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ABSTRACT 

We studied the memorability of free-form gesture sets for 

invoking actions. We compared three types of gesture sets: 

user-defined gesture sets, gesture sets designed by the au-

thors, and random gesture sets in three studies with 33 par-

ticipants in total. We found that user-defined gestures are 

easier to remember, both immediately after creation and on 

the next day (up to a 24% difference in recall rate compared 

to pre-designed gestures). We also discovered that the dif-

ferences between gesture sets are mostly due to association 

errors (rather than gesture form errors), that participants 

prefer user-defined sets, and that they think user-defined 

gestures take less time to learn. Finally, we contribute a 

qualitative analysis of the tradeoffs involved in gesture type 

selection and share our data and a video corpus of 66 ges-

tures for replicability and further analysis. 
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INTRODUCTION 

Advances in user interface research have enabled the design 

of gesture sets that allow people to issue a wide range of 

commands by performing gestures that are recognized by 

the computer [28,34,1,21,13]. Some examples of gestures 

sets include the pen-based Rubine gesture set [28], Graffiti, 

Unistrokes [10] and the $1 gesture set [36]. Recently, ges-

ture sets have also been intensively studied for surfaces and 

other multi-touch devices [8,35,14,16,25] and for 3D full-

body-motion tracking sensors [17,30,32,33]. 

There are many plausible advantages with gesture interfac-

es. For example, gestures do not take screen real estate or 

visually clutter the interface, they might be easier to associ-

ate with the intended actions, they can be invoked from 

multiple locations, and they are not orientation-dependent. 

The latter is useful in large-display collaborative scenarios 

[24]. Further, the industry interest in gestures interfaces is 

highlighted by the increasingly rich set of gestures available 

in touchpads and gestural interface platforms (e.g., [18]). 

One of the main factors that could determine the success of 

gesture sets in modern interfaces is whether the gestures 

can be effectively learned and remembered. Researchers 

investigating gestural interfaces have previously highlight-

ed the importance of gesture memorability (e.g., [20]), but 

there is little empirical evidence regarding the memorability 

of gestures in general, and no evidence on the memorability 

of user-defined vs. pre-designed gestures, one of the top-

level design decisions that can affect memorability. 

In this paper we empirically and analytically contribute to 

our understanding of the interrelationship and trade-offs 

between user-defined and pre-designed gestures. A key 

finding is that personalized gesture sets designed by the 

users themselves are significantly more memorable than 

pre-designed gestures that were, in our case, defined by two 

designers. This result was replicated in a series of three 

experiments that tested participants’ recall of gesture sets 

for three feature-rich applications: an image editor, a web 

browser, and a word processor. The advantage of user-

defined gesture sets is not due to the time required for users 

to create user-defined gestures, as one might initially ex-

pect. When controlling for time across the conditions, user-

defined gestures were still significantly easier to remember. 

In addition, participants significantly preferred user-defined 

gesture sets, and they thought creating user-defined gesture 

sets took less time than learning pre-designed gesture sets 

(when in fact the actual time difference between the two 

conditions was negligible). In general, users experienced 

user-defined gestures as easier, more fun and less effortful. 

These results increase our understanding of gesture inter-

faces and show that it is well worth enabling users to design 

gestures for certain application-specific actions themselves.  

However, there are also situations when pre-designed ges-

tures, designed either by a team of designers or elicited by 

users, are more suitable. We therefore provide an analysis 

of the trade-offs between user-defined and pre-designed 

gestures. In summary, our contributions are four-fold: 

 We provide new empirical evidence on the memorability 

of gestures based on more than 100 hours of data gathered 

from 33 participants in three experiments. 

 We present a qualitative analysis comparing user-defined, 

pre-designed, and stock gesture sets. 

 We derive three guidelines for interface designers based 

on our empirical evidence. 

 We share the data from the user studies to enable further 

analysis and to ensure replicability. 
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RELATED WORK 

Gestures are used for a variety of tasks, including writing 

text (e.g. [10,1,34,26]), issuing commands (e.g. [15,3,2, 5]), 

and modifying objects (e.g. [27,7]). See the recent survey 

by Zhai et al. [39] for a comprehensive review of 2D ges-

ture interfaces. In order for gestures to be used they have to 

be designed. For this purpose, Long et al. [19] created gdt, 

the gesture design tool. It enables designers to create 2D 

gestures. Several tools for helping designers create gestures 

sets have been created thereafter, most recently Gesture 

Coder [21], $N-protractor [1] and Proton [13]. 

However, for users to leverage gestures in the first place, 

they have to discover and learn how to apply them effec-

tively. An early study investigated the immediate usability 

of Graffiti gestures and found that users can learn the entire 

gesture set within five minutes [24].  Later Wobbrock et al. 

[34] nuanced the concept of immediate usability by study-

ing what they call the guessability of individual gestures. 

