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ABSTRACT 
Hand gestures are a natural and expressive input method enabled 
by modern mixed reality headsets. However, it remains challeng-
ing for developers to create custom gestures for their applications. 
Conventional strategies to bespoke gesture recognition involve 
either hand-crafting or data-intensive deep-learning. Neither ap-
proach is well suited for rapid prototyping of new interactions. This 
paper introduces a fexible and efcient alternative approach for 
constructing hand gestures. We present Gesture Knitter: a design 
tool for creating custom gesture recognizers with minimal training 
data. Gesture Knitter allows the specifcation of gesture primitives 
that can then be combined to create more complex gestures using a 
visual declarative script. Designers can build custom recognizers by 
declaring them from scratch or by providing a demonstration that 
is automatically decoded into its primitive components. Our devel-
oper study shows that Gesture Knitter achieves high recognition 
accuracy despite minimal training data and delivers an expressive 
and creative design experience. 

CCS CONCEPTS 
• Human-centered computing → Gestural input; Mixed / aug-
mented reality; Virtual reality. 
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1 INTRODUCTION 
The emerging potential of head-mounted mixed reality devices 
highlights the need for expressive gesture-based interaction. Hand 
gestures are one of the primary ways of interaction in this setting, al-
lowing the user to interact with virtual objects and issue commands. 

Although hand gestures have been extensively studied in the con-
text of recognition and robustness in interaction [15, 31, 45, 46], 
there has been little focus on protocols for expressive design with 
low data overhead. As a result, many designers limit their eforts 
to creating simple gestures. This inhibits the development of ap-
plications where more expressive hand gestures are desirable, for 
example in game design [21, 24] or 3D drawing [7]. 

There have been many tools developed for symbolic gesture 
design in the context of 2D pen and touch-oriented environments 
[13, 22, 23, 34]. This paper addresses an analogous problem for a 3D 
mixed reality environment. Two central principles guide its design. 

First, the tool should allow designers to easily implement novel 
gestures by avoiding the need for a designer to laboriously provide 
new demonstrations and train new recognizers for each desired 
gesture. An alternative approach is to synthesize new gestures from 
previously declared gesture components to build more complex and 
expressive gestures. This promotes recycling of gesture components 
and recognizers, aligning with established software engineering 
principles on reuse and streamlining the design process. Further, 
instead of having gestures as distinct classes, partitioning a gesture 
into distinct components, or features, allows more combinations 
of gesture components to be created, yielding more complex and 
expressive gestures. 

Second, recognition should consider the distinct attributes of 
hand gestures. For instance, take the gesture of the hand traveling 
in circles while in a fst. Recognition based on the entire motion 
explicitly disregards the main gesture features, such as the fst and 
the repetitive circular motion. As a result, variations such as the 
number of loops and the speed may confuse the classifer. A better 
approach is to incorporate the attributes of the gesture directly by 
defning them directly in terms of simpler gesture components. This 
allows the recognizer to classify based on attributes, not simply 
through similarity with previously collected samples. 

This paper presents Gesture Knitter : a new tool for designers ad-
dressing these two limitations and enabling the design of novel hand 
gestures in a mixed reality setting with high data efciency. Ges-
ture Knitter was conceived to facilitate the process of synthesizing 
and encoding novel gestures while adhering to software engineer-
ing principles of reuse and iterative design. The primary focus of 
Gesture Knitter is in supporting rapid integration of gesture recog-
nition functionality into mixed reality applications. Other aspects, 
such as the gesture elicitation process and underlying recognition 
technique, are secondary concerns given this objective and not di-
rectly addressed at this stage. In this paper, the tool is demonstrated 
using the Microsoft HoloLens 2 optical see-through head-mounted 
display, however, the approach is device agnostic provided that 
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full joint hand tracking is available. Following the lead of 2D pen-
based gesture design tools, such as Gesture Script [22], we allow 
designers to declare new hand gesture classes by declaring scripts 
and providing demonstrations. However, we also introduce novel 
capabilities into our application that streamline the design process. 
Signifcantly, gesture components are partitioned between gross 
and fne components. Gross hand components (or primitives) are 
gestures characterized by the palm’s motion, such as moving the 
hand forwards and backwards. Fine hand primitives are gestures 
characterized by the motion of the fngers relative to the palm, such 
as pointing and pinching. Gesture Knitter also provides a visual 
declarative script interface that allows designers to design expres-
sive complex hand gestures as sequences of user-defned primitives. 
The script produces new gesture recognizers without requiring 
explicit samples of the new gesture. Furthermore, the script decla-
ration of a new complex gesture can be inferred from a single user 
demonstration. Gesture Knitter automatically generates synthetic 
gesture samples from previous demonstrations, allowing designers 
to quickly add greater variation to their training examples. More-
over, we provide a tool to provide feedback to the designer on how 
distinct a newly declared gesture is compared to gestures that have 
been previously declared. 

The key contributions of this work are: 
• Gesture Knitter: a design tool for rapid prototyping both one 
and two-hand gestures for mixed reality applications. 

• A user-in-the-loop strategy for efciently generating sup-
plementary synthetic sample data to improve recognition 
performance. 

• A diagnostic tool for promoting the discernability of ges-
tures. 

• A user evaluation of Gesture Knitter yielding an improved 
understanding of the behaviors and needs related to rapid 
prototyping of hand gestures for mixed reality. 

The remainder of the paper is organized as follows. Section 2 
reviews the related work informing the design of Gesture Knit-
ter. The high-level design framework of Gesture Knitter is then 
presented in Section 3. The lower-level implementation details en-
abling efcient training and recognition of gestures are described 
in Section 4. Finally, we evaluate our tool with a designer study and 
evaluate the performance of Gesture Knitter with empirical data in 
Section 5. We conclude with limitations and future work and fnal 
observations on the outcomes of this work. 

