
Relative Design Acquisition: A Computational Approach for
Creating Visual Interfaces to Steer User Choices

George B. Mo
gm621@cantab.ac.uk

University of Cambridge
United Kingdom

Per Ola Kristensson
pok21@cam.ac.uk

University of Cambridge
United Kingdom

ABSTRACT
A central objective in computational design is that an optimal design
is desired which optimizes a performance metric. We explore a
different problem class with a computational approach we call
relative design acquisition. As a motivational example, consider a
user prompted to make a choice using buttons. One button may
have a more visually appealing design and hence is visually optimal
to steer users to click it more often than the second button. In
such a design case, a relative design is acquired of a certain quality
with respect to a reference design to guide a user decision. After
mathematically formalizing this problem, we report the results
of three experiments that demonstrate the approach’s efficacy in
generating relative designs in a visual interface preference setting.
The relative designs are controllable by a quality factor, which
affects both comparative ratings and human decision time between
the reference and relative designs.

CCS CONCEPTS
• Human-centered computing → Systems and tools for in-
teraction design; Interaction techniques; Interaction design
process and methods.
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1 INTRODUCTION
Computational interaction is an emerging field that leverages ma-
chine learning methods to aid in the design and implementation
of interactive systems and techniques [24]. An overarching objec-
tive in computational interaction and in computation design is to
optimize a design over its design parameters to maximize a perfor-
mance metric, such as speed and accuracy [1, 10], ergonomics [34],
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Figure 1: Potential application of relative design acquisition
to a maps scenario. Currently in Google Maps, the most de-
sired path is shown in blue whereas the other options are
greyed out (Fig. a). However, a secondary preferred option
can be designed with relative design acquisition as in (b) to
be relative of a certain quality with respect to the reference
path design to prompt user path taking.

or user ratings [16, 17]. Approaches taken include using Bayesian
optimization for human-in-the-loop interface design [9], neural net-
work based methods [32], combinatorial optimization [19, 23], and
linear programming techniques [18]. However, in this paper, we
take on a separate class of problems in computational design which
instead focuses on finding a relative design of a certain quality in
relation to a reference design.

Consider the following scenario. In a map application (Figure
1a), we are often presented with two choices of route journeys.
The visual interfaces for these two choices are designed to entice
the user to pick a particular path as to improve the time of travel.
However, consider the use case of alleviating the overall traffic in
a geographic area. For instance, in this scenario for Google Maps,
the more recommended routes could be designed with a bolder
border and a brighter color of a controllable visual appeal to the
user so as to elicit certain proportions of route traffic selection in
Figure 1b. Hence, the routes are designed to be optimal in the sense
that they are designed to attract more users to select certain routes
whereas other alternative routes are designed to have a relative
quality below the desirable route to sway user attention away from
selecting it with varying degrees.

From this scenario, it is apparent that with respect to the objec-
tive of visual attractiveness and attention-drawing, not only is it
desirable to find the optimally attractive interface, it is also desired
to identify a relative interface for the second option so as not to

https://doi.org/10.1145/3544548.3581028
https://doi.org/10.1145/3544548.3581028


CHI ’23, April 23–28, 2023, Hamburg, Germany Mo et al.

attract the customer to it, and to do so with a controllable quality.
This is a different problem from that of design optimization because
instead of searching for a design optimum, we require a relative
design in relation to a reference design. Note that frequently this
reference design is an optimal design, or a close approximation of
an optimal design.

For many applications, we suggest that a desired characteristic
of relative design acquisition is that the relative design’s quality
can be controlled in relation to a reference design. For example,
if the relative button in the web-page was designed to be so poor
that the text would not be visible or the button size would be too
small, this would render the button completely inaccessible and
hence would not satisfy basic established web design principles.
This would be an undesirable result. To avoid this it is necessary
that the relative design is controllable by some factor and we call
this design parameter quality. This design parameter is essential
for allowing the designer to tune a relative design.

In addition, another desirable characteristic of relative design
acquisition is that this design technique is applicable and demon-
strably effective in synthesizing relative designs in relation to a
reference design based on user feedback. In the maps example,
a method in which attractiveness can be assessed is through the
rating or reaction of the user to the design. Therefore, another
desirable characteristic of relative design acquisition is that the
proposed method is effective in a human-in-the-loop setting, as in
based upon iterative user feedback, and generates new and more
fitting designs. Further, the generated relative designs should be
consistent in quality for an entire population of users, not just indi-
vidualized designs for specific users. This allows the relative design
acquisition technique to be more widely applicable for creating
relative designs that are effective for groups of individuals with
respect to some desired outcome or objective.

To attempt to tackle the problem of relative design acquisition,
as motivated from the example above, the rest of this paper presents
a computational method that incorporates the above desired char-
acteristics and reports the results of three experiments that demon-
strate the efficacy of this approach.

In summary, the main contributions of this work are:

• A mathematical formalization of the problem of relative de-
sign acquisition and a generalized framework for computing
quality-controllable relative designs using a computational
approach.

• An empirical investigation of relative design acquisition for
visual context-free and visual context-present scenarios for
individual user preferences in human-in-the-loop experi-
ments.

• An evaluation to understand the performance and potential
uses of relative design acquisition applied to creating refer-
ence and relative visual designs for a new population of users
in a shopping website design context example, highlighting
its effectiveness in generating relative designs and effects on
human decision time.

In this paper, we primarily focus on the application of relative
design acquisition for button interfaces in the context of a shopping
website (Figure 2). On such a website, users are often presented
with two choices—to either purchase the product at hand, or not to

Figure 2: Example of two buttons adjacent on the bottom
right that lead to different options of buying using Amazon
Prime (Join Prime Today versus Continue with Free One-Day
Delivery). The button urging customers to buy is designed
to be more visually attractive than the one that allows the
customer to continue without buying. The two buttons are
termed as reference and relative respectively.

purchase it. The visual interfaces for these two choices are designed
to entice the customer to pick the button to purchase more. For
instance, in this scenario for Amazon Prime, the button to buy
the product is designed with a brighter yellow color with a more
discernible border and darker font color compared to the “continue
without buying” option. Relative design acquisition can conceivably
be applied to other scenarios, but this application was chosen to
be explored in depth to account for the many differing factors that
could affect user behavior. Specifically, the first study in this paper
explores the effects of memorability and the lack of visual context.
The second study investigates the effects of a visual context and
the sampling method. Finally, the third study examines the effects
of different tasks on ratings and decision times for relative designs
generated for a new set of participants.

We also draw attention to the fact that this specific shopping
website example could lead to ethical concerns on its use as a
dark design pattern for user manipulation, which we specifically
address in Section 4.1. We stress that dark designs could be an easy
application of this method, and emphasize the cautionary approach
that would have to be taken when using relative design acquisition,
that is, aligning the intent of steering user choices with ethical
considerations.

Through exploring the different effects of applying relative de-
sign acquisition to visual interfaces, our method shows promise
in generalizing to many scenarios where multiple choices are pre-
sented and users should be nudged to make a certain choice over
the other. For instance in guiding a user around a tutorial for a pro-
ductivity application, less frequently used or less useful tools can
be designed to be suboptimal in their visual affordance. A further
example would be training wheels for a user interface [5], where
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the interface designs of advanced features can be gradually adjusted
in quality to become more prominent as users gain proficiency. The
key advantage of our method is that it can generate systematically
different design candidates of controllable quality to steer user
choices. Note that in all the above applications, controllability in
guiding user decisions is especially important to yield controllable
user choice proportions for a certain objective, such as to alleviate
overall traffic in an area for a map application.