They proposed a procedure for designing and evaluating a 

highly guessable gesture set from participant data. It has 

later been pointed out that most tabletop gesture sets are 

pre-designed and that such gestures may not accurately 

reflect users’ expectations [35]. Consequently, Wobbrock et 

al. [35] proposed a methodology for eliciting tabletop ges-

ture sets from users and used this methodology to create a 

set of user-elicited gestures. A follow-up study showed that 

users preferred user-elicited gestures, and to a lesser extent, 

gestures proposed by 2–3 designers [25]. Gestures created 

by a single designer were the least preferred. Several others 

have later adopted the user-elicited paradigm to, for exam-

ple, design gesture sets for mobile phones [14,30], interac-

tive television [33,12], multi-display environments [16] and 

smart-home environments [17]. A recently conducted study 

on user-elicited gesture sets found that users tend to gener-

ate gestures with familiar characteristics even when they are 

told to generate distinct and novel gestures [29].  

Several systems have been developed to help users discov-

er, learn and articulate gestures. Command Strokes [15] 

enables users to gesture textual representations of com-

mands (e.g., the string “copy”) on touchscreen keyboards. 

To aid gesture discoverability, it continuously recognizes 

gestures as they are articulated on the keyboard and visually 

presents the most likely commands to the user. Octopocus 

[3] is a system similar in spirit that helps users discover and 

articulate free-form gesture commands on touchscreens. In 

multi-touch and surface environments the ShadowGuides 

[8] system helps users learn multi-touch and whole hand 

gestures. For 3D gesture interfaces, LightGuide [32] pro-

jects gesture guidance hints directly onto the user’s hand. 

A relatively underexplored issue in gesture interfaces is 

memorability. In the context of text entry, Zhai and Kris-

tensson [1] investigated how many unfamiliar gestures us-

ers can learn via a training program. Cockburn et al. [6] 

investigated whether inducing effort can improve gesture 

recall of single-stroke gestures. Inducing effort improved 

memorability but users found the effort-inducing gesture 

training interface less enjoyable and more frustrating. Later, 

in a study of strategies for teaching users gestures for sur-

faces, Freeman et al. [8] found that users remembered more 

surface gestures when using their ShadowGuides system 

compared to video-based assistance. Another memorability 

study was conducted by Appert and Zhai [2]. When testing 

users’ ability to issue 14 commands, they found that they 

were able to recall more gestures than keyboard shortcuts.  

Recently, as part of a series of four experiments, Kühnel et 

al. [17] investigated how well ten users could rate and learn 

seven (for them unfamiliar) user-elicited 3D gestures in a 

smart home environment. The gestures were performed by 

holding a mobile phone in one of their hands. While Kühnel 

et al. [17] do not report how many gestures users remem-

bered, they conclude that gestures representing frequent 

non-complex actions tended to result in similarly elicited 

gestures, which in turn tended to be easier for the users to 

remember. Finally, Jansen [12] investigated three ways of 

teaching users a set of ten (for them unfamiliar) user-

elicited gestures for interactive television. Jansen [12] re-

ports that users could correctly recall 61-71% of the ges-

tures on average, depending on the teaching method. 

PRE-DESIGNED VS. USER-DEFINED GESTURE SETS 

For this work we distinguish between three main different 

classes of gesture sets: pre-designed, stock, and user-

defined. We define each type and discuss their customiza-

bility, discriminability, consistency, transferability and 

awareness, and user time and effort. 

Pre-designed. These are gesture sets that are created by 

designers for a particular application. Designers can take 

advantage of their expertise to create gestures that will be 

suitable for people (e.g., memorable, easy to perform), use 

their knowledge of the system’s recognizer technology to 

improve recognition rates, and put effort towards creating 

strong mappings between gestures and actions [35,25]. We 

consider user-elicited gestures [35] as a special case of pre-

designed gesture sets. The gestures that comprise these sets 

are generated by a representative group of users in a study, 

generally at system design time, and are then carefully 

compiled and selected to form a consistent “agreed upon” 

gesture set that is still recognizable by the system (e.g., it 

does not assign identical gestures to several actions) [35]. 

We acknowledge that user-elicited gesture sets can differ 

from pre-designed gesture sets, and we discuss these differ-

ences in this section and in the discussion. However, the 

creation of such sets introduces significant complexity and 

requires a full additional phase of testing. Moreover, user-

elicited gesture set creation is still an evolving technique, 

with many variants [9]. We therefore decided not to include 

user-elicited gestures as a condition in our study, and leave 

this more fine-grained comparison for future research. 

Stock. Systems can come pre-loaded with a generic stock 

gesture set that can be used by many applications, without 
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specifically designed relationships between gestures and 

application actions. These sets might be useful for systems 

that have not been designed with a specific user interface in 

mind (e.g., legacy applications). An example of this ap-

proach is the MS Windows gesture API [23]. 

User-defined. Some systems enable individuals to define 

their own gestures for actions (e.g., [19]). 

