. Counting the speed
(converted to wpm) of the last 20 correctly typed words (the early
words served as a buffer for the learning effect in this within
subject test) the average was 50.1 wpm for the relaxed condition
and 35.5 wpm for the verbatim. The difference was statistically
significant (F1,38 = 53, p <.0001, within the subject). This suggests
that, for advanced users, there could be a significant advantage to
relaxation.

3.4.2 Experimental Set-up
We recruited 26 unpaid volunteers. Some of these had
participated in the earlier experiment, and these were balanced
among the two conditions. Each participant entered the word
“computation” 50 times in 5 groups. The user had to correct errors
remaining in each group before proceeding.

3.4.3 Results
The mean speed of the participants was in favor of the relaxed
condition. Their average speed was 33 wpm in the relaxed
condition and 30 wpm in the verbatim condition. However the
difference was not statistically significant. There were large
individual differences in speed. Figure 2 plots the speed against
participant number (ranked by performance, highest rank
corresponds to the fastest subject). At each corresponding rank,
the participant in the relaxed condition almost always outperforms
his or her counterpart in the verbatim condition, but the
performance is more pronounced with the top performers. It
appears that some users could take advantage of the relaxation
and exploit it more than others.

WPM of Correct Words

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13
Participant (ranked)

Relaxed CWPM
Verbatim CWPM

Figure 2. Ranked participant wpm scores for both conditions.
The total numbers of errors that had to be corrected by the user in
all five sentences were 38 in the verbatim condition and 22 in the
relaxed condition. The latter does not include errors automatically
corrected into the correct word by the linear correction system.
For the relaxed condition, we performed an analysis of the
corrections on the individual words for the last three sentences of
each subject. A total of 46 errors were found (including errors
automatically corrected into the correct word). Table 1 shows a
classification of these errors.

Errors automatically corrected 24 52%

Error corrected by the user before the matcher 17 37%

Deletions causing erroneous correction 2 4.5%

Missed the space key 2 4.5%

Other 1 2%
Table 1. Errors in the user study.

There were 24 instances where an error was auto-corrected to the
correct word. Hence the error correction method captured most
mistakes. The majority of the remaining errors were corrected by
the user before auto-correction was applied. Among all the cases
where automatic error correction took place the majority was
successful: 24 instances were corrected correctly, which amounts
to a success rate of 83%. In two cases deletions (the user omitted
a character) caused erroneous corrections (“compuation” and
“computtion” caused the system to correct them into
“completion”). In two other cases the space key was missed,
causing concatenation (of two words into one so the user had to
move the caret between the words and insert a space character
afterwards). These two categories of errors were very detrimental
to users’ perception of and performance with the relaxed
keyboard. They felt they could not really trust the system since it
may give them implausible results when they (unconsciously)
missed a key, particularly when the missed key was the space
key, which acted as the delimiter. This also made them more
conservative in taking advantage of relaxation algorithm and
pushing for higher speed.

154

We concluded that the 83% successful error correction rate was
still too low to be practical. Furthermore, the remaining errors
were problematic from a user experience point of view since they
caused the users to trust the system less. Trust is also a general
challenge to intelligent user interfaces. This led us to develop a
much improved solution to pattern-based precision relaxation.

4. AN ELASTIC CORRECTION SYSTEM
There were a few lessons learned after evaluating the simple
linear correction system:

1. The stylus keyboard correction scheme worked in that it
did correct the majority of the users’ errors. However it will
probably take a long time before users are proficient enough to
take advantage of the correction mechanism to gain higher input
speeds.

2. The choice of delimiter is crucial. The space key is a
bad delimiter since it is the most likely key being hit. Erroneous
delimitations must be avoided since they will result in incorrect
replacements by the system or no correction at all if the user fails
to delimit two long words.

3. The algorithm is too simplistic in that it can only handle
patterns of the same length. The study revealed that users made
deletion errors that the algorithm could not correct. Furthermore,
users requested that the algorithm should handle insertion and
transposition errors too. In general, the success rate of the
algorithm must be very high, since erroneous corrections results
in much more labor for the user than if the algorithm didn’t do
anything at all.

Based on the empirical data gathered in the experiments,
improving delimitation and handling patterns of different lengths
would directly lead to a 97% error correction success rate.

4.1 Elasticity in the Matching Process
In Figure 3 the user has tapped on the keys r, j, n and w (hit points
indicated as solid circles) on a zoomed-in part of the QWERTY
layout. Without any error correction “rjnw” would be returned as
the typed word. With the linear matcher no correction at all or an
erroneous correction would be returned. We will now present a
system capable of correcting the input despite the fact that the
user missed all the targeted keys and accidentally had one
spurious stylus tap. We call a keyboard employing such a system
an Elastic Stylus Keyboard (ESK).