2 APPROACH
2.1 Background
To introduce the method for relative design acquisition, we first
detail Gaussian Processes and how they can be applied in human-in-
the-loop applications. For clarity, we note that our method, relative
design acquisition, is based on Gaussian Processes only and the
assumption that we can build a Gaussian Process model based on
data we collect from the user. We emphasize that relative design
acquisition tries to find a relative design of a certain quality with
respect to a reference design. It is independent, and not reliant
on, the way the data is gathered or sampled to build the Gaussian
Process model, and is a generalized method for generating a relative
design given a reference design.

2.1.1 Gaussian Processes. For many applications, the relationship
between the input parameters x and the output from function
𝑓 : X → R is unknown, which in our context is a design objective
function. This for instance could be x representing the configura-
tion for a particular design and 𝑓 be the user performance to that
design, such as speed, accuracy, or user rating. We can model 𝑓
as a sample from a Gaussian Process (GP), which is a collection
of dependent random variables for each x ∈ X, where every sub-
set is distributed as a multivariable Gaussian. A Gaussian Process
𝐺𝑃 (` (x), 𝑘 (x, x′)) is specified by its mean function ` (x) = E[𝑓 (x)]
and kernel function 𝑘 (x, x′) = E[(𝑓 (x) − ` (x)) (𝑓 (x′) − ` (x′))].
Let the GP prior be 𝐺𝑃 (0, 𝑘 (x, x′)).

Suppose we sample X at points X = {x1, x2, ..., x𝑛} and retrieve
y = {𝑦1, 𝑦2, ..., 𝑦𝑛}, where 𝑦𝑖 = 𝑓 (x𝑖 ) +𝜖𝑖 , 𝜖𝑖 ∼ N(0, 𝜎2) i.i.d. Gauss-
ian noise. Then, the posterior over 𝑓 is a GP distribution with mean
` (x), covariance 𝐾 (x, x′), and variance 𝜎2 (x):

` (x) = k(x)𝑇 (K + 𝜎2I)−1y

𝐾 (x, x′) = 𝑘 (x, x′) − k(x)𝑇 (K + 𝜎2I)−1k(x′)
𝜎2 (x) = 𝑘 (x, x)

Here, k(x) = [𝑘 (x1, x), ..., 𝑘 (x𝑛, x)]𝑇 and K = [𝑘 (x, x′)]x,x′∈X .
Notably, we use GPs to create a surrogate model of the relationship
between the design parameters x ∈ X and the design objective
function 𝑓 representing the user’s performance on that design pa-
rameter. As 𝑓 is a black-box system, this is an appropriate model as
user performance over design parameters is assumed to be smooth
and continuous across X. In human-computer interaction, Gauss-
ian Processes have been applied in many computational design
scenarios to optimize designs (e.g. [9, 16, 17]), due to its ability
to accurately model user behavior given limited data and its low
computational overhead for human-in-the-loop applications.

2.2 Computational Approach to Relative Design
Acquisition

2.2.1 Approach for Controllability. We now detail the novel math-
ematical formulation of the problem we here term relative design
acquisition. This method is distinct from, and modular to, the sam-
pling method from which the data is collected for creating the
Gaussian Process. Suppose that the design problem we are working
on involves a black-box system design objective function that takes
design parameters as inputs and outputs an objective value, namely
𝑓 : X → R. Suppose we have decided upon a reference design x∗

from which we want to find a relative design. Much of the time, x∗
would be an optimal design with respect to 𝑓 , and has an objective
function value of 𝑓 (x∗). Suppose that we have also collected data
D = {x𝑖 , 𝑦𝑖 }𝑁𝑖=1 where x𝑖 are the design parameters and 𝑦𝑖 are the
corresponding objective function observations (i.e. 𝑦𝑖 = 𝑓 (x𝑖 ) + 𝜖 ,
where 𝜖 is some noise term). We further assume the data D is then
used to create a surrogate model for 𝑓 (x) using a GP.

From the GP we can infer the predictive mean of 𝑓 (x∗). Say it is
`. Then say for the relative design, we want to find one that is 𝛾 in
quality compared to the reference design x∗. That means that we
want to find a relative design x𝑎 such that E[𝑓 (x𝑎)] = 𝛾 (`− 𝑓𝑙 ) + 𝑓𝑙 ,
where 𝑓𝑙 is the lower bound of the function 𝑓 .

This formulation allows us to construct an objective function to
find the relative design x𝑎 with quality 𝛾 . Essentially, we want to
find a relative design x𝑎 such that E[|𝑓 (x𝑎) − (𝛾 (` − 𝑓𝑙 ) + 𝑓𝑙 ) |] is
minimized. Hence, our objective function for the relative design is:

𝑅𝐷𝐴(x𝑎 |x∗) = E𝑓 (x𝑎 ) [|𝑓 (x𝑎) − (𝛾 (` − 𝑓𝑙 ) + 𝑓𝑙 ) |] (1)

We now explain more details about this objective function, espe-
cially the role of 𝛾 . We will call the objective function in equation 1
the RDA objective, which differentiates it from the design objective
function to which we evaluate a design. As in many of our appli-
cations, ` represents the objective function value or performance
of the reference design. As the reference design is frequently some
sort of optimal design, we limit 𝛾 to be 0 ≤ 𝛾 ≤ 1. For example, if
𝛾 = 0.9 in the RDA objective, then x𝑎 should have a design objective
function value that is 90% of that of the optima, and hence the two
designs—relative and reference—should have approximately the
same quality. However, if 𝛾 = 0.5, then x𝑎 would have a design
objective function value that is half of that of the reference design,
and hence the relative and reference designs should have a greater
discrepancy in observed quality.

Note that we can actually replace ` with any observation of the
objective value 𝑦 we get that corresponds to the reference design
we want to find a relative one to. It does not have to be the mean of
the predictive distribution of 𝑓 (x∗), but can simply be an objective
value that corresponds to the performance of x∗.

Appendix A shows an explicit expansion of the RDA objective
into an analytic form given a GP model. We stress that relative
design acquisition is not an iterative optimization process and it
does not aim to find an optimal design to maximize the design ob-
jective function. We expect that, for some applications, optimizing
the RDA objective will yield several relative design candidates of a
certain quality with respect to a reference design. In such a case,
the designer will have to use design judgment or user studies to
choose a preferred generated relative design.
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Figure 3: Computational framework for relative design acquisition, where the data collected from the users from an arbitrary
sampling method is then used to generate the reference design and the relative design. For the relative design, it is obtained
through optimizing the RDA objective and using the surrogate model. The two choices are then presented to the user for a
comparative rating.

2.2.2 Integrating with Different Sampling Methods. As may be real-
ized from the previous subsection, the sampling method to build
up the data D to create the GP is something that does not need to
be fixed, and hence relative design acquisition can be integrated
with many different types of data collection settings. Thus, the
sampling method (which could be random sampling, Bayesian op-
timization, etc.) and relative design acquisition are modular. We
describe below how random sampling and Bayesian optimization
can be integrated as sampling methods to obtain a reference design
from which relative design acquisition can be used to generate the
relative design.

• Random sampling can be used to generate a dataset D. The
surrogate model (GP) can then be built using D. To find the
reference design that is near-optimal, one option is optimiz-
ing over the posterior mean of the GP inX, namely retrieving
x∗ and ` = E[𝑓 (x∗)]. Using x∗ and ` or the achieved objec-
tive value𝑦∗ = 𝑓 (x∗) +𝜖 , and selecting 𝛾 , we can use relative
design acquisition to find the relative design x𝑎 .

• Bayesian optimization allows an optimumdesign to be searched
for the black-box system design objective 𝑓 and can be
thought of as an iterative sampling method. As a result
of iterative sampling, a dataset D is created from which a
surrogate model of 𝑓 can be generated using a GP. The surro-
gate model and relative design acquisition can then be used
to find a relative design x𝑎 of which a reference design x∗

(the maximum we have seen thus far) is compared to. The
design objective value of the reference point 𝑥∗ can be taken
as either the posterior mean in ` = E[𝑓 (x∗)] or the achieved
design objective value 𝑦∗ corresponding to x∗.