Customizability 

The ability to create gestures that adapt to the context and 

needs of the individual can be an advantage of user-defined 

gesture sets. Customizability can impact accessibility (e.g., 

people with reduced right-hand mobility could create ges-

tures that do not involve that hand), and enables adaptation 

to the individual’s needs (e.g., frequent tasks are assigned to 

faster gestures). Customized gestures might also help lever-

age people’s personal background (e.g., culture, personali-

ty, and experiences) to provide easier to remember personal 

associations. In contrast, pre-defined and stock gesture sets 

need to be learned. However, we do not have any evidence 

on whether user-defined or learned gestures are easier to 

remember. Our work addresses this question. 

Recognizer Discriminability 

Although gesture recognizer technology is constantly im-

proving, recognizers are not perfect. Two gestures from a 

user-defined gesture set can seem very different to the user 

defining them, but may appear similar to the recognizer. As 

a result, recognizers for user-defined gesture sets need to be 

more sophisticated and may suffer from lower accuracies 

than recognizers for professionally-designed sets. Gesture 

designers can apply their expertise and invest more time in 

balancing human aspects and machine-discriminability. 

 

Figure 1. Experimental setup. The participant sat on the left 

and the experimenter sat on the right. 

Consistency 

Gesture sets designed by professionals are likely more con-

sistent than those spontaneously generated by users. Con-

sistency is a desirable property of interfaces in general, and 

it can be of increasing importance as the number of gestures 

increases. Consistently designed gesture sets can even form 

a grammar that enables the invocation of many actions 

through combinations of relatively few subgestures [4,37]. 

Collaborative Awareness and Transferability 

Gestures are often necessary in multi-user scenarios; a criti-

cal aspect in CSCW is that collaborators can interpret and 

follow what others are doing (workspace awareness [11]). 

User-defined gestures will likely be harder to interpret by 

collaborators, whereas if everybody shares the same set 

they can follow other’s activities more easily. A unified set 

of gestures that is common across applications also enables 

people to use the same gestures in multiple systems without 

having to personalize the system for a particular person. 

Effort/Time 

Learning a set of gestures requires a certain amount of time 

and effort, but coming up with gestures does take time and 

effort as well. More importantly, the user-perceived time 

and effort that has to be invested into learning or creating 

gesture sets might be crucial for the success of the interface. 

As part of our study we investigate the effort and time of 

learning pre-defined gestures vs. inventing new ones. 

EMPIRICAL EVALUATION 

The related work and analysis sections above highlight im-

portant unresolved questions about gesture memorability. 

Most importantly, can users remember gestures that they 

define themselves better than pre-designed or arbitrarily 

assigned sets? We designed a series of three studies to an-

swer this question. 

EXPERIMENT 1 

Apparatus 

The experiment was carried out on a Microsoft Surface 1.0 

device running custom experimental software. The partici-

pant and the experimenter sat on opposite short ends of the 

surface (see Figure 1). The visible interface on the table 

was divided into two main areas (see Figure 2): the partici-

pant area (B—85% of the display area), and the experi-

menter area (A—15% of the display area). The experiment-

er’s area was occluded from the participant’s line of sight 

by a small wooden vertical screen (see Figure 1). 

The participant’s area was divided into three sections. The 

participant video area (Figure 2.E) was used to present ges-

ture videos to the participant, the action area (2.G), where 

the participant would reproduce, create, or remember ges-

tures, and the action presentation area (2.F), which dis-

played the initial state, name of the action, and intended 

result of the gesture. The experimenter’s area contained an 

experimenter reference video widget (2.C) and buttons to 

control the flow of the experiment and to log if the partici-

pant’s gesture was correct, almost correct, or incorrect 

(2.D). The Surface was touch-enabled, but the gestures per-

formed by the participant did not have to contain touches on 

the surface (i.e., they could be free-form above the table), 

and therefore no automatic sensing of gestures was provid-
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ed. The correctness of the gestures was determined by the 

experimenter by comparing the participant’s gesture with a 

pre-existing video that was not visible to the participant. A 

camera overlooking the action area from behind the partici-

pant’s left shoulder recorded the user-defined gestures. 

Experimenter
control area
(A) 

Participant 
video area (E)

Action presentation
area (F) 
Before Action (top)
Action Name (mid)
Post-action (bottom)

Participant
Area
(B)

Experimenter
Reference Video
(C)

Correctness
Buttons (D)

Action area (G)

 
Figure 2. Annotated snapshot of the experimental interface. 

The action being shown in areas F and G is “delete lines”. 

Applications, Action Sets and Gesture Sets 

The experiment followed a within-subjects design in which 

participants learned and remembered gestures in three or-

der-balanced conditions: user-defined, pre-defined, and 

random gestures. For experimental purposes, three sets of 

16 actions were selected for each of three applications, sim-

ulating activities that could take place on or over a multi-

touch surface: image editing, web browsing and word pro-

cessing. These three applications were selected because 

they contain many possible actions (e.g., make selected text 

bold, access bookmark menu, create a new layer), and are 

familiar to most computer users. We needed familiar appli-

cations that were distinct from each other in order to pre-

vent the participant confounding the results by not being 

able to remember what an action meant. We believe that the 

set of actions that we selected are representative of most 

existing or future software-supported activities. We avoided 

similarity within and across applications when selecting 

actions. For example, because we selected the “go to previ-

ous page” action in the web browser, we chose to avoid 

testing an “undo” action for the image editor and the word 

processor. The full list of actions is in the video figure. 