Figure 3. An example of error correction: the user tapped on

r-j-n-w but the intended t-h-e is returned.

Clearly a certain amount of elasticity is needed in the matching
algorithm. We use a pattern matching algorithm that has the
following properties:

1. Scalable to a lexicon that practically includes all words
needed by a user.

2. Can match sequences of different lengths and cope with
transposition errors.

3. No training of the classifier is necessary.
The algorithm finds the minimum distance between two patterns
by searching for the closest corresponding points between them
through dynamic programming.

4.2 Similarity Measure
Let X denote an unknown pattern consisting of an ordered
sequence of n stylus hit points { ix } on a stylus keyboard, and
let Y denote a template pattern consisting of m points { iy } that
are the centers of the corresponding keys for any word
∈w {w : w is a word in the lexicon}.

We define),(YXD between X and Y as the minimum
stretching cost needed to transform X into Y . Let

),(),(mnKYXD = be the minimum stretching cost of matching

nxx K1 against myy K1 . Wang and Pavlidis [19] showed that
),(jiK for the subsequences ixx K1 against jyy K1 can be

computed using a recurrent equation of similar form as the
traditional edit-distance between two strings over a finite
alphabet. However this form was difficult to use since it involved
a constant penalty in inserting or ignoring a single point.
Intuitively the cost of inserting or ignoring a point should depend
on the distance between the points matched. For this reason, we
modified the recurrence given by Wang and Pavlidis [19] by
multiplying the constant penalty τ for inserting or ignoring a
point, with the actual distance between the points compared:

















×+−

×+−

+−−

=

),()1,(
),,(),1(
),,()1,1(

min),(

ji

ji

ji

yxjiK
yxjiK
yxjiK

jiK
δτ

δτ

δ
 (4)

where 0)0,0(=K ,),(ji yxδ is the stretching cost ix to jy , and
τ is an empirically determined parameter weighting the cost of
either ignoring or inserting a single point. We currently set

0.2=τ . To avoid extreme stretching of a single point we
currently define),(yxδ as







−

>−∞
=

otherwise
),(

2

2

yx

ryx
yxδ (5)

where r is the maximum distance a point may be stretched. It is
important to constrain the algorithm in this manner since it is
unclear whether the above algorithm satisfies the triangle
inequality [3]. Unintuitive matches may result if we do not clearly
define the point-to-point constraints. See [3] for a comprehensive
discussion of the subtleties in defining “elastic matching”
algorithms.

To be able to make fair comparisons between patterns of unequal
length we normalize the similarity measure. Since correct
normalization of Equation 4 is non-trivial [12] we compute a
pseudo-normalized minimum stretching cost:

155

mn
YXDYXDN +

=
),(),((6)

It is well known that the computation of),(mnK for matching
X against Y in Equation 4 can be solved efficiently using

dynamic programming in)(nmO time [19]. The best matching
word is the word whose pattern has the lowest normalized
stretching cost ND against the user’s tapping pattern.

The algorithm presented can be seen as a generalization of a
minimum edit-distance algorithm where we replace the character
equivalence function (which in the most simplistic case is either 0
if the characters match or 1 otherwise) with a Euclidean distance
between the points.

4.3 Indexing
Unlike the linear correction algorithm, the algorithm presented in
Equation 4 has quadratic complexity. To avoid a resource-
intensive exhaustive search of a large (000,57≈ words) lexicon
we implemented an indexing technique that considerably narrows
down the search space. Since Equation 5 constrains corresponding
point-to-point distances between the unknown input and the
template pattern to be shorter than r , by eliminating template
patterns whose first and last point do not meet this constraint we
may reduce the search space significantly. If r is sufficiently
conservative, e.g. 1.5 times the radius of an alphabetical key on
the keyboard, it directly leads to an effective indexing method.

We construct an ordered k-ary tree data structure of height 2
where k is the number of alphabetical keys on the keyboard
layout. Each node at index i at depth d represents a circular
cluster idC where the i th key center is the cluster center, and r
is the radius of the cluster. At index i , ki ≤≤1 , 1iC represents a
start position cluster and 2iC represents an end position cluster. A
pattern Y of length m is indexed by a pointer in a cluster 2jC at

depth 2 iff 11 iCy ∈ , 2jm Cy ∈ and 2jC is a child node of 1iC . Set
membership here is used to denote that a point is contained in the
circular cluster. When querying the index with an unknown
pattern X we walk the tree in breadth-first order and collect the
set of all patterns in the lexicon indexed at the same depth 2
clusters as X . This set is then searched exhaustively.