2 RELATED WORK 
There has been much previous work into hand gesture recognition 
models with diferent learning based approaches. Visual based ap-
proaches include orientation histograms [12], metric based learning 
[20, 33], neural networks [26], and decision trees [9], while time-
series data approaches include Hidden Markov Models [19, 25, 45]. 
With regards to deconstructing a gesture into separate components, 
Narayana et al. [28] decomposes the fne and gross hand movement 
channels to improve gesture recognition with neural networks. 
An area that applies these hand gesture recognition techniques to 
a semantically meaningful domain is sign language recognition, 
which has received extensive attention [29, 38, 39, 46]. In addition, 
online recognition of hand gestures have been extensively explored 

with neural network based approaches [47] and modifcations to 
Hidden Markov Models [8, 14]. Semantic approaches to general 
hand gesture recognition and design include stochastic context free 
grammars [5] and the use of motion primitives for human-robot 
interaction [36]. Although our approach learns its hand gesture 
recognizer from samples using Hidden Markov Models, we enhance 
learning and expressiveness by decomposing primitives into fne 
and gross components in a grammar-based visual declarative script. 

Previous approaches that apply scripts to design and declare 
gestures are primarily in a 2D sketch or touchscreen environment. 
For the selection of hand gesture vocabulary, previous approaches 
have been focused on investigating the universality and intuition 
of hand gestures [40, 42] and attempts have been made to optimize 
the vocabulary by performing multiobjective optimization over 
psychophysiological and technical performance measures [37, 41]. 
Nacenta et al. [27] explored creating hand gesture sets by evaluating 
memorability for pre-designed and user-defned gestures. Although 
there has been some general guidance in the selection of AR/VR 
hand gestures [30] and attempts to directly translate hand gestures 
to script language for computer-aided design [15], no prior work 
has created a comprehensive system to simultaneously aid design 
and provide recognizers in the creation of novel hand gestures in a 
head-mounted mixed reality setting. 

Our work addresses this gap as Gesture Knitter interactively 
allows the designer to declare new gestures with a visual script, 
interactively train the recognizer, and generate new synthetic sam-
ples for 3D hand gestures. Declarative scripts have been employed 
in methods such as LADDER [13] and predefned primitives from 
perceptual components have been used in sketch recognition sys-
tems [34]. While our method does use declarative scripts to defne 
new complex hand gestures, the primitives are partitioned between 
gross and fne components in order to give the designer more fexi-
bility in design. Example-based script approaches have been used 
for 2D touch-screen multi-touch gestures in Gesture Coder [23], 
and rendering scripts to aid the recognition of 2D sketches were ex-
plored in Gesture Script [22]. Our method attempts to encapsulate 
the learning of a user-defned complex gesture by Viterbi decoding 
to generate a visual declarative script from which the user can give 
direct feedback to recognize the newly declared gestures. 

3 GESTURE KNITTER’S DESIGN 
FRAMEWORK 

In this section, we outline the key components of Gesture Knitter. 
These are: 1) a component allowing the declaration of new fne and 
gross primitives; 2) a component providing the option to generate 
synthetic primitive trajectories and to test gesture discernment; 
and 3) a component providing complex gesture declaration and 
recognizer synthesis using the visual declarative script. The design 
pipeline for declaring new primitives and new complex gestures is 
shown in Figure 1. 

To illustrate the practical usage of Gesture Knitter we follow a 
hypothetical user, Alice, as she designs three expressive gestures 
for her gaming application, Adventures in Wonderland. The three 
gestures that she wants to design are Shrink, MadRiddles and Grow. 
In Shrink, the hand travels down while the palm is facing to the side. 
In MadRiddles, the hand frst travels forward with the index fnger 
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(a) Design protocol for declaring a complex gesture. (b) Design protocol for declaring a primitive gesture. 

Figure 1: (a) After giving a hand demonstration for a complex gesture, the designer can choose to use the decoding option to 
automatically generate the visual script, or declare it from scratch. (b) After giving some demonstrations of the primitive, the 
designer can choose to either generate synthetic samples or provide more demonstrations to train the primitive recognizer. 

extended, then the hand moves to the right with the palm facing 
downwards, and fnally the hand retracts back to the body with 
a thumbs up. In Grow, the hand frst moves in counterclockwise 
circles while holding a clenched fst for two to three loops, and 
then the hand is moved forward with the palm facing downwards. 
These three gestures are visualized in Table 1. 

3.1 Declaring Primitives 
Alice sees that the predeclared primitives in the library do not 
sufciently express the complex gestures that she had in mind. 
To rectify this, Gesture Knitter supports interactive training of 
a recognizer from user demonstrations. Alice frst records a few 
examples of the hand trajectories corresponding to the new fne 
or gross primitive hand gesture defned. We refer to gross hand 
gestures as the gestures characterized only by the trajectory of the 
center of mass of the hand as it moves through space. We refer to 
fne hand gestures as the gestures characterized by the trajectory 
of the fngers relative to the center of mass of the hand. As with 
previous 2D gesture design toolkits such as Gesture Script [22], our 
system preserves the interaction of quickly training a recognizer 
from demonstrations. 

To build the Shrink gesture, Alice must declare the gross primitive 
of down and fne primitive of palm-side. For Grow, the gross primi-
tives would be circle and forward, while the fne primitives would 
be fst and palm-front. For MadRiddles, the gross primitives are for-
ward, right, backward; the fne primitives are point, palm-down, and 
thumbs. Note that once one primitive is declared, declaring another 
complex gesture does not need re-declaration of the primitive: that 
same primitive can just be used directly. 

3.2 Data Synthesis 
Gesture Knitter also provides an auxiliary tool to generate new 
synthetic samples by adding variation to given hand demonstra-
tions. After asking the system to generate new synthetic samples, 

Table 1: Visual script declarations of the three complex ges-
tures Shrink, MadRiddles and Grow. The hand actions show 
how the gesture is performed. Note that the visual script 
nodes are in chronological order from left to right. 

Gesture Visual Script Declaration 

Start End
down

palm-side

Shrink 

Start
forward

point palm-down

backward

thumbs
End

right

MadRiddles 

3x

Start
circle

fist palm-front
End

forward

3

Grow 

animation frames presenting the dynamic hand gesture primitives 
are shown to Alice, as shown in Figure 2. The preference gallery 
presents two synthesized demonstrations, as well as the original 
demonstration for comparison. Alice then indicates which of the 
animations from the preference gallery, if any, are suitable demon-
strations of the desired primitive gesture. The recognizer for this 
new primitive gesture is trained using these synthesized gestures, 
hence increasing the recognizer’s robustness to diferent variations. 