In summary, relative design acquisition can be integrated with
a wide variety of sampling techniques and settings. The complete
framework for relative design acquisition is shown in Figure 3.

2.2.3 Practical Considerations. In all our experiments, we normal-
ize each of the design parameters so that they each lie within the
range [0, 1], and each of the optimizations of the RDA objective is
done with the optimization algorithm L-BFGS-B with 25 restarts.
Also, the design objective function is normalized so that it is within
the range [−1, 1], hence 𝑓𝑙 = −1. The GP used has a radial-basis

function kernel with length-scale 𝑙 , composed with a white noise
kernel with a noise level 𝜎 . In addition, when new data is added, the
hyperparameters {𝑙, 𝜎} of the GP are also updated by maximizing
the maximum log likelihood.

3 EXPERIMENTS
To understand how relative design acquisition can be applied to
practical interactive design scenarios, we conduct three different
studies all of which involve the design of visual interfaces. The
objective function used to assess the quality of the generated visual
interfaces is the absolute user rating of the designs. Study 1 fo-
cuses on a visual context-free scenario, Study 2 focuses on a visual
context-present scenario of a shopping website, and Study 3 focuses
on evaluating the generated relative designs with a population of
users. All three studies were performed on a ASUS ProArt Display
monitor, 1920 × 1200, using a keyboard and mouse. The studies
were approved by the local ethics committee and in all studies,
participants were not told about the concepts of reference and rela-
tive designs. The only inclusion criteria in all studies was that the
participant is not color-blind.

3.1 Study 1: Visual Context-Free Interface
Design

3.1.1 Goals. The primary goal of the first study is to understand
if the method of relative design acquisition can be applied to find
relative designs in a visual context-free scenario for individual users.
We mean visual context-free as in only the interface is displayed
without any other visual context. Specifically, we want to explore
the following research questions:

(1) Can relative design acquisition capture individual visual
preferences of users in a visual context-free scenario, i.e. do
people prefer the relative designs less?

(2) If so, do the generated relative designs capture individual
visual preferences that do not change when sampled various
times for the same user?

(3) Can relative design acquisition be controlled by the design
parameter 𝛾 (the quality)?
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(4) Does the amount of data collected impact the quality of the
relative designs generated?

3.1.2 Participants. To address the above questions, we conducted
an experiment as a within-subjects design. We recruited 16 partici-
pants (12 males, 4 females) with an average age of 21.7 (𝑠𝑑 = 1.3).
The participants were recruited through opportunity sampling
within our institution. None of the participants had any visual
impairments.

3.1.3 Task. In the study participants were asked to rate a button or
text style generated from Bayesian Optimization or relative design
acquisition on the basis of whether they think the design would
attract customers in a hypothetical scenario of a shopping website.

We used two different rating tasks: 1) an absolute rating task in
which the participant was asked to indicate whether a generated
button or text style was bad or good using a continuous rating
scale; and 2) a comparative rating task in which a participant was
presented with a reference design and a relative design positioned
next to each other in a randomized A/B test and asked to manipulate
a continuous slider towards the design that he or she thought was
better. An example of an absolute rating task in Study 1 is shown
in Figure 4a and an example of a comparative rating task is shown
in Figure 4c.

Both rating tasks (absolute and comparative) used a continu-
ous scale, however, the precise continuous value was not shown
to participants. The internal scale was from zero to ten. For the
comparative rating task we chose a continuous comparative rating
to evaluate the effect of 𝛾 on the preference in a continuous manner
as opposed to a discrete manner (i.e. selecting one button over the
other).

In the text task, to change the font style of the text displayed, we
take the Adaptifont text generation process as detailed in Kadner et
al. [13]. They took candidate fonts and performed PCA to project
the font styles onto three distinct axes from which continuous
style changes in fonts can be generated. The design parameters and
corresponding parameter ranges in the text task were:

• Font size – [15.0, 40,0]
• Transparency – [0.1, 1.0]
• Font axis 1 from Adaptifont – [3.0, 13.0]
• Font axis 2 from Adaptifont – [3.0, 13.0]
• Font axis 3 from Adaptifont – [3.0, 13.0]

The three axes corresponding to the font style of the text from
Adaptifont [13], roughly control the horizontal and vertical scaling,
and the serif. The range for the font size was selected so that the
text would be at an appropriate size for a text link on a web page.
The range for the transparency was selected so that the text would
be visible, and the three font axes ranges were selected to allow the
text to be successfully rendered.

In the button rating task, the absolute rating task and compar-
ative rating task layouts were very similar to the text task. The
design parameters in the button task were:

• Size – [0.5, 2.0]
• Transparency – [0.1, 1.0]
• Hue of the button colour – [0.0, 1.0]
• Saturation of the button colour – [0.0, 1.0]

• Value of the button colour – [0.0, 1.0]
• Width of the button border – [0.0, 1.0]

The rating interfaces for the button task are shown in Figures 4b
and d. Specifically, the ranges for the size and transparency were
selected for both tasks so that they could be realistically rendered
on a web-page and be seen by the user. The upper bound for the
border width was selected to make it appropriately thick for the
smallest button size. To clarify, for both tasks the black-box design
objective function would be the user rating of the design, and we
chose to make the text the same for the text rating task so that the
two designs are semantically the same.

3.1.4 Procedure. For the study protocol, we have 2 × 2 conditions:
1) the specific interface element: either a button or text; and 2) the
quality design parameter: generating the relative designs based
on either 𝛾 = 0.6 or 𝛾 = 0.9. The order of all conditions were
counterbalanced across the 16 participants. Participants were given
the prompt of judging the button or text based on the quality of
whether they thought it would attract themost customers on a shop-
ping website using their imagination. Each condition involved two
phases separated by a 3 minute break - 1) the Bayesian Optimization
phase that involved both absolute and comparative rating tasks;
and 2) the comparative rating phase only involving comparative
rating tasks.

We started each condition with a tutorial describing the task fol-
lowed by 10 absolute ratings and 1 comparative rating to calibrate
their preferences and exposure to different designs. The Bayesian
Optimization phase was then initialized with 5 random samples
for absolute ratings. Then, after every 15 iterations of Bayesian
Optimization (absolute ratings), we took the top-3 designs with the
highest absolute ratings in the previous 20 iterations. We computed
relative designs based on those best designs given the data observed
so far (yielding 5 groups per condition). Next, we presented the
relative designs with the corresponding reference designs in com-
parative rating tasks. The above was then repeated for 5 batches, so
in total each setting underwent 75 iterations of Bayesian Optimiza-
tion (absolute ratings) and 3 × 5 = 15 A/B comparisons involving
relative designs (comparative ratings). For further clarity, Figure 5
shows the procedure of this study, with the tutorial, the Bayesian
Optimization phase consisting of 5 groups, and the comparative
rating phase.

The participants were then asked to take a 3 minute break. In the
comparative rating phase, the 3 × 5 = 15 comparative rating tasks
generated through the Bayesian Optimization process were then
presented in a randomized order to the participant again. This was
to see if the relative designs generated for each participant were
actually representative of their true personal preferences, and not
just an artifact of memorability.

The study finished with a short post-study questionnaire. In
the questionnaire, participants were first asked on what basis of
quality did they judge the two different design scenarios. They were
then presented with some of the button and text designs they had
seen during the study, and then asked if what they had answered
previously is consistent with what they observed they preferred
in the designs. Each participant was compensated £10 for their
participation and the entire session lasted approximately one hour.
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Figure 4: (a) and (b) show the absolute rating interface for the text and button tasks respectively. (c) and (d) show
the comparative rating interface for the text and button tasks respectively.