Each participant carried out three experimental cycles of 

learning and gesture memory testing, one in each condition 

(user-defined, pre-designed, and random), and with a dif-

ferent application (image editor, web browser, and word 

processor). The applications were always visited in the 

same order, but condition balancing forced application-

condition combinations to appear an equal number of times. 

Pre-designed Gesture Set Condition 

The pre-designed condition corresponds to a gesture set 

designed by two of the authors of the study. For each action 

in a group of 16, a free-form gesture was designed that 

complied with the following conditions: 

 The gesture was specific enough to be distinguishable 

from simple touch manipulations such as pinching; 

 The gesture was distinguishable from other gestures with-

in and across gesture sets; 

 The gesture could contain any sequence of free-form 

movements in the air, or hand contacts with the surface. 

In addition to these conditions, the designers applied their 

experience in the design of multi-touch gesture sets (e.g., 

[31]) to achieve reasonable gestures that were consistent 

with the task in three iterations. 

User-defined Gesture Set Condition 

In the user-defined gesture set condition, participants creat-

ed their own gestures. Participants were given an image of 

the initial state, the name of the action, and the final state, 

and they had unlimited time to create a gesture for the ac-

tion. Once they had decided on a gesture, they would repro-

duce it once to be video-recorded by the experimenter. The 

experimenter reminded the participants multiple times that 

gestures did not have to be limited to contact with the sur-

face (e.g., they could be articulated in the air). 

Random Gesture Set Condition 

The random gesture set condition was included to serve as a 

baseline comparison. It also represents stock gesture sets. 

Actions were assigned to gestures from the pre-designed set 

of gestures that participants did not get to see that corre-

sponded to a different application. For example, if the par-

ticipant went through the pre-defined, user-defined and 

random experiment order, they would have to learn the pre-

defined gestures for the browser first, then design their own 

gestures for the word processor actions, and finally learn a 

randomly assigned set of gestures that were originally de-

signed for the word processor, only randomly assigned to 

image editor actions. This approach guarantees that the ges-

tures were plausible, not seen by the participant before or 

after, and not specifically created for the application. 

Procedure 

Six male volunteers (age 22 to 28) participated in the study. 

After providing consent and before starting the first phase 

of the first condition, participants went through a short 

demo in which they experienced a short version of the basic 

procedure with a set of actions not included in the rest of 

the experiment (“cut”, “copy”, “paste”, “print”). Partici-

pants came four days to the lab to perform a Learn-

Reinforce-Test cycle for each of the conditions. Testing for 

a learned set would always happen on the next day. For 

example, if L,R,T represent the three phases of each condi-

tion detailed below, a participant in the user-defined (UD), 

pre-designed (PD), random (RD) order would do the fol-

lowing sequence: Day 1 LUD+RUD; Day 2 TUD+LPD+RPD; 

Day 3 TPD+LRD+RRD; Day 4 TRD. Days 1 and 4 took about 

40 minutes, 2 and 3 took approximately 1 hour. 
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Learning/Creation 

During this phase, participants were taught a gesture set. 

For each gesture in a series of 16, the interface would pre-

sent an action in the action presentation area (Figure 2.F), 

which consists of an initial state, an action name, and a final 

state. For example, the “make bold” action would show a 

regular line of text in the top of the action presentation area 

(top of part F in Figure 2), the words “make bold” in the 

middle, and the same text but in a bold typeface in the bot-

tom. Then, a video would play in the participant video ar-

ea, showing the specific physical gesture for the current 

action. The video could be played repeatedly if the partici-

pant was not sure about what gesture was shown. Finally, 

the participant would reproduce the gesture in the action 

area; if the experimenter recognized the gesture as correct, 

this would trigger the same kind of result in the action area 

as was shown in the action presentation area (e.g., turning 

the existing text to bold).  

The transitions between these stages were triggered by the 

participant, who had to touch on the different areas of the 

screen to progress through all the phases except the last, 

where the experimenter made sure that the reproduced ges-

ture corresponded to that shown on the video. If not correct-

ly reproduced, the experimenter would play the video again 

and ask the participant to repeat. 

In the user-defined condition, participants did not have to 

learn a gesture set, but instead create one. The gesture crea-

tion procedure was similar to the learning process, but in-

stead of watching a pre-recorded video, participants were 

given unlimited time to design a gesture which, when a 

stable gesture was achieved, was video-recorded.  

Reinforcement 

Immediately after the full set of gestures was learned or 

created, the same set of gestures was tested. This phase was 

introduced to simulate real-world learning circumstances 

more realistically, where learning a gesture would not take 

place in isolation, but instead would happen within the con-

text of actual use and application of the learned gesture set.  

The reinforcement process was similar to the learning 

phase, but participants would try to recall and reproduce the 

gesture corresponding to an action first, after which they 

would be notified of its correctness, and then shown the 

video of the correct gesture. In this phase, the gestures were 

presented in the same order as during the learning phase, 

and the correctness of the answer was judged by the exper-

imenter and the result was logged by the system. 