CHI ’21, May 8–13, 2021, Yokohama, Japan Mo et al. 

palm-down palm-front palm-side pinch point peace thumbs
103

104

105

Av
er

ag
e 

Ne
ga

tiv
e 

Lo
g 

Lik
el

ih
oo

d Warning: 7 instances 
 of fist are confused 
 with thumbs
Probability Threshold: 
 -2500.0

Negative Log Likelihood of fist with Other Classes

Figure 2: Preference gallery interface for generating syn-
thetic samples. The user selects the synthetic samples to 
include in the dataset by comparing them to the original 
demonstration for the purpose of training the primitive rec-
ognizers. 

Separate sample generators are created and trained for fne and 
gross primitive gesture sets. 

3.3 Discernability of Gestures 
A fundamental problem for the designer is creating gesture primi-
tives and complex gestures that are easily distinguished by a recog-
nizer. To aid in this task, Alice can test a newly declared gesture 
with the discernability tool that detects the similarity of this gesture 
in relation to previously declared gestures of the same category. For 
instance, if Alice declares the fne primitive of fst, she can use this 
tool to compare this new gesture’s demonstrations to previously de-
clared fne primitives. If there is a high degree of similarity between 
this new gesture and previously declared gestures, the tool notifes 
the designer of the possibility of discernment issues between them. 
For instance, comparing her demonstrations of fst with previously 
declared fne primitives show that multiple instances of her demon-
strations are possibly confused with thumbs, as shown in Figure 
3. When faced with this issue, Alice can choose to either alter the 
design of the novel gesture or provide additional samples to the two 
similar gestures to improve their discernability during recognition. 

3.4 Declaring Gestures with Visual Scripts 
Gesture Knitter supports the declaration of complex gestures with 
a visual scripting interface by concatenating primitive gross and 
fne hand gestures as shown in Figure 4. We assume for now that 
Alice is happy with the library of fne and gross primitive hand 
gestures that are already declared. Alice starts by selecting New 
Start Node by declaring the start node of the gesture. A complex 
gesture is composed of a sequence of nodes, and each node has 
felds denoting the gross component and the fne component. She 
can declare a node with the felds by clicking on New Hand Node, 
and she can edit that node by selecting the option Edit Node Proper-
ties or delete it by selecting Delete Node. There are looping options 
for each node, as seen in the declaration for Grow in Table 1, which 

Figure 3: Output of the discernability tool when tested with 
the fst fne primitive. It produces a chart giving the average 
negative log likelihoods of the fst’s demonstrations given 
the recognizers for the other fne primitives. 

can be assigned by clicking Add Loop. Alice can connect two nodes 
together by selecting both nodes and then choosing Add Connec-
tion. The chronological ordering of the nodes follows sequentially 
from the node arrangement with respect to the start node. Alice 
ends the gesture by declaring the end node by clicking on New End 
Node. During the declaration, Alice can click the Validate button 
to check if the script obeys the syntax. After the declarative script is 
built, Alice clicks the Compile button and an automatic recognizer 
is built for the new complex gesture composed of the trained rec-
ognizers for the primitive hand gestures. Alice can now use these 
compiled recognizers in her desired application. 

3.5 Automatically Generating Declarative 
Scripts 

Gesture Knitter supports the generation of a declarative script di-
rectly from a complex gesture demonstration. For instance in Grow, 
Alice records a demonstration on her mixed reality headset. After 
importing the demonstration into Gesture Knitter, she presses the 
Decode button in the toolbar and the system decodes the prim-
itive components of the hand gesture by outputting an inferred 
visual declarative script of the new complex gesture. The system 
essentially infers the new gesture’s syntactic representation using 
its priors for the primitive gestures. If there are errors with the 
script generated, another hand demonstration can be provided, or 
the visual script can be edited directly to correct the errors. The 
edited script is then verifed and compiled into a recognizer as in 
the previous section. 

For the specifc case of designing two-handed complex gestures, 
the same process is followed but now the trajectories are recorded 
with both hands, and each of the primitive component nodes in the 
visual declarative script consists of fve felds: the fne and gross 
primitive components of each of the left and right hands and the 
number of loops, as shown in the Figure 5. The primitives that the 
designer can declare now not only consist of primitives specifcally 
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(a) 

(b) (c) 

(d) (e) 

Figure 4: (a) Full visual script declaration for Grow. Note that the green start node and red end node indicate the start and end 
of the declaration. Edges between the nodes indicate the sequential order of the nodes. Each node has two felds indicating the 
fne and gross components. (b) Right clicking or declaring a new node reveals this menu from which the designer can select 
the fne and gross components of the node. (c) The pull-down down menu showing the primitive gesture options to select 
from. (d) The menu for declaring the number of loops on a specifc node. (e) The context menu shown when right clicking on 
a node. 

Start

circlefist palm-front

End

forward

3

fist circle palm-front forward

Figure 5: A visual declarative script for Grow for a two-
handed scenario. Note that the top of each node represents 
the left gesture component and the bottom represents the 
right gesture component. 

for the right hand, but also gross and fne primitives particular to 
the left hand. 

4 EFFICIENTLY TRAINING AND 
RECOGNIZING GESTURES 

We now present the algorithms that Gesture Knitter uses in order to 
learn recognizers, decode demonstrations, and generate synthetic 
samples to improve recognition rates. 

4.1 Data Preprocessing 
Hand gestures are represented as time-series trajectories {xi}n 

i=1
recorded by the hand tracker on the HoloLens 2. For one-handed 
gestures, we take each xi to be 18 dimensional, where the frst 
three entries represent the x ,y, z components of the palm, and 
the remaining 15 represent the x ,y, z of the thumb, index, middle, 
ring, and pinky fngers. For two-handed gestures, we take each 
xi to be 36 dimensional, each of the two 18 dimensional halves 
corresponding to the right and left hands. For the design protocol, 
we set n=300, corresponding to a fve second recording for the 
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Figure 6: (left) The original smoothed time-series velocity 
trace of a downward motion projected on a yz-plane. (right) 
An illustration of equidistant resampling of the trace. 

primitives and complex gestures. We frst transform the trajectory 
to a body-centered frame at the sternum to establish a stationary 
frame of reference. 