110 15 15 15 15 155 5 5 5 5 15

Group 1 Group 2 Group 3 Group 4 Group 5

Tutorial Bayesian Optimization Phase Comparative Rating 
Phase

Figure 5: The procedure of Study 1 for each of the four tested conditions, showing the tutorial, the Bayesian Optimization
phase, and the comparative rating phase. The darker orange color represents an absolute rating and the lighter orange color
represents a comparative rating. The numbers within the boxes show the number of trials performed.

Table 1: Mean and standard variations for the text and button tasks for the two 𝛾 and time conditions.

𝛾 = 0.6 𝛾 = 0.9
During After During After

Mean SD Mean SD Mean SD Mean SD
Text 2.426 1.370 2.576 1.160 4.377 1.822 4.315 1.600
Button 3.197 1.981 3.359 1.601 4.577 2.205 4.584 1.795

3.1.5 Quantitative Results. We first analyze the distribution of com-
parative ratings for the designs generated by relative design acquisi-
tion. We term the comparative ratings done during the optimization
as “during” and comparative ratings after the three minutes of a
break as “after”, and term these collectively as the time factor. For
each comparative rating, we adjust the rating such that a com-
parative rating of 10 always indicates a maximum preference of a
generated relative design, a rating of 0 always indicates a maximum

preference of a generated reference design, and a rating of 5 repre-
sents the case when participants cannot really tell the difference
between the generate reference or relative designs.

Figures 6a and b show the box-and-whiskers plot for both the
text and button tasks’ comparative ratings. Table 1 shows the means
and standard deviations for each of the 2× 2 conditions for both the
text and button tasks. A repeated measures two-way ANOVA was
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Figure 6: Comparative rating box-and-whiskers plot for (a) the text task and (b) the button task for each
condition, with the whiskers representing the first or third quartile ±1.5 IQR.

performed with the within-subjects fixed factors of 𝛾 and time (dur-
ing and after) for both the text and buttons task with the dependent
variable of the comparative rating. None of the analyses violated
sphericity byMauchly’s test. For the text task,𝛾 was statistically sig-
nificant (𝐹1,15 = 90.42, 𝑝 < 0.0001, [2

𝑃
= 0.858), but the time factor

(during vs. after) was not statistically significant in determining the
user rating (𝐹1,15 = 0.196, 𝑝 = 0.664, [2

𝑃
= 0.0129). For the button

task,𝛾 was statistically significant (𝐹1,15 = 19.46, 𝑝 = 0.000506, [2
𝑃
=

0.565), but the time factor was not statistically significant in deter-
mining the user rating (𝐹1,15 = 1.166, 𝑝 = 0.297, [2

𝑃
= 0.0721).

We analyzed the comparative ratings for the 5 groups of the
number of data points used to generate the relative designs for
𝛾 = 0.6 (as there were 3 × 5 = 15 comparative ratings during
Bayesian Optimization) for both the “during” and “after” scores.
Note that the data points collected were used to create the GPmodel
from which relative design acquisition was performed. A repeated
measures 2-way ANOVA with the fixed within subjects factors of
time (during and after) as well as the 5 different data conditions
was performed with the dependent variable of comparative rating.
For all conditions, there was no significant difference in the data
groups, indicating that data may not significantly affect the relative
design quality. We also did not observe any statistical significance
for the same analyses applied to 𝛾 = 0.9.

3.1.6 Questionnaire Results. All participants commented on their
preferences of color for the button task, but the responses were
highly varied as 5 preferred bright colors while 5 preferred lighter
and darker colors. There was also high variation in preferences in
button size, as 2 preferred a larger size, 4 a medium size, and 1 a
smaller size. Further, 8 participants preferred a border, but three
did not like the border at all or in some instances. There were
also more descriptive words applied to the buttons the participants
preferred, such as “muted and professional” (P11), “sleekness and
modern look” (P14), and “not scam buttons” (P9). 4 participants
made amendments to the qualities of the buttons they preferred
after reviewing the designs.

For the text task, 10 participants commented that they preferred
a larger font size, 12 participants commented that they preferred
darker text, and 11 preferred smaller text spacing. Some character-
istics participants preferred of texts were that they were “readable”
(P6, P12), “not melted” (P16), and “regular” (P2, P3). 3 participants
made amendments to the qualities of the buttons they preferred
after reviewing the designs.

3.1.7 Discussion. Overall, relative design acquisition can capture
individual visual preferences in a visual context-free scenario that is
not dependent on the time of rating of the user. In addition, we see
from the high effect sizes that the comparative ratings can be con-
trolled by the design parameter 𝛾 (the quality), and that the amount
of data might not significantly impact the quality of relative designs
generated. We observed more variety and subjectivity in what users
preferred for the button task, as opposed to the text task where the
majority preferred larger, darker, and appropriately spaced texts.
We emphasize that our analysis for the effect on the time of rat-
ing (before vs. after) on the comparative rating is preliminary and
further experiments are required to validate our approach on the
consistency of the comparative ratings when sampled several times
for the same user.

3.2 Study 2: Interface Design in a Visual
Context-Present Setting

3.2.1 Goals. Study 1 showed that in a visual context-free scenario,
relative design acquisition is able to synthesize relative designs
for individual users based on their preferences. In Study 2, we
want to explore if the results would change if the interfaces were
presented in a visual context-present scenario of a shoppingwebsite.
In addition, Study 1 sampled the data of an individual user using
Bayesian Optimization. We are also interested in seeing the effect of
the sampling method (Bayesian Optimization vs. random sampling)
on relative designs created using a similar experimental protocol.
Specifically, we wanted to address the following questions:
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(1) Can relative design acquisition capture individual visual
preferences of users and be controlled by a design parameter
𝛾 (the quality) in a scenario where there is a visual context?

(2) Does the sampling method affect the efficacy of relative
design acquisition?

3.2.2 Participants. To address the questions raised, we conducted
a study with an additional 16 participants all of which did not par-
ticipate in Study 1. We recruited 13 males and 3 females with an
average age of 20.9 (𝑠𝑑 = 0.9) within our institution using opportu-
nity sampling. None of the participants had any visual impairments.

3.2.3 Task. In the first task, the website and the button designs
were in a blue color scheme, as shown in Figure 7a for the absolute
rating task and Figure 7c for the comparative rating task. The design
parameters for this task were as follows:

• Saturation of the button color – [0.7, 1.0]
• Value of the button color – [0.7, 1.0]
• Line width of the button border in black – [0.0, 1.5]

Here, the hue of the button color was kept constant at 0.572 for
the blue hue. The saturation and value were kept in these ranges
for an appropriate blue color that was not too dark. The line width
range was selected so that it was appropriately thick for a button
of that size on a web-page. In addition, the text “Option” inside the
button was kept as black with the same font (Serif) and size (15) so
the two buttons in the comparative task are semantically the same.

In the second task, the website and the button designs were in a
green color scheme, as shown in Figure 7b for the absolute rating
task and Figure 7d for the comparative rating task. The design
parameters for this task were as follows:

• Saturation of the button border color – [0.0, 1.0]
• Line width of the button border – [0.1, 3.0]
• Transparency of the text in the button – [0.3, 1.0]
• Transparency of the button background – [0.0, 0.2]

Here, the hue and value of the border color were kept constant
at 0.361 and 0.7 respectively and the background color was kept
constant at the hue, saturation, and value of 0.222, 1.00, and 0.68
respectively. The line width range was selected so that it ranged
from thin to thick; the range of the text transparency was picked so
that it was always visible; and the transparency range of the button
background in green was chosen so that it remained light. The text
“Option” inside the button was kept at constant font (Serif) and size
(15).

Specifically, the ranges for the above parameters in both tasks
were constrained as our primary consideration is a more practical
design scenario where there would be constraints based on website
layout and the color scheme. This would restrict for instance the
sizes of the buttons as well as the hues of the buttons.