If r is too large or all words in the lexicon have patterns mapped
to the same start and end point clusters, this procedure would still
result in an exhaustive search. In practice the character
frequencies are distributed unevenly but with enough spread for
this indexing procedure to significantly reduce an exhaustive
search. For our lexicon, containing 57,000 words, the largest
possible set that needs to be searched exhaustively is about 4,000
words when 5.1=r in keyboard key radius units.

4.4 Threshold
After pattern classification we obtain a subset consisting of the
words in the lexicon with a similarity distance ND to the user’s
tapping pattern below a set threshold T . These words are then
returned to the system as a ranked list. The system outputs the
word with the shortest ND .

The threshold T can be a fixed, e.g. to the diameter of a key on
the keyboard layout, or a more adaptive value, e.g. by looking at
the distribution of the point-to-point distances. We currently set

krT ×= 0.1 , where kr is the radius of a key.

4.5 Lexicon
The lexicon used can be constructed with various methods. It can
be a preloaded standard dictionary, or a list of words extracted
from the user’s previously written documents, including emails
and articles, or words added by the user to the list, or a
combination of all. We have tested our system with a lexicon
containing about 57,000 words created for handwriting
recognition applications [14], as well as with a custom lexicon
extracted from a user’s 7 years of emails sent and received (about
7,000 words).

Using indexing an ESK can handle large lexicons, however it is
important that the lexicon is just large enough (but not larger than
necessary) to include all words a particular user needs so the
probability of unwanted corrections is minimized and the capacity
of correct mapping for “sloppy” stylus typing is maximized.

Such an “optimized lexicon” can be retrieved by for instance
supplying a “core lexicon” with the system containing the 5,000-
7,000 most frequent words in the language, and a function to mine
the user’s documents and email to “fill in” the majority of the
words missing from the user’s vocabulary.

4.6 Delimiter
As mentioned earlier, for the linear correction system we first
used the most obvious choice of a delimiter — the space key tap
which proved problematic.

There are a number of possible solutions. One is to use a special-
purpose physical button. Its drawback is that the user either has to
use two hands, with the non-dominant hand dedicated to entering
a space (and hence delimitation), or switch between tapping with
a stylus and pressing a button.

We eventually decided to use a pen gesture as a way of entering
space (and delimitation). Although many other gestures could be
used alternatively or concurrently, we decided to use a left-to-
right pen stroke anywhere on or near the ESK as a word delimiter.
This method proves to be quite effective — gesturing is distinctly
different from a tapping action and yet easy to evoke between
tapping actions.

4.7 Advantages
The advantages of an ESK in comparison to a statistical letter
sequence approach [5] are numerous. ESK’s matching effect works
on the word level, and the words explicitly belong to an
individual user’s lexicon. New words can be added and removed
in a customized dictionary; different languages such as Chinese
pinyin, English and Swedish can be mixed without affecting the
performance or behavior of the ESK. Depending on the size of the
lexicon, the error tolerance of the ESK can be adjusted, either by
the user or automatically by the system. Note that if the user aims
at the correct letters in a word, the resulting shape will tend to
approximate the ideal word pattern and be correctly matched. A
user’s input pattern can still be successfully matched to the
intended word even if some of the hit points are far away from the

156

correct keys, as long as the word patterns in the lexicon are
sufficiently separated. Since the system is using the geometrical
tapping trace, some amazing corrections can be done. It is for
example possible to correct the user’s input even if the user
missed all the intended letter keys (see Figure 3 and Figure 4),
something that is virtually impossible to correct without taking
the spatial hit point information into account. Furthermore, the
intuitive spatial interpretation of the matching method may enable
expert users to consciously take advantage of the error correction
scheme.

4.8 Evaluation
Proficiency in a text entry system such as the ESK is a function of
practice. The closed-loop action of typing on a regular stylus
keyboard is limited by the human motor control system and can
be reliably modeled using letter digraph statistics and Fitts’ law
[22]. Since an ESK relaxes or “breaks” Fitts’ law we cannot, as of
today, model expert performance using any known human
performance law. Also note that the recognition precision of an
ESK varies with the size and contents of the lexicon.
Instead of performing a theoretical modeling of the performance
of an ESK, we simulated expert performance by letting two users
repeatedly write selected sentences correctly (errors were not
allowed). The test was carried out on a Tablet PC with an ESK
using the QWERTY keyboard layout and a lexicon containing
around 57,000 words. The results are shown in Table 2. Note that
these numbers are “record” speeds that do not reveal the true
average and expert typing performance of an ESK, and should only
be considered a demonstration of the potential of the technique in
“breaking” Fitts’ law in stylus typing. Also note that we used a
very large lexicon as a stress test of the technique and our
implemented system. A smaller “optimized” lexicon (as discussed
in section 4.5) would increase the probability of desired automatic
correction. As a reference, the theoretical average expert typing
speed on a QWERTY stylus keyboard has been estimated to around
34.2 wpm [23].