Next-day Testing 

We collected the main memorability measure of the study 

in a session that took place the day after the corresponding 

learning phase. This testing phase was identical to the rein-

forcement phase, except that no video reminding partici-

pants of the right gesture was presented at the end of the 

trial, and the participants were not informed of the correct-

ness of their gesture (to avoid possible cross-gesture recall 

effects). The correctness of the gesture was judged by the 

experimenter with the help of the video used to teach the 

gesture, which was visible only to him. If the experimenter 

had any trouble seeing the participant’s execution of the 

gesture, he asked the participant to repeat the gesture again. 

Measurements and Analysis 

The main measure of the study was the number of correct 

recalls of gestures during the test phase. A gesture would be 

judged as correctly recalled if it involved the same parts of 

the hands, the same number of hands, fingers and contacts, 

and the same overall movement shapes and timing. If the 

reproduction of the gesture was similar, but with some no-

ticeable difference (e.g., a different number of fingers, dif-

ferent fingers used, or different number of taps) the gesture 

was considered a close gesture. The distinction between 

regular recall errors and close errors helps us distinguish 

between two types of memorability problems in gestures: 

association errors (failure to associate the action with the 

correct gesture), and partial gesture errors (failure to recall 

the specifics of the gesture). The same criteria were applied 

to the measures during the reinforcement phase. Additional-

ly, we measured the time to respond in both the reinforce-

ment and test phases. 

Since the gesture learning and design process was mostly 

participant-driven and the time spent defining or learning 

gestures was variable, we also measured the time that each 

participant spent learning or defining each gesture.  

Visual inspection of the recall distributions revealed that 

these were plausibly normal. All time-based tests were per-

formed on log-transformed data. No sphericity tests dis-

counted sphericity. All post-hoc tests were corrected for 

multiple comparisons using Holm-Bonferroni corrections. 

Results 

Next-day tests 

The average recall rates on the next day were 97% for the 

user-defined gesture set, 82% for pre-designed, and 52% for 

random (see Figure 3). A repeated-measures ANOVA of 

the recall rates showed a significant effect of the conditions 

(F2,10 = 58.7, p < 0.001, ηp
2 = 0.92), which was also reflect-

ed in significant pairwise comparisons (all p < 0.013). 

To analyze the source of errors we performed a two-way 

RM-ANOVA of the number of errors with type of error 

(association, partial gesture) and gesture set (user-defined, 

pre-designed, random) as factors. The analysis showed sig-

nificant main effects of both factors (F2,10 = 58.7, p < 0.001, 

ηp
2 = 0.92; F1,5 = 9.3, p = 0.028, ηp

2 = 0.65) as well as an 

interaction effect (F2,10 = 10.8, p = 0.003, ηp
2 = 0.68). The 

interaction indicates that the pattern of association errors 

might be different to that of partial gesture errors; to further 

investigate that, we ran separate ANOVAs for each type of 

error, which were both significant (F2,10 = 7.0, p = 0.013, 

ηp
2 = 0.58; F2,10 = 73.1, p < 0.001, ηp

2 = 0.94). However, the  
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pattern in the post-hoc pairwise comparisons was different 

for each error type. For partial gesture errors only the dif-

ferences between the random gesture set and the pre-

designed and user-defined sets approached significance 

after adjusting for multiple comparisons (p = 0.017; p = 

0.027), whereas for association errors all pairwise compari-

sons were significant (all p < 0.05), with user-defined ges-

tures having the least amount of average association errors 

(0.5), followed by pre-designed (1.3) and random (5.5).   

Reinforcement tests and learning/training time 

The proportion of correct answers in the reinforcement 

phase follows the same pattern as for the next-day test: 98% 

correct for user-defined, 81% for pre-designed and 47% for 

random. In a parallel analysis, an RM-ANOVA of the recall 

rates showed a statistically significant difference between 

conditions (F2,10 = 38, p < 0.001, ηp
2 = 0.88), which was 

also reflected in significant pairwise tests (all p < 0.008). 

Finally, we compared the amount of time that participants 

spent creating gestures in the user-defined condition vs. 

learning the gestures in the other two. An RM-ANOVA of 

the log-transformed times showed differences in training 

time (F2,10 = 17.9, p < 0.001, ηp
2 = 0.78). It took participants 

42.1s on average to define a gesture for the user-defined 

gesture set, whereas it took 25.9s and 17.9s to learn ges-

tures from the random and pre-defined sets respectively 

(see Figure 3, column 4 for the log-transformed averages). 

Summary and Discussion of Experiment 1 

The results of this experiment show a potentially large ad-

vantage in memorability of the user-defined gesture set 

(15% better recall than pre-designed on the next day, 17% 

right after the test), with a very clear disadvantage of the 

random set. Additionally, the error analysis indicates that 

association errors vary much more across types of gesture 

sets than partial gesture errors. 