For the gross component of the recorded gesture, we only take 
into account the time-series given by the palm coordinates. We 
frst smooth the palm coordinates using a Gaussian flter and we 
take the frst diferences of the smoothed coordinates to yield the 
velocity of the trajectory. As the defning characteristic of the gross 
gesture is the shape of the trajectory, we resample the trajectory 
points so they are evenly spaced on the curve, where the number 
of points is proportional to the curve length (see Figure 6). For the 
fne component, we take the position of the fngers relative to the 
palm for the whole trajectory. 
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4.2 Learning Gesture Recognizers 
A Hidden Markov Model (HMM) is a probabilistic model that repre-
sents probability distributions over sequences of observations, and 
is especially useful for time-series data. It assumes that the obser-
vations, which in our case are the hand trajectories, are dependent 
on a hidden process, which is assumed to be Markov. Specifcally, 
we leverage a Multivariable Gaussian HMM as this model allows 
joining recognizers that infer time-series data composed of known 
sub-components. Our choice is motivated by the fundamental goal 
of Gesture Knitter, which is to synthesize novel hand gestures by 
arranging primitives by concatenation or adding loops. Many other 
parametric probabilistic methods have been applied to related prob-
lems [2, 3, 10, 11, 18, 44] but are not well suited to our task. 

The structure for the HMMs we use for primitive gestures is 
a Multivariable Gaussian HMM with loop transitions for each of 
the hidden states. We found that 12 hidden states works best for 
gross primitives and eight hidden states works best for fne prim-
itives. The fne primitive HMM is shown in Figure 7(a). We train 
the HMMs given the samples for the primitive trajectories using 
the Baum-Welch algorithm, where estimates of the transition prob-
abilities are iteratively improved during learning. The HMMs are 
trained for the gross and fne primitives only using the samples 
from demonstrations or synthetically generated samples (covered 
later in Section 4.5). 

4.3 Recognizer Synthesis and Classifcation 
We focus on the recognizer synthesis and classifcation process for 
one-hand complex gestures. When the declarative script for the 
complex gesture is compiled, we obtain a list of aligned sequential 
components for the gross primitives, fne primitives, and loops 
that correspond to the complete gesture nodes. For each one-hand 
complex gesture, we build two HMMs corresponding to the gross 
component, a concatenation of gross primitives, and the fne com-
ponent, a concatenation of the fne primitives, separately. Here we 
describe the process for the fne component as the gross component 
is constructed in the same way. For each fne gesture primitive, we 
retrieve the pre-trained HMM corresponding to that primitive. For 
one fne primitive component that sequentially follows another 
fne primitive component, we concatenate the two corresponding 
pre-trained HMMs by adding a transition between the end state of 
the frst fne primitive’s HMM to the start state of the second fne 
primitive’s HMM as shown in Figure 7(b). If the corresponding loop 
value to that fne primitive is greater than one, we add a transition 
between the end state of that particular primitive’s HMM to its 
start state. For two-handed complex gestures, we have four HMMs 
corresponding to the right-gross, right-fne, left-gross, and left-fne 
components. 

Now, given the diferent complex hand gesture classes {ci }m 
i=1

and their corresponding HMM recognizers, the gross and fne com-
ponents, we can perform classifcation. For a given demonstration 
D, we run the forward algorithm on each of the complex gesture 
HMMs corresponding to each of the complex gesture classes in 
order to fnd log p(D|ci ) for i = 1, ...,m. Essentially, the forward 
algorithm for each complex hand gesture class ci , is applied to 
D on the gross and fne HMMs of the complex gestures to yield 
log pд,ci and log pf ,ci corresponding to the log probabilities for the 
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Figure 7: (a) An eight-state HMM for a fne primitive. (b) Fine 
component of complex gesture, consisting of gesture д1 fol-
lowed by gesture д2 looped twice. Here, the corresponding 
HMM of д2 is concatenated to д1 and looped. (c) Fine decod-
ing HMM by parallel HMMs corresponding to fne primi-
tives д1, ..., дm and a transition from the end e to start s. 

class’s gross and fne components respectively. Then we have that 
log p(D|ci ) = logpд,ci + w logpf ,ci for the mixture model. w is an 
empirically determined parameter. We found that w = 0.1 works 
the best in our experiments. Therefore, we classify the gesture into 
the class C where C = argmaxci log p(D|ci ), that is, the complex 
gesture class with the highest log probability of generating the data 
sequence. For two-hand gestures, the recognizer would have the 
log probability of the demonstration given the class as a sum of 
four terms: the log probabilities of the gross and fne components 
for both the right and left hands. We use the same weighting for the 
mixture model between gross and fne components for two-handed 
gestures. 

4.4 Decoding Demonstrations 
The main algorithm that we use to translate a demonstration D 
to a declarative script is the Viterbi algorithm, which computes 
the most likely sequence of hidden states given the demonstra-
tion. Again, we focus on one-hand gestures as two-hand gestures 
can be easily extended by applying the same method for the other 
hand. First, we describe the decoding HMMs corresponding to the 
gross and fne components on which we run the Viterbi algorithm. 
Consider the fne component of the decoding HMM, and call its 
start and end states s and e respectively. For every fne primitive, 
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we connect its corresponding primitive HMM to the fne decoding 
HMM by connecting s to the starting state of the fne primitive 
HMM and the end state of that fne primitive HMM to e , and subse-
quently normalizing the transition probabilities. Then, to simulate 
the sequence of diferent fne gestures, we add a transition from e 
to s , essentially looping the decoding HMM. The whole decoding 
HMM is shown in Figure 7(c). Hence, after running Viterbi with 
D, we obtain a sequence of hidden states that correspond to the 
sequence of fne primitive gestures. We build a similar decoding 
HMM for gross primitives. For two-hand gestures, we construct the 
two decoding HMMs for each of the left and right hands. Given the 
hidden states, we normalize the series with the smallest length of 
the number of states traversed for one particular gesture primitive, 
and subsequently align the fne and gross primitive states for the 
script nodes. 

4.5 Preference Gaussian Processes and Sample 
Generation 

We apply Bayesian optimization to our preference gallery tool to 
generate synthetic samples from which the user can select. Bayesian 
optimization is a frequently employed algorithm in interactive ma-
chine learning for environments such as procedural animation 
design [1], visual design optimization [17], and panel placement in 
a crowd-sourced AR setting [6]. Most of these methods optimize 
over a set of design parameters in order to generate new samples to 
enhance a concrete design goal, such as visibility and material ap-
pearance. Moreover, previous works have primarily used interactive 
machine learning in an AR/VR setting to recognize hand gestures 
for an online supervised classifcation task [16, 32]. Attempts have 
been made to create a generative model for hand gestures, such as 
using generative adversarial networks, but that approach requires 
large amounts of data [43]. Using template models to infer varia-
tion parameters of the gestures [4] is another approach. However, 
such methods can only be efectively applied to lower dimensional 
data. Specifcally, the fne gestures are 15 dimensional for one hand, 
and due to the curse of dimensionality, this makes distance met-
ric approaches for comparing gestures inefective. Instead, we use 
Bayesian optimization to optimize the variation we can apply to 
previously collected demonstrations to increase the recognition 
accuracy of the classifer. Our novel approach allows designers to 
automatically generate new samples without the repetitive labor of 
providing explicit demonstrations. 