Testing phrase User 1 User 2

the quick brown fox jumps over the lazy dog 46.3 37.7

ask not what your country can do for you 45.4 40.1

intelligent user interfaces 51.3 51.8
Table 2. “Expert” speed estimates (wpm) of two users.

5. FEEDBACK
We have implemented and experimented with three feedback
methods for the ESK. First, for each key tapped the corresponding
character is outputted, just as in a normal stylus keyboard. To
help users get an understanding of the geometrical pattern
approach we experimented with outputting the hit points of the
stylus taps (slowly fading away by time) as a way to “hint” to the
user that the proximity information is taken into account.

Second, since the system replaces the input with something else,
it is important to inform novice users about the replacements. We
currently achieve this by drawing the word replaced with a
distinct background color (Figure 4).

Figure 4. Example of correction indication.

Third, since the matching algorithm outputs normalized scores it
is possible to collect a ranked list of the best matches (N-best list).
By pressing on a corrected word with the stylus the user can bring
up a selection widget allowing direct access to the N-best list.

6. DISCUSSION AND CONCLUSIONS
The current ESK system (written in Java) can search a lexicon
containing about 57,000 words in real time with no perceptible
delay on a Tablet PC with a 1 GHz processor. Informal testing
shows that one could type faster with less effort on an ESK than on
a regular stylus keyboard, due to the reduced need of correcting
frequent errors and the more relaxed requirement for precision
tapping. We also observed that it is important to choose an
appropriate correction threshold and a suitable lexicon, so that
neither too many errors are left uncorrected nor many input
strings are changed to unintended words. In general we observed
that users were more unforgiving when receiving unintended
words than appreciating correct error corrections. It is hence
necessary to be conservative.

We have explored using a geometric pattern recognition approach
to relax the precision requirements in stylus typing. The first
implementation of this approach, the linear correction system,
was tested in two experiments. The data and experiences from
these experiments guided our development of the ESK. Although
we have not evaluated the ESK as formally as the first linear
correction system, informal testing indicates that the ESK performs
much better. The two key weaknesses observed with the first
version of the relaxed stylus keyboard (the linear correction
system) were solved. First, since we now use a gesture
distinctively different from tapping as the word delimiter, the
delimitation problem caused by missing the space key found in
the experiment is eliminated. Second, due to the introduction of
elasticity in the matching algorithm, the precision relaxation
system now returns correct results even when a required key tap
was missed or an extra tap accidentally added, as long as the
overall shape of the input pattern matches the desired target word
better than any other alternative. As a result of these
improvements, a user can trust the system much more and be
more comfortable in taking advantage of the precision relaxation.

An ESK is essentially letting users take advantage of the
regularities in the languages in a novel way – relaxing precision
constraints by pattern matching, hence “breaking” Fitts’ law.
Prior techniques have either relied on users consciously
“compressing” the input [16] or using prediction that demands
cognitive and visual reaction time. In contrast an ESK does not
require a user to learn a compression technique or hope for the
system to predict the desired input. An expert ESK user simply
taps the word as quickly as possible and relies on the redundancy
in the language to make sure that word patterns are sufficiently
separated.

We see future improvements in primarily two domains. First, we
noted from the evaluation of the first linear correction system that
the user corrected the input before the system in 37% of the cases.

157

An extension would be to make the system “eager” – recognizing
the user’s input before delimitation. Such a feature would signal
to the user that the system is automatically correcting the input
right away. Second, an improvement would be to use context or
common sense information [18] about the text the user is writing
to constrain the lexicon dynamically, thus increasing the
probability of correcting the user’s input. In short there are many
opportunities for intelligent user interfaces in this domain.

An ESK works with any stylus keyboard layout, either QWERTY or
an optimized layout. Potentially the ESK technique could also be
used to correct eye-typing and other text entry interfaces. An ESK
is a practical and easy-to-implement solution to improve the
verbatim and error-prone input method of today’s stylus
keyboards; requiring little, if any, training from the end-user’s
part.

7. ACKNOWLEDGMENTS
We thank John Karidis for contributing to the initial invention of
ESK. Part of this work was conducted when Per-Ola Kristensson
was a graduate intern at IBM Almaden Research Center.