3.2.4 Procedure. Study 2 had 2 × 2 × 2 conditions: 1) the blue and
green button tasks; 2) the sampling method based on Bayesian Op-
timization or random sampling; and 3) 𝛾 = 0.6 or 𝛾 = 0.9. The first
two conditions were balanced equally across the 16 participants.
The relative designs generated through the two gammas were ran-
domly presented to the participant during each task. Participants
were given the prompt of judging the button based on the quality
of whether it would attract the most customers within a context of

a shopping website. Each condition involved two phases separated
by a 3 minute break - 1) the sampling phase that involved only
absolute rating tasks; and 2) the comparative rating phase which
only involved comparative rating tasks. We started each condition
with a tutorial detailing the task followed by 10 absolute ratings and
1 comparative rating to calibrate the user’s preferences to different
designs.

For each condition, the task was initiated with the sampling
phase involving absolute ratings of button designs. For Bayesian
Optimization, the task was initialized with 5 random samples and
followed by 50 iterations of absolute ratings on designs generated it-
eratively. For random sampling, there were 55 iterations of absolute
ratings based on randomly generated button designs.

After the absolute ratings, participants were asked to take a 3-
minute break. Then we generated relative designs and presented
them to the participant in a randomized order during the compar-
ative rating phase. For each sampling method, we divided the 50
designs with the absolute ratings into 5 groups of 10 designs each
(note the initial 5 random samples were excluded). Then for each
group, we took the 3 best designs in absolute rating, resulting in
3×5 = 15 reference designs for each task. For each reference design,
relative designs were generated using all the data collected during
the first absolute rating phase with the quality design parameter
set to 𝛾 = 0.6 and 𝛾 = 0.9. Then, these comparisons were randomly
shuffled and presented to the participant, resulting in 2 × 15 = 30
comparative rating tasks in total. The study finished with a short
post-study questionnaire, which used the same protocol as in Study
1. Figure 8 illustrates the procedure of this study. Each participant
was compensated £10 for their participation and the whole session
lasted approximately 45 minutes.

3.2.5 Quantitative Results. We first analyze the distribution of com-
parative ratings for the designs for each task and sampling method.
Table 2 shows the means and standard deviations for each of the
conditions of sampling method and gammas for both the blue and
green button tasks. Figures 9a and b show the box and whiskers
plots for the two tasks. A repeated measures two-way ANOVA
was performed with the within-subjects fixed factors of the design
parameter 𝛾 (the quality) and sampling method (Bayesian Optimiza-
tion or random sampling) for both the blue and green button tasks
with the dependent variable being the users’ comparative ratings.
None of the analyses violated sphericity by Mauchly’s test. For the
blue button task, 𝛾 was statistically significant (𝐹1,15 = 99.18, 𝑝 <

0.0001, [2
𝑃
= 0.869) and the sampling method was statistically sig-

nificant (𝐹1,15 = 7.569, 𝑝 = 0.0149, [2
𝑃

= 0.335) in determining
the comparative rating. For the green button task, 𝛾 was statisti-
cally significant (𝐹1,15 = 156.16, 𝑝 < 0.0001, [2

𝑃
= 0.912) and the

sampling method was statistically significant (𝐹1,15 = 9.336, 𝑝 =

0.000801, [2
𝑃
= 0.384) in determining the comparative rating. For

both tasks, the interaction of 𝛾 and sampling method was insignif-
icant. Therefore, this analysis suggests that 𝛾 is effective at con-
trolling the quality of the relative design in the scenario with a
visual context of a website. However, random sampling yielded less
strongly preferred comparisons towards the reference design in
this experiment.
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Figure 7: (a) Absolute rating interface for the blue button task; (b) absolute rating interface for the green button
task; (c) comparative rating interface for the blue button task; (d) comparative rating interface for the green button
task.
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Figure 8: The procedure of Study 2 for each of the four conditions, showing the tutorial, the sampling phase, and the comparative
rating phase. The darker orange color represents an absolute rating and the lighter orange color represents a comparative
rating. The numbers within the boxes show the number of trials performed.

Table 2: Mean and standard variations for the blue and green tasks for the two 𝛾 and sampling conditions.

𝛾 = 0.6 𝛾 = 0.9
BO Random BO Random

Mean SD Mean SD Mean SD Mean SD
Blue 2.649 1.286 3.290 1.658 4.111 1.629 4.437 1.883
Green 3.031 1.365 3.747 1.824 4.398 1.753 5.298 1.849

To analyze why random sampling did not work as well in the
comparative ratings we examined the relationship between the ref-
erence design absolute rating and the comparative ratings based on
that reference design. We used Pearson’s correlation to identify any
significant correlation between the absolute rating of the reference
design and the resulting comparative rating for each of the 2 × 2
conditions of 𝛾 and the sampling method for each of the blue and

green button tasks. Table 3 shows the correlations and 𝑝-values. The
analysis reveals that for 𝛾 = 0.6, there is a statistically significant
negative correlation in the absolute rating of the reference design
and the corresponding comparative rating. This suggests that when
the absolute rating is higher for the reference design, there is more
of a tendency for individuals to pick the reference design over the
relative one for 𝛾 = 0.6. This postulates that participants were more
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Figure 9: Comparative rating box-and-whiskers plot for the (a) blue button task and (b) the green button
task for each condition. The whiskers representing the first or third quartile ±1.5 IQR.

Table 3: Correlation and 𝑝-values from the Pearson’s Correlation Test for each of the 2 × 2 conditions of 𝛾 and sampling method
for each of the blue and green button tasks.

𝛾 = 0.6 𝛾 = 0.9
BO Random BO Random

𝜌 𝑝 𝜌 𝑝 𝜌 𝑝 𝜌 𝑝

Blue -0.394 < 0.0001 -0.318 < 0.0001 -0.102 0.116 -0.055 0.398
Green -0.314 < 0.0001 -0.350 < 0.0001 -0.077 0.237 -0.112 0.082

able to discern their preferences on relative design quality to a more
optimally attractive reference design as opposed to one that is not.
Further, this implies that relative design acquisition would be less
effective on reference designs that are not optimal with respect to
the design objective in question.

3.2.6 Questionnaire Results. For the blue button task, 14 partici-
pants mentioned a combination of light blue colors for the read-
ability of the text, and 11 participants mentioned the thickness of
the border, with the preference being not too thick. For the green
button task, 14 participants mentioned the readability of the text
with a darker text color, and 9 participants mentioned a light green
filling was preferable. For the border, 9 participants preferred a
thin to medium border, and only 1 participant disliked the border.
Only 1 participant (P6) explicitly mentioned using the context to
match the colors of the chair and the button in the blue button task.
For the blue button task, 5 participants added amendments after
reviewing the designs, and for the green button task, 7 participants
added amendments.

3.2.7 Discussion. Overall, this study shows that both sampling
methods are effective in generating relative interface designs, even
in the visual context of a website. There is a large effect size for the
comparative ratings for the two 𝛾 conditions for both the blue and
green button tasks. Correlation analyses suggest that relative design
acquisition performs worse when comparisons are carried out with
non-optimal visual reference designs. This indicates a guideline
in that relative design acquisition may not work as well when the

reference design is not a good approximation of the optimum in
visual interface applications. In the questionnaire, it was found that
there was a good amount of consensus in picking lighter colors for
text readability with medium borders in the blue button task and
a light filling with a medium border and darker text in the green
button task.

3.3 Study 3: Relative Designs for a Group of
Users

3.3.1 Goals. Both Study 1 and Study 2 showed that relative design
acquisition was effective in generating relative designs in both the
visual context-free and visual context-present scenarios. However,
each of the studies focused on relative designs generated for each
user. In Study 3 we want to examine if our proposed method can
create controllable relative designs for a more general population
of users. In addition, we are curious to see how the 𝛾 controlling
the quality of designs impacts the decision time of individuals in
deciding which design is more visually appealing. Specifically, we
want to address the following questions:

(1) Can relative design acquisition create relative designs that
capture the visual preferences of a wider group and be con-
trolled by 𝛾 in a variety of tasks?