In our particular scenario, the objective function value is hidden 
because when training, we are only given data about the relative 
preference of one generated sample to another sample in represent-
ing the original sample of the primitive gesture. To solve this, we 
follow the framework as outlined in Brochu et al. [1], which we 
refer the reader to for more details on the approach. The essential 
idea is that from the preference gallery user choice, we use Gaussian 
process (GP) regression to model the latent valuation function given 
the parameters used to generate the synthetic demonstrations and 
their preference rankings. From the GPs, we use the Bayesian opti-
mization approach to decide where to sample next while trading 
of exploitation and exploration with the expected improvement 
acquisition function. 

We implement two Bayesian optimizers to generate synthetic 
samples for the fne primitives and gross primitives separately. For 
the fne primitives, the parameters are the noise variances {σi }3 

i=1 
from which we sample {θi }3 

=1, the roll, yaw, and pitch deviation, i 
from the normal distribution θi ∼ N(0, σi 

2). From {θi }3 
=1, we con-i

struct the rotation matrix with which we multiply the coordinates 
of each of the fngers relative to the palm position. For the gross 
primitives, the parameters are the noise variances {ωi }3 

=1 from i 
which we sample the dilation factors {λi }3 

=1 for the x ,y, z direc-i 
tions from the normal distribution λi ∼ N(1.0, ωi 

2). From {λi }3 
i=1, 

we construct the 3×3 diagonal matrix with which we dilate the 
palm positions along the entire trajectory relative to the starting 
position of the palm. Note that for the same parameter set θi or 
λi , we get a diferent synthetic trajectory each time we are sam-
pling from the normal distribution set by these parameters. This 
approach serves to introduce variation in terms of the shape, scale, 
and speed of the gross primitives and variability in the orientation 
of the fne primitive motions. We add 30 training samples to the 
two Bayesian optimizers before we use the preference galleries to 
generate synthetic data. 

In our approach, we add a heuristic to randomize our decision 
each iteration to either choose to sample two new parameter sets 
to obtain a new sample or to pick two of the previously sampled 
parameters to generate trajectories from. This is to query the user 
about the ranks between two previous parameter sets that have 
not yet been directly compared for a better estimate of the latent 
valuation function. 

4.6 Discernment of Gestures 
We run the demonstrations of the newly declared gesture on all 
the other previously declared gestures’ HMMs in the same type of 
general class, that is, gross primitives, fne primitives, one-handed 
complex gestures. These will provide a log probability for each 
HMM that demonstrates the likelihood that any of the other classes 
is likely to be similar to the new gesture. If any of these log proba-
bilities is above an empirically determined threshold then we give 
a warning to the designer that, given these demonstrations, there 
is a possibility that the new gesture is similar to a gesture that is 
already declared. 

4.7 Online Recognition 
Gesture Knitter supports online recognition applications where 
the system is required to detect gesture activity within a stream of 
possible non-gesture data. In order to recognize multiple gestures 
sequentially, we construct a movement HMM representing the 
gesture class trained from the gross motion of the discrete complex 
gesture samples we have obtained. Note that we detect movement 
only through the palm trajectory or the gross motion. Hence, for a 
continuous stream of frames, we frst apply the preprocessing step 
of detecting if a gesture lies within a window of 150 frames, stepping 
by 30 frames each iteration. For the window, we run the trajectory 
on the movement HMM, and if the probability of movement is 
greater than a log probability threshold, we run the window data 
on the recognizer, indicating what is the most likely gesture to be 
in this window. We accept the classifcation if the log probability of 
the class selected is greater than -30,000.0 for one-handed complex 
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gestures and -5,000.0 for two-handed complex gestures. For both 
types of complex gestures, we set the movement threshold to -50.0. 
All of the above parameters were selected based on those yielding 
the best performance given collected user data. We accumulate all 
the recognition results for the most recent set of windows where 
we expect there to be a gesture and make a decision based on a 
majority vote. 

4.8 Implementation Details 
The visual declarative script is implemented using Java. The HMM 
recognition system is implemented using Pomegranate [35] in 
Python3, and the Bayesian optimization and hand animations are 
implemented with Numpy and Matplotlib in Python3 respectively. 
The hand tracking component is implemented in C# and Unity 
using the Microsoft HoloLens 2 headset. 

5 EXPERIMENTAL EVALUATION 
We evaluate Gesture Knitter in two separate experiments to gain in-
sight into the design process and the recognition capabilities of the 
system. The purpose of the frst study, conducted with eight individ-
uals (all right handed, three female), was to collect representative 
gesture data to evaluate recognition and decoder performance. In 
Study 1, performance is evaluated with reference to several tasks: 1) 
recognition rate of the complex gestures; 2) decoding performance 
when declaring complex gestures; 3) the aid of synthetic samples 
in increasing recognition rate; and 4) the potential of recognition 
performance in an online recognition setting. The purpose of the 
second study, conducted with fve of the same participants from 
Study 1 (one female), was to observe the participants’ behaviors and 
use of Gesture Knitter during a design task of a custom complex 
gesture with a newly declared primitive. The frst study took two 
hours and the design study took one hour including breaks, and all 
eight were compensated £40 for their time. 