However, the time analysis showed that it takes approxi-

mately twice the time to create a gesture than to present it to 

the participant, at least in our experiment. This may have 

introduced a confound: it is possible that the advantages in 

memorability of the user-defined gesture set were due to the 

longer times participants spent creating it. Additionally, the 

data displayed in Figure 3 also shows a possible ceiling 

effect in the measures for the two most memorable gesture 

sets. Finally, the low number of participants is also a con-

cern. Even though the significant results are unlikely to 

have been due to chance, the small sample size might have 

affected the reliability of the results. 

EXPERIMENT 2 

We designed a second experiment to address the above is-

sues which a) included more participants, b) established a 

better control of the learning/creation time by forcing two 

consecutive repetitions of each gesture’s learning phase 

(pre-designed and random), and c) reduced ceiling effects 

by including larger gesture sets. Additionally, to avoid pos-

sible effects due to sequential memorization, the tests used 

different orders for the training sequences and the test se-

quences. Below we detail the changes in gesture sets and 

procedure with respect to the first experiment; all other el-

ements of the study where kept constant. 

Applications, Action Sets and Gesture Sets 

The three applications were the same as in the first experi-

ment, as were the three conditions. The action and gesture 

sets of the first experiment where expanded with six new 

gestures per application to reach a total of 22 per condition. 

The videos of the 66 gestures are in the video figure.  

Procedure 

Nine participants (6 males and 3 females; age 20 to 40) 

participated in the study for compensation. The procedure 

was identical to that described for the previous experiment, 

except for: 1) the phases took longer due to the larger num-

ber of gestures, 2) the reinforcement and testing used a ran-

domized order of gestures, 3) the learning of each gesture 

for the random and pre-designed conditions was repeated 
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twice to enable comparable times spent learning the pre-

defined and random gestures and creating the user-defined 

gestures, and 4) participants were incentivized to remember 

as many gestures as possible through a top-performer bo-

nus. No participants had participated in the first experiment.  

Results 

Next-day tests 

The average recall rates on the next day were 94% for user-

defined gestures, 89% for pre-designed gestures, and 55% 

for random gestures (see Figure 4). An RM-ANOVA of the 

recall rates showed a significant difference between gesture 

sets (F2,16 = 44.4, p < 0.001, ηp
2 = 0.85). Post-hoc pairwise 

comparisons were significant between the random and both 

the user-defined and the pre-designed conditions (p < 

0.001), but not between user-defined and pre-designed. 

An analysis of the distribution of the errors through a two-

way ANOVA, with gesture set and type of error as main 

factors revealed significant effects of the gesture set (F2,16 = 

44.4, p < 0.001, ηp
2 = 0.85), type of error (F1,8 = 16, p < 

0.004, ηp
2 = 0.67), as well as a significant interaction of the 

two (F2,16 = 48.1, p < 0.001, ηp
2 = 0.85). A further analysis 

of the two error types in separate ANOVAs for each type of 

error showed that association errors were significantly dif-

ferent between conditions (F2,16 = 50.9, p < 0.001, ηp
2 = 

0.86), whereas partial gesture errors were not (F2,16 = 1.6, p 

= 0.24, ηp
2 = 0.16). This shows that most of the variability 

in correctly recalled gestures across gesture sets can be ex-

plained by different rates of association errors. 

Reinforcement tests and learning/training time 

Recall rates in the test immediately after the initial learning 

phase were 92% for user-defined, 71% for pre-designed, 

and 47% for the random condition (see Figure 4). The om-

nibus repeated-measures ANOVA showed significant dif-

ferences between conditions (F2,16 = 29.9, p < 0.001, ηp
2 = 

0.79). The pairwise tests were all significant (all p < 0.015).  

As a control, an analysis of the time spent learning or creat-

ing gestures for the three gesture sets revealed no statistical-

ly significant differences (F2,16 = 0.30, p = 0.74, ηp
2 = 0.04).  

Summary and Discussion of Experiment 2 

The second experiment confirmed the results of the first 

experiment, with the additional assurance that the time in-

vested in learning and creating was successfully controlled 

for across conditions. However, an important exception is 

that the user-defined and pre-defined gesture set were not 

statistically different in the next-day tests. This might again 

be explained as a ceiling effect. Although we tried to avoid 

ceiling effects by expanding the number of gestures, we 

also increased the learning time of pre-defined and random 

sets to make learning time equivalent to gesture creation 

time in the user-defined condition. This might have in-

creased recall rates for the learned gesture sets, reintroduc-

ing a ceiling effect that precluded a significant difference 

between the pre-designed and user-defined sets. 

An alternative explanation would be that the order random-

ization of tests introduced in the second experiment affected 

each condition in a different way. Although this is unlikely, 

ruling out this possibility requires a third experiment.  

EXPERIMENT 3 

This study addresses the limitations of the second experi-

ment, but we also added changes that would cast light on 

additional issues. We doubled the number of participants to 

increase the power of the statistical tests and to avoid possi-

ble Type II errors. Additionally, we were interested in how 

recall rates of the different types of gesture sets would be 

affected by a longer period between learning and testing, 

which generalizes the results for gestures that are not im-

mediately reinforced. Finally, besides the actual recall rates 

and times to learn/create, it is important to know whether 

participants perceive differences in effort, learnability, and 

time between sets, so we added questionnaires to elicit par-

ticipants’ subjective experiences. 