(2) How does 𝛾 affect the decision of individuals to select which
design is more visually appealing for different tasks?

3.3.2 Participants. To address the questions raised, we conducted
a study with an additional 24 participants—all of which did not
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Figure 10: Aggregate blue button (a), and green button designs (b), context-free button (c), and context-free text (d) designs
generated, with the reference design and the relative designs for 𝛾 = 0.9, 0.6, 0.3. Note here that the reference designs were
generated as near-optimal designs as described in Section 3.3.3.

participate in Study 1 or Study 2. We recruited 16 males and 8
females with an average age of 22.3 (𝑠𝑑 = 2.0) using opportunity
sampling within our institution. There was one participant with an
unspecified visual impairment.

3.3.3 Task. Each subject had four tasks to perform: 1) the blue
button task with a shopping website context; 2) the green button
task with a shopping website context; 3) the context-free button
task; and 4) the context-free text task. In each task participants
compare two designs side by side. To generate the reference and
relative designs for each of the tasks, we first aggregate all the data
we have collected in Study 1 and Study 2 for each of the tasks to
create a GP for the population of users. Specifically, we used the data
collected for the 𝛾 = 0.6 scenarios for both the context-free button
and text tasks, and the data collected from the random sampling
scenarios for both the green and blue button tasks. These datasets
were chosen because they provide the most distinct optima for the
four tasks. The reference and relative designs from the aggregated
data are shown in Figure 10.

To generate the reference designs which should be near-optimal,
we maximized over the posterior means of the Gaussian Process
created from the aggregate data. For the context-free button task,
we generated 5 distinct optima using the L-BFGS-B optimization
algorithm to maximize the posterior mean, and retrieved the pos-
terior mean ratings for each of the distinct optima. However, for
the other three tasks, there was only 1 distinct optimum found.
To generate 5 visually semi-optimal designs, we applied uniform
noise in range (0, 0.2) to each of the design parameters, and used
the Gaussian Process to obtain the posterior mean ratings. Using
each of the 5 semi-optimal reference designs for each task and the
posterior mean ratings, we generated 3 relative designs for each of

𝛾 ∈ {0.3, 0.6, 0.9}, yielding for each task 5× 3× 3 = 45 comparisons.
The interfaces, design parameters, and prompts were the same in
this study as the previous two studies.

3.3.4 Procedure. To counterbalance between the four different
task conditions, the two tasks that are visual context-present were
paired, and the other two visual context-free tasks were also paired.
Each task started with a tutorial with 10 randomized comparative
ratings of the interface designs of which the participant was asked
to rate which option they preferred more. The decision time was
also recorded for each comparison, where the decision time was
defined as when the task first started until when the participant had
finalized the slider. This was followed by a task of 45 iterations of
comparative ratings. The four tasks were equally counterbalanced
for all 16 participants. The study finished with a short post-study
questionnaire, which used the same protocol as in Study 1 and
Study 2, except it now included all four design scenarios. Each
participant was compensated £10 for their participation and the
entire study took around 30 minutes per participant.

3.3.5 Quantitative Results. We first analyze the comparison ratings
for each of the tasks. The box-and-whiskers plots for the four tasks
are shown in Figures 11a to d respectively. A repeated measures one-
way ANOVAwas performed with the within-subjects factor of 𝛾 for
each of the tasks with the comparative rating as the dependent vari-
able. Sphericity was assessed with Mauchly’s test, and if violated,
the Greenhouse-Geiser correction was applied. For the blue button,
green button, and text tasks, there was statistical significance for
𝛾 (𝐹1.51,34.6 = 39.93, 𝑝 < 0.0001, [2

𝑃
= 0.634; 𝐹2,46 = 47.75, 𝑝 <

0.0001, [2
𝑃
= 0.621; 𝐹1.15,26.5 = 12.32, 𝑝 = 0.0011, [2

𝑃
= 0.349 respec-

tively). We see that for the visual context-present tasks, 𝛾 more
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Table 4: Mean and standard variations of the comparative ratings for the four tasks and the three 𝛾 conditions.

𝛾 = 0.3 𝛾 = 0.6 𝛾 = 0.9
Mean SD Mean SD Mean SD

Blue 1.793 1.620 2.598 1.655 3.979 2.003
Green 0.902 1.279 2.223 1.957 3.722 2.277
Button 4.162 2.490 4.327 2.442 4.549 2.373
Text 2.724 2.715 4.051 1.629 4.739 1.619
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Figure 11: Comparative rating box-and-whiskers plot for (a) the blue button task, (b) the green button task, (c) the
context-free button task, and (d) the context-free text task.

Table 5: Mean and standard variations of the decision times in seconds for the four tasks and the three 𝛾 conditions.

𝛾 = 0.3 𝛾 = 0.6 𝛾 = 0.9
Mean SD Mean SD Mean SD

Blue 3.014 1.666 3.331 2.002 3.697 2.519
Green 2.886 1.329 3.130 2.396 3.586 2.189
Button 4.249 3.085 4.397 3.356 4.522 3.488
Text 3.344 2.188 4.151 2.840 4.376 3.118

effectively controls the comparison ratings. As 𝛾 increases, the
comparative rating increases so that people are less able to tell
which interface design was the visually optimal one (the refer-
ence design). For the visual context-free text task, 𝛾 is able to con-
trol the comparison ratings, but as in Figure 11c, the variance for
𝛾 = 0.3 covers the entire rating range, giving rise to great vari-
ability in the preferences for a new group of users. In addition,
for the context-free button task, 𝛾 has no statistical significance
(𝐹1.55,35.7 = 1.661, 𝑝 = 0.208, [2

𝑃
= 0.0674).

For decision times, the means and standard deviations for the
decision times of the four tasks are shown in Table 5. A repeated
measures one-wayANOVAwas performedwith the within-subjects
factor of 𝛾 and dependent variable of decision time. Sphericity was
assessedwithMauchly’s test, and if violated, the Greenhouse-Geiser
correction was applied. There was statistical significance in the
blue button, green button, and context-free text tasks (𝐹1.57,36.2 =

7.618, 𝑝 = 0.00337, [2
𝑃
= 0.249; 𝐹1.30,29.9 = 10.16, 𝑝 = 0.00169, [2

𝑃
=

0.306; 𝐹1.55,35.6 = 5.252, 𝑝 = 0.0156, [2
𝑃
= 0.186 respectively). How-

ever, there was no statistical significance in the context-free button
task (𝐹2,46 = 0.914, 𝑝 = 0.408, [2

𝑃
= 0.0382). The high effect sizes

and statistical significance suggest that users take more time to
make a comparative rating decision as 𝛾 increases for tasks with a
clear preference consensus. This illustrates that when designs are
similar in quality, individuals have more difficulty deciding on their
preferences and take longer to make a decision.

3.3.6 Questionnaire Results. For the blue button task, 18 partici-
pants commented on the preference for readability of the text with
lighter blue colors. 4 participants commented on the preference for
brighter blue colors, while 1 preferred a darker color scheme. In
addition, 9 participants commented on preferring a border, with 5
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preferring medium to thin borders, and 1 preferring a stronger bor-
der. 7 participants made amendments after reviewing the designs
in this task.

For the green button task, 12 participants explicitly mentioned
preferring a darker text for legibility, while only 1 participant stated
preferring lighter colored texts. 10 participants also preferred the
green filling and 5 mentioned preferring brighter colors for the
border. Further, 9 participants made amendments after reviewing
the designs in this task.

For the context-free button task, there was a wide range of char-
acteristics that different users preferred. For color, 12 participants
reported preferring eye-catching or bright colors, 6 participants
preferring lighter and more pastel-like colors, and 2 participants
preferring dark buttons. 16 participants commented on preferring
borders of various widths, and 5 participants preferred smaller
buttons as opposed to 2 participants explicitly mentioning a pref-
erence for bigger buttons. There were 9 participants that made
amendments after reviewing the designs in this task.