5.1 Study 1: Data Collection 
The data collection for evaluating Gesture Knitter involved collect-
ing repeated gesture samples for a defned set of gross, fne and 
complex combined gestures. For gross primitives, we collected fve 
samples from each participant for each of the eight gross primitive 
classes shown in Figure 8(a) for the right hand. We logged two 
more gross primitive classes for the left hand corresponding to 
circles and waves, fve samples per gesture from each participant. 
Note that we used the data from other six right hand gross prim-
itives for the left hand as well. For fne primitives, we collected 
fve samples from each participant for each of the eight fne primi-
tive classes shown in Figure 8(b) for both the right and left hands 
due to motor diferences between the dominant and non-dominant 
hands. Five further samples from each participant were collected 
for each of the ten complex one-handed gestures in Table 2 and 
for each of the ten complex two-handed gestures in Table 3. When 
executing all gestures, participants were required to start from a 
nominal rest position: the hand with the palm facing down. The 
gross and fne primitives were selected by following the gestures 
suggested by Piumsomboon et al. [30]. The complex gestures were 
selected to showcase a variety of distinct complex gestures that can 
be synthesized using Gesture Knitter’s visual declarative script. 

To demonstrate the potential of applying Gesture Knitter to on-
line recognition, we also collected fve samples of three complex 
gestures performed in sequence within a 20 second reel. Each indi-
vidual was asked to perform one of each of the fve sequences 
of three gestures: (1) Shrink, Execution, PeaceOut; (2) TickTock, 
MadRiddles, Flamingo; (3) Grow, Caterpillar, CheshireDance; (4) Push, 
CheshireDance, PeaceOut; (5) Execution, Shrink, Flamingo (see Table 
2 for gesture syntax). We did this for both one-handed complex 
gestures and two-handed complex gestures. Participants were re-
quested to keep their hands relatively still between two complex 
gestures for fve seconds during the continuous reel. 

up down forward backward circle 
(LH)

right left circle
(RH)

waves
(RH)

waves
(LH)

(a) Gross primitives. 

fist palm-down palm-front palm-side

peace pinch thumbspoint

(b) Fine primitives. 

Figure 8: (a) All gross primitives. Note that for the right hand 
circle, the direction is counterclockwise while for the left 
hand circle, the direction is clockwise. For the right hand 
waves, the gesture starts by going right while for the left 
hand waves, it starts by going left. (b) All fne primitives for 
the right hand, which are mirrored for the left hand. 

5.2 Recognition and Decoding Evaluation 
We frst tested the rate of recognition of all the eight participants’ 
one-hand and two-hand complex gestures when trained with all 
the primitives collected (that is, 8 participants × 5 repetitions = 
40 training examples per primitive gesture). Note that none of the 
recognizers are trained with any of the complex gesture samples. 

The recognition accuracy for the ten one-hand and two-hand ges-
tures is shown in Figure 9(a). Gesture Knitter achieves an average 
accuracy of 96.5% for one-handed complex gestures and 98.3% for 
two-handed complex gestures. To examine the impact of training 
data diversity, we also conducted two cross-validation experiments 
with the full dataset: Train-on-1 involved training on primitive data 
from one person and testing on the complex gestures from the 
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Figure 9: (a) The overall recognition rate on all complex gesture data when all the participants’ primitive data is used for 
training. (b) The cross-validation recognition rate when trained with one participant’s primitive data versus if trained with 
seven participants’ primitive data. This shows that with more variety in user training data, the recognizers are more robust 
against new users’ gestures. (c) The recognition rate when trained with fve samples randomly selected for each primitive 
versus training with those fve and ten synthetically generated from those fve. (d) The online recognition rate when the 
primitives are trained with data from all eight users. (e) The number of errors per node for decoding complex gestures. Note 
that one-handed complex gestures have three felds per node, while two-handed have fve felds per node. 

Table 2: The ten one-handed complex gestures collected. 
Gesture nodes are listed in sequential order with each being 
denoted as gross-primitive / fne-primitive / (repeats), where 
repeats are blank if 1. 

Table 3: List of the 10 two-handed complex gestures col-
lected. The gesture nodes are listed in sequential order with 
each node being denoted as right-gross-primitive / right-
fne-primitive / lef-gross-primitive / lef-fne-primitive / (re-
peats), where repeats are blank if it is 1. 

Gesture Declaration 
Shrink 1. down / palm-side 
Push 1. forward / palm-front 
TickTock 1. waves / palm-front 
PeaceOut 1. left / peace 
Execution 1. up / fst 
Caterpillar 1. right / pinch 
Flamingo 1. up / pinch 

2. left / peace 
CheshireDance 1. backward / thumbs 

2. circle / point / 3 
Grow 1. circle / fst / 3 

2. forward / palm-front 
MadRiddles 1. forward / point 

2. right / palm-down 
3. backward / thumbs 

Gesture Visual Script Declaration 
Shrink 1. down / palm-side / down / palm-side 
Push 1. forward / palm-front / backward / palm-front 

2. backward / palm-front / forward / palm-front 
TickTock 1. waves / palm-front / waves / palm-front 
PeaceOut 1. left / peace / left / peace 
Execution 1. up / fst / up / fst 
Caterpillar 1. right / pinch / left / pinch 
Flamingo 1. up / pinch / up / pinch 

2. right / peace / left / peace 
Cheshire-
Dance 

1. backward / thumbs / backward / thumbs 
2. circle / point / circle / point / 3 

Grow 1. circle / fst / circle / fst / 3 
2. forward / palm-front / forward/ palm-front 

MadRiddles 1. forward / point / forward / point 
2. right / palm-down / left / palm-down 
3. backward / thumbs / backward / thumbs 

other seven participants; and Train-on-7 instead trains on primi-
tive data from seven participants and tests on the complex gesture 
from the other single participant. These results are shown in Fig-
ure 9(b). For the Train-on-1 condition, the recognition rate is 54.7% 
and 55.0% for one-handed and two-handed complex gestures re-
spectively. The cross-validation accuracy for Train-on-7 is 97.5% 
for one-handed and 99.2% for two-handed complex gestures, illus-
trating that increased variation in the primitive data introduced 
by more individuals creates increased robustness in recognition of 
new users’ gestures. In addition, the average time for classifying 
one-handed gestures was 470.2 ms and for two-handed gestures 
was 1095.6 ms on a Dell Latitude E5440 PC with an Intel Core i5. 