Procedure 

18 participants (8 female; age 20 to 39) participated in the 

study for compensation. The procedure was identical to the 

second experiment except for the following elements: 1) 

participants only reinforced half of the gestures immediate-

ly after the learning session (11 out of 22 gestures, random-
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ly selected), 2) participants filled out a questionnaire with 

four Likert-scale questions after each gesture set’s next-day 

test session, 3) participants filled out a final questionnaire 

where they ranked the three gesture sets in terms of learning 

difficulty, recall difficulty, perceived time learning/creating 

the gestures, and fun. Participants were also incentivized. 

None of them had participated in any of the previous exper-

iments. A different experimenter ran this study. 

Results 

Next-day tests 

 

 

 

Average recall rates on the next day were 79% for user-

defined gestures, 55% for pre-designed and 25% for ran-

dom (see Figure 5). The reinforced (and non-reinforced) 

gestures were recalled in 85% (72%) of the cases for user-

defined, 68% (41%) for pre-designed, and 38% (11%) for 

the random set. Overall values might have been lower due 

to the change of experimenter between experiments 1/2 and 

3, but the same criteria were applied for all correctness 

judgments within each experiment. Differences between 

conditions were confirmed by a two-way RM-ANOVA 

with gesture set and reinforcement as factors, showing sig-

nificant main effects for both factors (gesture set: F2,34 = 

109.2, p < 0.001, ηp
2 = 0.87; reinforcement: F1,17 =86.6, p < 

0.001, ηp
2 = 0.84). Post-hoc pairwise comparisons were all 

significant for both factors (all p < 0.001). 

Analyzing the distribution of the errors via a two-way 

ANOVA, with gesture set type and type of error as main 

factors) shows main effects of the gesture set (F2,34 = 109.2, 

p < 0.001, ηp
2 = 0.86), type of error (F1,17 = 59.3, p < 0.001, 

ηp
2 = 0.77), as well as an interaction of the two (F2,34 = 50.7, 

p < 0.001, ηp
2 = 0.75). Due to the interaction, we further 

analyzed the two error types in separate ANOVAs for each 

type of error, which showed that association errors were 

significantly different between conditions (F2,34 = 90.9, p < 

0.001, ηp
2 = 0.84), whereas partial gesture errors were not 

(F2,34 = 2.8, p = 0.074, ηp
2 = 0.14). This shows that most of 

the variability in correctly recalled gestures can be ex-

plained due to association errors. 

Reinforcement tests and learning/training time 

The average recall rates on the reinforcement test (same 

day) followed the same pattern as the next-day results, but, 

as expected, with lower proportions: 76% for user-defined, 

56% for pre-designed and 33% for random. A repeated 

measures ANOVA showed that the type of gesture set was 

significant (F2,34 = 29.8, p < 0.001, ηp
2 = 0.63) as were all 

post-hoc comparisons between gesture sets (all p < 0.005). 

Our control of the time spent learning/creating gestures was 

successful; there were small differences in the log-

transformed time averages between the three conditions 

(user-defined 26.9s, pre-designed 29.8s, and random 

31.2s—see Figure 5). The ANOVA was significant (F2,34 = 

3.69, p = 0.035, ηp
2 = 0.18) but the post-hoc tests only 

showed a difference between user-defined and random (p = 

0.031). The gesture set type that participants spent the most 

time learning was the one that had the worst recall.    

Subjective measures 

Participants perceived user-defined gestures as requiring 

less concentration to create, being easier to remember, and 

more fun. In the final questionnaire, participants ranked 

user-defined as easiest to learn, remember, less time-

consuming and most fun. The non-parametric omnibus 

comparisons (Friedman) and post-hoc tests (Wilcoxon 

signed-ranks) are reported in Table 1. Finally, in a question 

asking about overall preference 17 out of 18 participants 

chose user-defined as their favorite set. 

Summary and discussion of Experiment 3 

This experiment provided the statistical power necessary to 

strengthen the findings from Experiment 1, without the pos-

sible confound of learning time: user-defined gestures are 
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more memorable than pre-designed or random gestures, and 

random gestures are difficult to remember across the board. 

Omnibus Medians Post-hoc Sig 

Question χ2(2) Sig. UD PD RD UD-PD UD-RD PD-RD 

Concentration to learn ♦ 1 = low 12.2 0.002 5 6 7 0.001 0.01 0.17 

Easy to remember ♦ 1 = very easy 22.5 <0.001 3 4.5 6.5 0.01 <0.001 0.001 

Ease of articulation ♦ 1 = very easy 16.2 <0.001 3 3 4.5 0.8 0.001 0.01 

Fun ♦ 1 = very boring 12.8 0.002 7 6 3.5 0.01 0.001 0.03 

Difficulty  learning (rank) 1 = hardest 21 <0.001 3 2 1 0.088 <0.001 0.001 

Diff. remembering (rank) 1 = hardest 18.1 <0.001 3 2 1 0.16 <0.001 0.001 

Learning time (rank) 1 = longest  24.1 <0.001 3 2 1 0.02 <0.001 0.001 

Fun (rank) 1 = least fun 18.8 <0.001 3 2 1 0.01 <0.001 0.01 

Table 1. Subjective test analyses. Medians are reported in 

green, yellow, red, for best, medium, worst set. Purple cells 

indicate statistically significant post-hoc comparisons. 