For the context-free text task, 14 participants commented on
preferring larger sizes, whereas 5 participants commented liking
texts that were not too big or too small. 18 participants said they
preferred darker texts and only 1 participant stated a preference for
lighter colors. 4 participants commented on preferring texts with
smaller spacing. For this task, there were 8 participants that made
amendments after reviewing the designs.

3.3.7 Discussion. This study showed that relative design acquisi-
tion is able to take accumulated data cross participants to generate
relative designs that are effective for a new population of users,
most notably better for the two tasks where there is a visual context.
It is important to note that this approach works well in terms of the
controllability of 𝛾 , notably better for visual context-present set-
tings with the large effect sizes. The questionnaire results showed
that there was less consensus in the context-free button task, re-
sulting in the lack of statistical significance for 𝛾 in the task. In
addition, the decision time corresponds closely to 𝛾 with the high
statistical significance and large effect sizes. When 𝛾 is higher for
the visual context-present tasks and the text task, it takes longer on
average for participants to make a decision. This reflects a result in
decision neuroscience where decision time can be used as a proxy
for determining the difficulty of a decision task due to the time for
discernment between the two choices [15]. Therefore, this study
illustrates the ability of relative design acquisition to influence the
decision behaviour of a new group of users consistently.

4 DISCUSSION
Study 1 shows that relative design acquisition is able to generate
visual relative designs catered to individual user preferences for
a visual context-free scenario. In addition, relative design acquisi-
tion is able to be controlled by a quality parameter 𝛾 , as a 𝛾 closer
to zero yields comparisons where users are more susceptible to
favor the reference design and a 𝛾 closer to one yields compar-
isons where users are less able to discern the reference and relative
designs. In this way, the design parameter 𝛾 enables control over
the quality of the relative design in relation to a reference design.
Our exploration of whether relative design acquisition generates
relative designs that capture individual preferences consistently

across various times of exposure seems promising. However, fur-
ther investigation is required to confirm the results for longer term
exposure.

Study 2 demonstrates that relative design acquisition also ex-
tends effectively to a visual context-present scenario in the case
of a button design for a shopping website. In this case, 𝛾 was also
able to control the quality of the relative design generated. Both
random sampling and Bayesian optimization yielded effective rel-
ative designs that are controllable by 𝛾 . However, since random
sampling yielded reference designs that were not as optimal (high
in absolute rating), this results in higher comparative ratings com-
pared to Bayesian optimization. Study 2 concludes that generating
relative designs to a reference design that is not a visual preference
optimum may be less effective.

Study 3 shows that by aggregating all the data and creating a
surrogate model we are able to find effective relative designs to
reference designs representing visual optima for a new group of
users for certain tasks. It was not a surprise that the context-free
button task was not effective as there is a large variation between
individuals of what they found visually attractive, as shown in the
post-study questionnaire. There was also a substantial variation
of user preferences for the context-free text task. In contrast, for
the tasks where the visual shopping website context is provided,
the comparative ratings demonstrate a consensus with variation
in 𝛾 . In addition, 𝛾 is able to control the decision times for the blue
button, green button, and the context-free text task, where a larger
𝛾 yields a greater decision time. This has the design implication that
when there is a greater gap in the quality of the two visual designs,
users may then be able to choose one choice over the other in less
time. Moreover, from a decision neuroscience perspective, 𝛾 is able
to tune the difficulty of a decision task. It would be interesting to
explore this direction in the future with a larger set of participants
with greater demographic diversity, perhaps in a crowdsourcing
setting in a real-world deployment website scenario.

Overall, relative design acquisition has proven to be effective in
generating relative designs not only catered for individual users, but
for new groups of users, notably in visual context-present scenarios.
However, in the current RDA objective there is no incorporation of
variance information in the reference design x∗, as it is only repre-
sented by a value of the mean ` = E[𝑓 (x∗)] or an estimate of 𝑓 (x∗).
It would be fruitful to investigate relative design acquisition with
an RDA objective that incorporates this variance information, for
example, instead of taking the difference in 𝑓 (x𝑎) and its expected
quality, a possibility would be to use a quotient form instead:

𝑅𝐷𝐴(x𝑎 |x∗) = E𝑓 (x𝑎 ),𝑓 (x∗ ) [|
𝑓 (x𝑎) − 𝑓𝑙
𝑓 (x∗) − 𝑓𝑙

− 𝛾 |]

Here, the expectation is taken over both the distributions of
𝑓 (x𝑎) and 𝑓 (x∗) in the GP, and therefore incorporates the variance
information of both the reference and relative designs.

In terms of applications, it would be interesting to explore rela-
tive design acquisition for other interaction and human-in-the-loop
tasks where a less subjective design objective function, other than
user rating, such as reaction time and attention metrics from eye-
tracking, can be assessed. Further, it would be useful to assess
relative design acquisition for different visual tasks and assess more
sensorimotor reactions of users in the presence of two choices of
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similar and different qualities, as controlled by 𝛾 . It may also be
fruitful to explore relative design acquisition using a deep learning
based paradigm, with techniques taking inspiration from interpola-
tion in a latent space.

Although the application with the shopping website may appear
limited in scope, the experiments do show that relative designs can
be acquired that control user preferences and decision times. We
conjecture that relative design acquisition can be applied to different
prompts and applications to which it can affect user decisions and
choices. However, such investigations are beyond the scope of this
paper. Future research directions could include investigating the
implications of using relative design acquisition for a real-world
task and the resulting user experience, such as exploring whether a
generated relative design would affect the proportion of clicks on it
versus a reference design. It would also be interesting to understand
how a changing visual context could affect the capability of the
proposed approach to identify preferences, such as setting up an
experiment to investigate how different products on an e-commerce
website induce effects on the comparative ratings. Further work
could also investigate the fine-grained effects of gamma on user
decision making, and hence provide guidance on how small the
step sizes for gamma can be set to see a particular comparative
rating effect for different applications.

4.1 Ethical Concerns
It is conceivable that relative design acquisition can be used to
create dark design patterns, of which the example in Figure 2 can
be one such consideration. Dark design patterns are user interface
design choices that aim to steer or misdirect users into making
unintentional or malicious decisions [3, 20]. For instance, for the
blue button and green button tasks, the relative designs generated
for 𝛾 = 0.3 and 𝛾 = 0.6 could potentially serve as dark design
patterns as they resemble disabled buttons which could result in
possible ethical issues [11, 21]. However, although the reference and
relative designs exhibited in our studies may exhibit dark design
patterns, steering user choices may not always be for malicious
purposes. Take for instance widgets being designed relative to
one another to prompt the user to click the widget that gives the
most helpful option, such as directing users to the most widely
used controls in a image editing application. This is an example of
relative design acquisition being used to improve users’ experience.
It is important to highlight the ethical purposes of relative design
acquisition and that it should be used to guide users to particular
decisions, but not to inherently mislead or misrepresent. It would
be an interesting research direction to see if we could inversely
infer if a reference and relative design pair would fall into a dark
design pattern, for example, by providing a metric indicating if a
generated relative design may lead to a malicious purpose.

5 RELATEDWORK
5.1 Computational Design in HCI
There has been much work in applying computational approaches
and machine learning methods, notably optimization, in human-
computer interaction for interface and interaction design tasks. For
instance, MenuOptimizer [1] aims to improve user performance by

having the designer assisted during the task of combinatorial opti-
mization of menus. Similarly, the tool DesignScape [22] suggests
layouts to the designer interactively for position, scale, and align-
ment of elements. Many of these tools have a human-in-the-loop
component where the human designer provides feedback to the
design tool, which then updates to propose a new design catering
to the tastes of the interacting user. Such tools include Sketchplore
[31], a sketching tool which involves real-time design optimization;
Forte [6] where topology optimization is used for fabricating shape
design; and a tool by Kapoor et al. [14] where classification systems
are made more intuitive to users based on user feedback on classifi-
cation behavior. These tools all have the overarching characteristic
that human participation during the optimization process helps im-
prove the quality of generated designs. In particular, the main goal
of all the above methods is to leverage both computational methods
and human feedback in-the-loop to search for optimal designs that
maximize some sort of performance metric. In contrast, we aim
to find a relative design to a reference design with a controllable
quality factor with respect to some objective.