We then assessed the efcacy of generating synthetic samples 
from our preference gallery-based Bayesian optimization. Note that 
synthetic samples were generated by the frst author using the 
preference gallery. We frst selected fve examples for each gross 
and fne primitive from a randomly selected participant as train-
ing data, and then we synthetically generate ten new samples for 
each primitive from these fve samples using our preference gallery. 
Figure 9(c) compares the recognition rate on one-handed and two-
handed complex gestures from all participants when trained with 
fve real samples to fve real plus 10 synthetic samples for each fne 
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and gross primitive. For both types of complex gestures, we observe 
a signifcant increase in recognition rate to a comparable rate to 
training with all the primitive samples when trained with the 10 
synthetic samples, specifcally from 73.0% to 96.0% for one-handed 
complex gestures and from 70.0% to 97.8% for two-handed com-
plex gestures. This suggests that the generated synthetic gestures 
introduce sufcient variability into the primitives that translates 
to substantial improvements in recognition accuracy for diferent 
users while simultaneously alleviating data overhead. 

To gauge the potential of these recognizers for applications in 
a more challenging online recognition use-case, we evaluated on-
line recognition performance using the 20 second trace in which 
participants sequentially performed three complex gestures. This 
dataset consists of a total of 120 one-handed and 120 two-handed 
complex gestures performed sequentially by the eight participants. 
The results are shown in Figure 9(d). The recognition rate is calcu-
lated as follows: an incorrectly recognized gesture, or no output 
when there is a gesture, results in an error; if a gesture is recognized 
when there was none we introduce an error and add one to the total 
number of gestures. The recognition rate for one-handed was 72.5% 
and for two-handed was 45.2%. The lower accuracy, notably for 
two hands, is due to frstly the high frequency of false activations 
where a hand gesture class was detected when there was none, and 
secondly from when there were no gestures detected when there 
indeed was one. These points suggest that better online gesture 
recognition delimitation techniques are likely to further improve 
the recognition rate, but this is beyond the scope of the current 
paper. In many prototyping development exercises, we anticipate 
that there will in fact be some form of explicit gesture start delim-
itation in which case the efective recognition accuracy is as per 
Figure 9(a) (i.e., in excess of 95%). 

Finally, we assess our decoding mechanism as an aid for de-
signers from our entire collection of one-handed and two-handed 
complex gestures. We assess the efcacy of decoding by using a 
variant of the edit distance. We defne the edit distance between two 
scripts as the number of edits on the nodes’ felds for them to be 
the same. Note that for one-handed complex gestures, the number 
of felds per node is three (fne, gross, and number of loops) and for 
two-handed complex gestures, the number of felds per node is fve 
(right-fne, right-gross, left-fne, left-gross, and number of loops). 
We then divide the total edit distance by the number of nodes of 
that particular complex gestures’ script declaration to obtain the 
decoding error rate per node. Intuitively, this value corresponds to 
the expected number of felds requiring a change for each node to 
form the right declaration after giving a demonstration. For one-
handed gestures, the average error rate was 0.73 edits per node 
while for two-handed gestures, the average error rate was 1.97 edits 
per node as shown in Figure 9(e). Gestures such as TickTock may 
generate large errors when the gross primitives decoded are repe-
titions of right and left, which can be thought of as an alternative 
formulation of the gesture. Despite the decoder sometimes omitting 
or adding extraneous nodes, this performance demonstrates that 
the decoding mechanism is a helpful tool for designers to edit the 
visual declarative script generated from providing a demonstration 
instead of starting from scratch. 

5.3 Study 2: Design Study 
We conducted a design study with fve designers recruited from 
within our institution (four male and one female, average age 21.6 
years) to analyze the usability of Gesture Knitter’s features and 
design protocol. All fve participants had previously taken part in 
Study 1. This was to ensure participants were already familiar with 
the HoloLens 2 hand tracking functionality. Three participants had 
prior experience using machine learning, one had programmed 
gesture recognition before, and one had experience with AR/VR 
applications. 

We asked each participant to declare one new fne or gross prim-
itive diferent from the sixteen evaluated in Study 1 and to use that 
new primitive to design a custom one-handed complex gesture. 
They were free to use any of the predeclared fne and gross primi-
tives. Prior to the design task, participants were introduced to the 
idea of decomposing a hand gesture into gross and fne components 
and synthesizing complex gestures. Participants were familiar with 
the distinction between fne, gross, and complex gestures, having 
already been exposed to this concept in Study 1. Study 2 was sched-
uled to ensure that there was no more than a one day break after 
Study 1. Participants were asked to prepare and notify the study or-
ganizers of their new primitive and complex gesture concept prior 
to attending the study in order to avoid the same new primitive 
being chosen by multiple individuals. This happened when two 
individuals wanted to declare the same fne primitive Spiderman. 

We frst provided the participants with a tutorial on Gesture 
Knitter and walked them through the process of using the visual 
declarative script to declare the Shrink and Flamingo gestures from 
scratch and by demonstration. Specifcally, we stated to them that 
they must input their novel primitive gesture frst by providing 10 
demonstrations and then declaring their novel complex gesture. 
Next, participants completed a task to declare a declarative script 
for Grow and Push. 

We then asked participants to start declaring their novel primi-
tive and designing their novel complex gesture. During the design 
process, we followed a think-aloud protocol in which participants 
were asked to verbalize their reasoning and decision making at each 
step of implementing the novel complex gesture. Participants were 
instructed to provide ten demonstrations of the novel primitive 
gesture as part of the design process, as well as ten demonstrations 
of their novel complex gesture. If they decided to declare their 
gesture from scratch, we asked them to try out the decoding mech-
anism afterwards. After the design process, participants completed 
a post-study questionnaire. The study was conducted on a laptop 
with an external mouse and all hand gestures were recorded using 
the HoloLens 2. 
5.3.1 Results. 
All fve participants completed the design study by declaring either 
a gross or fne primitive and using that to construct a novel one-
handed complex gesture. Four novel fne primitives and one novel 
gross primitive were declared, as shown in Figure 10. The fve 
novel complex gestures are presented in Figure 4. During the initial 
synthesis of the complex gesture, four participants opted to declare 
the script from scratch and one participant decided to provide a 
demonstration (for the Dispose gesture). 
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grasp spiderman

gun ok

stir

Figure 10: The fve novel primitives that the designers came 
up with. Stir is a gross primitive which is one counterclock-
wise circle in the horizontal plane. 
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SA A N D SD

Gesture Knitter is useful.

Gesture Knitter is easy to understand.

Gesture Knitter is easy to use.

The script is easy to understand.

The scripts are easy to declare.

I was able to construct the gesture I
had in my mind.

The decoder is useful.

Gestures can be easily represented by
the script.

Declaring new primitives increases the
expressiveness of possible gestures.