The introduction of reinforced and non-reinforced gesture 

sets also shows that the differences between conditions hold 

for longer periods between learning and recall, which might 

be more common in real scenarios. As expected, reinforced 

gestures are more likely to be recalled in the next day than 

non-reinforced gestures. 

The analysis of errors supports that the main differences in 

gesture set memorability can be attributed to differences in 

association errors, whereas the amount of partial gesture 

errors does not seem affected by the type of gesture set. 

Subjective measures indicate that participants perceived 

user-defined gesture sets as easier to learn, more fun, and 

less effortful. They also thought that they took less time to 

create and preferred them overall. 

DISCUSSION 

The data from our experiments provides strong support for 

the use of user-defined gesture sets over pre-designed and 

random sets. Overall, we can expect recall rate differences 

between user-defined and pre-designed gestures of up to 

24%. The differences are also consistent across different 

time lapses. The increased memorability, in combination 

with other natural advantages of user-defined gestures (e.g., 

accessibility, optimization for the task) and the clear ad-

vantages perceived by users suggest that user-defined ges-

tures can be a good choice in many situations. We conjec-

ture user-defined gestures are more memorable because 

they allow individuals to more effectively take advantage of 

pre-established associations to their personal memories than 

what can be done by designers generically for all users.   

Naturally, there are many scenarios where user-defined 

gestures might not be applicable or desirable; for example, 

when people’s awareness of other’s gestures is important 

for the task, when the gestures are common to a large set of 

applications (e.g., cut, paste), and if recognizers cannot reli-

ably recognize user-defined gestures. However, the rate of 

improvement in sensing and recognizer technology suggests 

that the technical limitations will be less relevant in the near 

future. It will still be the designer’s call whether to support 

pre-designed or user-defined gesture sets, but the designer 

might also want to create systems that can switch from one 

mode to another. 

For designers of gestures, our data suggests that partial ges-

ture errors are less important than association errors. The 

associative link between action and gesture seems to be the 

key factor to make a gesture set memorable, as it is also 

highlighted by the poor performance of random gestures. 

Designing gestures without knowing the actions they corre-

spond to (stock gestures) seems generally unadvisable. 

Limitations and Future Work 

Our experiments compared the memorability of user-

defined sets to gesture sets designed by two authors. We 

believe that the latter are representative of the gesture sets 

that other designers will create. An empirical evaluation of 

the representativeness of these sets is difficult practically 

and methodologically, and falls out of our scope. It is pos-

sible that a different designer could achieve a more memo-

rable gesture set, but the large differences found in the 

study still show a significant advantage of user-defined sets. 

Similarly, our experimental design did not compare user-

elicited sets. Whether user-elicitation (a sub-set of pre-

designed sets) can improve memorability deserves atten-

tion, but we do not anticipate user-elicited sets to have a 

significant advantage in this respect. Morris et al. [25], 

found that users preferred gestures that were created by 

more people, but the differences were relatively small (a 

0.75 absolute difference on a 7-point Likert scale). 

Our experiments are somewhat different from real-world 

gesture-learning contexts where gestures are learned while 

doing other tasks and are often used in sequences. Our re-

search is a first step, but eventually our results will need to 

be confirmed in less controlled studies. Similarly, we chose 

applications for their familiarity. Applications other than 

browsers, image and word processors might be more com-

mon on surfaces in the future. 

There are other important aspects of gesture sets that might 

also affect gesture memorability. For example, the type of 

gesture (e.g., deictic, literal), the input technology (surface, 

in-air), and cultural background require further study. 

CONCLUSIONS 

Gestures can be useful to invoke actions in interfaces with 

gesture recognizing capabilities. One of the most important 

aspects of gesture sets is memorability, since forgotten ges-

tures can cause errors, increase frustration, and might pre-

vent the adoption of gesture-based user interfaces. In this 

work we present a series of three studies investigating the 

memorability of three types of gesture sets: user-defined, 

pre-designed, and randomly assigned. The results show that 

user-defined gesture sets are more memorable than pre-

designed (up to 44% more gestures recalled), and they are 

considered less effortful, less time-consuming, and are pre-

ferred by people. In conjunction with our qualitative analy-

sis, we can offer the following recommendations: 
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 When not prevented by the context of use or the reliabil-

ity of the recognizer, enable user-defined gesture sets. 

 To design a gesture set for better memorability, consider 

closely its relationship with the action that it invokes, 

rather than the specific features of the gesture itself. 

 Instead of using stock gesture sets, consider gestures 

designed for specific actions, or user-defined gestures. 
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