5.2 Bayesian Optimization in Computational
Interaction

Bayesian optimization has been applied extensively in computa-
tional design and in human-in-the-loop settings where the objective
function is a black-box system (i.e. we do not know the relationship
between the user performance and the design parameter before-
hand) and expensive to compute, as in the case of user performance
to a particular design configuration. Bayesian optimization is a
machine learning method that efficiently explores and exploits the
design parameter space to find promising new designs based on
observations of past design performance. Shahriari et al. [28] pro-
vide a detailed review of the applications and the practical aspects
of Bayesian optimization. Relevant applications of Bayesian opti-
mization include Brochu et al. [4], which used this approach in a
preference gallery scenario to allow users to find the optimal param-
eters for rendering smoke. Another example is Koyama et al. [16, 17]
which used a variant to allow for visual feature optimization in pho-
tos with one-dimensional line and two-dimensional planar searches.
Finally, Dudley et al. [9] used Bayesian optimization to optimize
interface designs in a crowdsourcing setting, and Piovarci et al.
[25] employed Bayesian optimization for stylus haptic feedback
multi-objective optimization. Overall, Bayesian optimization is an
effective statistical computational method for interaction design
optimization. However, while we take a statistical computational
approach to our problem, we do not have the same aim of finding a
design optimum. Instead we focus on finding a relative design to a
reference design with a specified quality.

5.3 Interpolation Methods in HCI
The computational approach we take is similar to interpolation
methods in machine learning, which have been proposed to find
design instances that are a smooth transition from one extreme
to the other, such as a rendering a fruit smoothly to morph from
an apple to an orange. For instance, in deep learning, there are
numerous methods to interpolate over latent spaces, such as vari-
ational autoencoders and generative models [2], and applications
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to deep feature interpolation in image processing and computer
vision [7, 33], as well as in animation [29]. Recently, Ueno et al. [32]
proposed a method to create continual and gradual style changes
of graphic designs with a generative model, which focuses on the
idea of interpolation for deep learning based models. Although our
approach is similar to that of interpolation methods, it is different
in the sense that our quality parameter controls the performance
with respect to some design objective and compares it to a reference
design. In addition, our method is more geared to, and robust with,
applications where user performance feedback is used, such as in
human-in-the-loop settings.

5.4 Perceptual Decision Making
Fundamentally, the purpose of the example to motivate relative
design acquisition also presents it as a perceptual decision making
problem for humans. In the field of neuroeconomics and decision
neuroscience, the effects, factors, and the behavior of decision mak-
ing have been well researched with respect to sensory inputs being
used to create perceptual decisions with discrete categorical vari-
ables. Summerfield and Blangero [30] provide a detailed review of
the progress in perceptual decision making in the field of decision
neuroscience.

In this paper, we focus on the characteristics of decision times
when presented with a reference design and a relative design with
a specified quality. In the literature, many factors are known to
affect decision times. For instance, in a task of reaction-time dis-
crimination of motion direction, elapsed decision time is longer and
the decision is less accurate for tasks with less reliable evidence
due to the combination of prior information with sensory evidence
[12]. In another task of choosing the direction of a noisy display of
moving dots, choice certainty was shown to be inversely correlated
with reaction time for human participants [15]. Other studies with
human and rhesus monkey subjects for visual tasks have shown
that urgency affects decision times [26], and that evidence accu-
mulation for decision making has a distinct time-dependent neural
firing pattern in the lateral interparietal cortex that affects decision
time behavior [8, 27].

6 CONCLUSIONS
This paper has introduced the notion of relative design acquisition
and formalized it as a computational design problem. Its efficacy
in creating visual interface that can steer users’ choices was then
assessed in three separate user studies. The relative design acqui-
sition method has the advantage that the quality of the relative
design to the reference design can be controlled by a quality factor,
as captured in the design parameter 𝛾 .

The three user studies showed that relative design acquisition is
able to create visual relative designs for both visual context-free and
visual context-present scenarios catered to individual users, and
that it is robust against different sampling methods. In addition, it is
effective in generating reference and relative designs controllable by
𝛾 for a new set of users, especially in the context-present scenarios.
The gap in the quality of designs also affects users’ decision time.

Overall, this method has promise in being a general computa-
tional design technique and our formalization of relative design
acquisition should be widely applicable to a range of interaction

design tasks. The results show that an approach based on statisti-
cal models, such as Gaussian Processes, is robust and controllable
to wide variations of user preferences. Through the three studies,
we observe that relative design acquisition has the potential to be
deployed in a variety of settings to guide user choices. For instance,
less useful tools in a desktop application can be designed to be sub-
optimal in their visual appearance, and interface designs with more
advanced features can be adjusted in quality depending on user
proficiency as in training wheels for a user interface [5]. Another
possible application would be changing the visual appearance of
different paths in a maps application to guide users to choosing
alternative routes to alleviate overall traffic in an area. The main ad-
vantage of systematically generating relative designs of controllable
quality means that visual interfaces can be continuously adjusted
according to the context at hand.
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A APPENDIX: DERIVATION OF ANALYTIC
FORM OF THE RDA OBJECTIVE

We here detail how to explicitly derive the RDA objective given a
Gaussian Process model of 𝑓 constructed using data D. The only
non-deterministic term in the RDA objective is 𝑓 (𝑥𝑎) ∼ N (`𝑎, 𝜎2𝑎),
which can be determined using the predictive distribution of the
Gaussian process at 𝑥𝑎 .

Then, 𝑓 (𝑥𝑎) − (𝛾 (` − 𝑓𝑙 ) + 𝑓𝑙 ) ∼ N (`𝑎 − (𝛾 (` − 𝑓𝑙 ) + 𝑓𝑙 ), 𝜎2𝑎). For
notational simplicity, denote 𝐾 = `𝑎 − (𝛾 (`− 𝑓𝑙 ) + 𝑓𝑙 ). First we need
the following derivation: if 𝑦 ∼ N(`, 𝜎2), then:

𝐹 (𝑦) =
∫

𝑦 exp(− (𝑦 − `)2

2𝜎2
)𝑑𝑦

=

∫
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2𝜎2
)𝑑𝑥, 𝑥 = 𝑦 − `

=
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2𝜎2
)𝑑𝑥 + `

√︁
2𝜋𝜎2Φ( 𝑥

𝜎
)
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𝜎2 exp(−𝑎)𝑑𝑎 + `

√︁
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𝜎
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2𝜎2
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) +𝐶
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∫ ∞

0
𝑦 exp (− (𝑦 − 𝐾)2

2𝜎2𝑎
)𝑑𝑦 −

∫ 0

−∞
𝑦 exp (− (𝑦 − 𝐾)2

2𝜎2𝑎
)𝑑𝑦)

=
1√︃
2𝜋𝜎2𝑎

(𝐹 (∞) − 𝐹 (0) − 𝐹 (0) + 𝐹 (−∞))

=
1√︃
2𝜋𝜎2𝑎

(𝐾
√︃
2𝜋𝜎2𝑎 + 2𝜎2𝑎 exp (−

𝐾2

2𝜎2𝑎
) − 2𝐾

√︃
2𝜋𝜎2𝑎Φ(

−𝐾
𝜎𝑎

))

Note that here, Φ represents the cumulative distribution function
of the Gaussian distribution.
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