Figure 11: The fve-point Likert responses to the post-design 
questionnaire. Here, SA is strongly agree, A is agree, N is 
neutral, D is disagree, and SD is strongly disagree. 

The post-design questionnaire captured participants’ responses 
to the statements summarized in Figure 11 on a fve point Likert 
scale. Notably, all participants agreed that Gesture Knitter was 
useful, easy to understand, and expressive. 

The following observations are taken from the think-aloud com-
ponent of the study. When designers opted to declare the script 
from scratch, they inserted the gesture nodes in chronological order. 
This suggests that the visual declarative script corresponds directly 
to the performance of the complex gesture. Typically, they frst 

Table 4: List of the fve one-handed complex gestures de-
signed by designers during the design study. The gesture 
nodes are listed in sequential order with each being denoted 
as gross-primitive / fne-primitive / (repeats), where repeats 
are blank if it is 1. 

Complex Gesture Visual Script Declaration 
Spiderweb 1. forward / spiderman 

2. backward / palm-front 
Alright 1. circle / ok / 2 

2. up / ok 
Dispose 1. left / grasp 

2. forward / pinch 
Cauldron 1. stir / fst / 3 
Shotgun 1. right / gun 

2. left / fst 

declare all the gesture nodes, including the start and end nodes, 
and then connect the nodes together with the edges. During the 
declaration, the designers would also perform the complex gesture 
to guide themselves through the design process. This behavior im-
plies that the physical declaration of the visual declarative script 
from scratch intuitively maps to performing the complex gesture. 
In addition, when performing the decoding by demonstration, the 
designer would still need to traverse from start to end to verify the 
decoding and make any of possibly a few modifcations accordingly. 
This observed workfow is likely to have been infuenced by the 
nature of the task and the introductory instructions given. We con-
jecture that increased exposure and trust in the system would lead 
to participants leveraging the declaration by demonstration func-
tionality more extensively given its efciency. It is also plausible 
that the decoding by demonstration functionality may be useful to 
users with no prior exposure to the system, as it may provide a help-
ful introduction on how to construct and edit nodes to represent 
gestures a novice designer would have in mind. 

The visual declarative script therefore appears to directly and 
intuitively correspond to a syntactic representation that represents 
the physical performance of the gesture. The fact that most partici-
pants had no prior experience in programming gesture recognition, 
and were nevertheless able to build a custom gesture recognizer, 
demonstrates that Gesture Knitter is easy to use. The recognition 
rates for the novel complex gestures vary between diferent classes. 
For Alright, Shotgun, and Cauldron, all of the 10 designer provided 
samples for each class were correctly classifed. By contrast, Dispose 
had a recognition rate of 10% and none of the designer samples of 
Spiderweb were correctly classifed. Dispose was most frequently 
confused with Caterpillar while Spiderweb was confused with Push. 
The discernability tool identifes these potential misclassifcations, 
highlighting its merit as a design aid to create distinct gestures. 

Finally participants were given an opportunity to provide com-
ments on the features of Gesture Knitter. When asked about what 
they liked best about the system, two users mentioned Gesture 
Knitter’s decoding mechanism. One commented that “decoding is 
signifcantly less mentally strenuous than connecting blocks together." 
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The three other designers all mentioned the simple and straight-
forward design interface. One stated that the “visual declarative 
script is user-friendly and one can see how complex movements can be 
broken down node by node." These comments suggest that Gesture 
Knitter is easy to learn and supports rapid development of novel 
complex hand gestures. 

In terms of possible features that the designers wanted to see 
implemented in the future, there were suggestions on improving 
the script to make the script even more powerful. One wanted the 
system to “learn to recognize the borders between successive gestures", 
hinting that the transitions between gesture components can also 
be user-defned. Another wanted the incorporation of the speed of 
the gesture as a semantic feature in determining the gesture class. 
This aligns well with our vision for future work. 

6 DISCUSSION AND FUTURE WORK 
Although Gesture Knitter allows users to expressively create hand 
gestures with low data overhead, several enhancements can be 
added to improve the system’s capabilities. The hand gestures per-
formed in this paper have a specifc way in which they are per-
formed, such as the circle primitive being counterclockwise for 
the right hand. Although HMMs are able to recognize diferent 
demonstrations of the same class given sufcient sample variation 
and number, the visual declarative script would need to support 
multiple ways of performing a gesture. One possible route for fu-
ture work would be allowing the designer to provide multiple script 
candidates for a particular complex gesture. 

We have illustrated the feasibility of Gesture Knitter as a tool 
that can be used to create novel gestures for head-mounted mixed 
reality applications. Crucially, it demands very little data to be col-
lected by the designer. While this paper has explored one particular 
online continuous recognition setting, further investigations can 
be conducted to improve online recognition as well as recognition 
depending on user context. More delimitation and windowing tech-
niques can be explored with respect to Gesture Knitter to further 
optimize the system for online recognition. Another fruitful avenue 
of future work is to explore user interaction with these declared 
gestures for various applications in mixed reality. For example, one 
compelling direction would be to probe user experiences when 
using Gesture Knitter for a gaming application. 

With regards to synthetic data generation, this process could 
be conceivably extended to generate a sufciently large sample 
of gestures to train a deep neural network architecture, such as 
a recurrent neural network or a generative adversarial network. 
However, this averts the primary goal of having low data overhead. 
One natural direction to explore would be to fnd other low dimen-
sional generative processes to generate efective synthetic hand 
gesture samples. 

7 CONCLUSIONS 
We have introduced Gesture Knitter, a tool for creating hand ges-
tures for head-mounted mixed reality applications. It augments the 
ability for designers to create new gestures from primitives through 
visual declarative scripts with low data overhead, while allowing 
for creativity and expressiveness during the design process. Ges-
ture Knitter features additional tools, such as decoding, synthetic 

sample generation, and discernment which serve as useful aids to 
the designer. In addition, Gesture Knitter supports both one-handed 
and two-handed gestures. Moreover, we have demonstrated the 
recognition capabilities of Gesture Knitter by assessing gesture 
variability across diferent users and diferent levels of data sparsity, 
and the prospect of deploying the generated recognizers to online 
recognition settings. In summary, Gesture Knitter is shown to be a 
compelling tool for designers to rapidly prototype custom gesture 
recognizers for a wide variety of mixed reality applications. 
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