8. REFERENCES
[1] Darragh, J.J. and Witten, I.H. Adaptive Predictive Text

Generation and the Reactive Keyboard. Interacting with
Computers, 3(1), 1991, 27-50, Elsevier Science.

[2] Duda, R. O., Hart, P.E. and Stork, D. G. Pattern
Classification (2nd ed.), 2001, John Wiley & Sons.

[3] Fagin, R. and Stockmeyer, L., Relaxing the Triangle
Inequality in Pattern Matching. Intl. J. Computer Vision,
28(3), 1998, 219-231, Kluwer.

[4] Getschow, C.O., Rosen, M.J. and Goodenough-Trepagnier,
C., A systematic approach to design a minimum distance
alphabetical keyboard. Proc. RESNA (Rehabilitation
Engineering Society of North America) 9th Annual
Conference, 1986, 396-398, RESNA.

[5] Goodman, J., Venolia, G., Steury, K. and Parker, C.,
Language modeling for soft keyboards. Proc. AAAI 2002,
2002, 419-424, AAAI Press.

[6] Green, N., Kruger, J., Faldu, C. and St. Amant, R. A reduced
QWERTY keyboard for mobile text entry. Extended
Abstracts CHI 2004, 1429-1432, ACM Press.

[7] Keele, S.W. Motor Control. in Boff, K.R., Kaufman, L. and
Thomas, J.P. eds. Handbook of Perception and Human
Performance, 1986, 30.31-30.60, John Wiley & Sons.

[8] Kristensson, P-O. and Zhai, S. SHARK2: A Large
Vocabulary Shorthand Writing System for Pen-based
Computers. Proc. UIST 2004, CHI Letters 6(2), 43-52, 2004,
ACM Press.

[9] Lewis, J.R., Kennedy, P.J. and LaLomia, M.J. Improved
typing-key layouts for single-finger or stylus input, 1992,
IBM Technical Report TR 54.692, IBM.

[10] Lewis, J.R., Potosnak, K.M. and Magyar, R.L. Keys and
Keyboards. in Helander, M.G., Landauer, T.K. and Prabhu,
P.V. Handbook of human-computer interaction, 1997, 1285-
1315, Elsevier Science.

[11] MacKenzie, I.S. and Zhang, S.X., The design and evaluation
of a high-performance soft keyboard. Proc. CHI 1999, 1999,
25-31, ACM Press.

[12] Marzal, A. and Vidal, E. Computation of normalized edit
distance and applications. IEEE Trans. Pattern Analysis and
Machine Intelligence, 15(9), 1993, 926-932, IEEE Press.

[13] Masui, T., An Efficient Text Input Method for Pen-based
Computers. Proc. CHI 1998, 1998, 328-335, ACM Press.

[14] Pitrelli, J.F. and Roy, A. Creating Word-Level Language
Models for Handwriting Recognition. lntl. J. Document
Analysis and Recognition, 5(2&3), 2003, 126-137, Springer
Verlag.

[15] Poulton, E. C. Unwanted asymmetrical transfer effects with
balanced experimental designs. Psychological Bulletin,
66(1), 1966, 1-8, APA.

[16] Schieber, S.M. and Baker, E. Abbreviated text input. Proc.
IUI 2003, 2003, 293-296, ACM Press.

[17] Shannon, C.E. A mathematical theory of communication.
The Bell System Technical Journal, 27, 1948, 379-423, 623-
656.

[18] Stocky, T., Faaborg, A. and Lieberman, H. A commonsense
approach to predictive text entry. Extended Abstracts CHI
2004, 1163-1166, ACM Press.

[19] Wang, Y.P. and Pavlidis, T. Optimal Correspondence of
String Subsequences. IEEE Trans. Pattern Analysis and
Machine Intelligence., 12(11), 1990, 1080-1087.

[20] Ward, D., Blackwell, A. and MacKay, D., Dasher - A data
entry interface using continuous gesture and language
models. Proc. UIST 2000 , CHI Letters 2(2), 2000, 129-136,
ACM Press.

[21] Zhai, S. and Kristensson, P.-O., Shorthand Writing on Stylus
Keyboard. Proc. CHI 2003, CHI Letters 5(1), 2003, 97-104.
ACM Press.

[22] Zhai, S., Smith, B.A. and Hunter, M. Performance
Optimization of Virtual Keyboards. Human-Computer
Interaction, 17(2,3). 2002, 89-129, Lawrence Erlbaum
Associates.

[23] Zhai, S., Sue, A. and Accot, J. Movement Model, Hits
Distribution and Learning in Virtual Keyboarding. Proc.
CHI 2002, CHI Letters (4)1, 2002, 17-24, ACM Press.

158

