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Abstract—Ticker is a probabilistic stereophonic single-switch text entry method for visually-impaired users with motor disabilities who

rely on single-switch scanning systems to communicate. Such scanning systems are sensitive to a variety of noise sources, which are

inevitably introduced in practical use of single-switch systems. Ticker uses a novel interaction model based on stereophonic sound

coupled with statistical models for robust inference of the user’s intended text in the presence of noise. As a consequence of its design,

Ticker is resilient to noise and therefore a practical solution for single-switch scanning systems. Ticker’s performance is validated using

a combination of simulations and empirical user studies.

Index Terms—Single-switch systems, accessibility, augmentative and alternative communication, Bayesian inference

Ç

1 INTRODUCTION

A single-switch user is someone whose primary means of
communication relies on a single-switch input device,

triggered by an action such as blinking, raising an eye brow,
flexing of the wrist, jostling a knee, sniffing, sipping and
puffing on a straw, or thinking of an activity such as ten-
nis [1], [2], [3].

Switch events are challenging to capture due to involun-
tary actions from users, which necessitates a sophisticated
noise-tolerant system. When triggering a switch with, e.g.,
an eye blink, it might not always be clear if it was inten-
tional, especially if the user has involuntary head motions.
A sophisticated gesture-detection algorithm is typically nec-
essary. Such a detection algorithm will inevitably have a
non-zero error rate. In addition to the inherent difficulty to
automatically identify a gesture, several other noise sources
can corrupt the user’s switch events.

In [4] the importance of modelling noise sources is
highlighted and categorized. For example, timing errors
versus unintentional clicks, where the activation of a switch
is referred to as a click. Switch noise may cause spurious click
detections (false positives), or failures to detect a click (false
negatives). Click-timing noise causes the observed click time
of a switch event to be earlier or later than intended. We
will assume that click-timing noise and switch noise operate
independently of each other.

Scanning systems are the most prevalent single-switch
systems in the literature. With a typical scanning system,
the user selects a row and then a column in a grid configura-
tion; see Fig. 1.

In [4] an in-depth background review of techniques that
led to Ticker, our proposed audio scanning system for single-
switch users, are given. The framework in [4] allows one to
model a probabilistic sequence of user actions if the probabil-
ity distributions quantifying the noise sources are known.
One can sample from the noise distributions to simulate per-
formance. Even though such noise sources might not be a
complete representation of the reality it can help developers
to make their software robust against the most common
problems in practice, and thereby save hours of fieldwork.

Some drawbacks of standard scanning systems such as
Grid2 [5] are highlighted and analyzed via simulation in [4]:

1) By design, a linear increase in a user’s average
response time requires a linear increase in scanning
delay, causing the text entry rate to reduce signifi-
cantly. The scanning delay refers to the time (mea-
sured in seconds) it takes to present a selection
option to the user. Hence, standard scanning sys-
tems, that have to increase the scanning delay as
such, are referred to as the slow-scan method.

2) Similar to 1), the scanning delay has to be increased
linearly with an increase in standard deviation of the
click-timing distribution to keep the probability of
error constant.

3) Finally, by design, there is no way to control the
probability of error due to spurious clicks; they can
only be corrected after they occurred.

In [4] a fast-scan method is proposed. The method is
intended for users who can click precisely (resulting in a
narrow click-timing distribution), but have a long average
response delay (which is assumed to be known through
measurement). The click-timing distribution is then used to
infer the intended letter after a whole row/column has been
scanned. Since there is a model that can be used to do infer-
ence it is not necessary to increase the scanning delay at
each cell. The scanning delay is decoupled from the average
click-timing delay at all cells except the last in the group,
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which means one can decrease the delay at all cells except
the last, thereby increasing the overall text entry rate. The
effect of this slight modification to the slow-scan method is
validated through simulation.

Note that the fast-scan method works exactly like the
slow-scan method, except that the whole row or column is
scanned before the system decides which cell to select. If the
wrong subset/row is selected after the first click, this has to
be undone in exactly the same way than in the slow-scan
method.

We wish to apply the latter idea of including the noise
source model in the interface design to reduce error correc-
tions and long scanning delays. We work with the same
noise sources defined in [4]. The fast-scan method models
only the latency as part of the interface design, enabling the
system to “scan faster” compared to the standard method
(if the user has a large response latency). In Ticker, we also
include an explicit model for false- positives and negatives.
We also defer the inference decision until the end of the
word instead of the end of a letter. We wish to control the
probability of error through probabilistic modelling, so that
reliable communication can be achieved without a reduc-
tion in text-entry rate.

Ticker infers the user’s intentions from the timing of a
user’s clicks during audible presentations of the alphabet.
By design, our model can take the whole distribution into
account (e.g., also the standard deviation in the case of a
Gaussian). Any click-timing distribution that is continuous
in time can be accommodated.

The alphabet is spoken twice at a high speed, using a dif-
ferent (but fixed) ordering of the letters at each repetition.
The user is tasked to select a letter twice for redundancy
purposes. The system has two measurements to try to infer
the intended letter. The letter order is shuffled (but fixed) so
that the user’s selection delay can be accounted for. The two
letter sequences are fixed to reduce the users cognitive load.

Even when the user’s click times are imprecise (the click-
timing distribution is broad), the system can often detect
which letter was intended.

Similar to the fast-scan example, mentioned earlier, we
decouple the dependence of the scanning delay on the aver-
age response delay, except for the last scan, which in our
case, happens at the end of the word. This means that we
can potentially achieve an even higher text entry rate than
the fast-scan method in the same setting where it outper-
forms the slow-scan method.

A challenging problem in practice is to present the alpha-
bet to the user at a high speed such that it is still audible.
Ticker uses stereophonic sound recordings from several dif-
ferent speakers, each pronouncing a subset of the alphabet.
The use of different voices at different perceived spatial
locations can potentially help the user to process the presen-
tation of letters at a higher speed. An illusion is created that
the alphabet is presented at a much slower speed, if the
user is able to focus on a particular voice. Section 2.1
describes how this illusion can be achieved through an
example of the system in two-channel mode.

Ticker’s use of stereophonic sound recordings exploits
the cocktail-party effect; the ability of humans to filter out a
chosen signal from a range of simultaneous auditory stim-
uli [6], [7]. The use of this technique results in a system that
is hoped to be intuitive and easy to learn, and can be used
in conjunction with the more commonly used approach of
altering the frequencies of the sounds (which might take
some time to get used to).

Making use of the cocktail-party effect provides a way to
parallelize a serial input. When using five audio streams
(five people speaking simultaneously), one can, in theory,
make the text entry rate five times faster compared to one
person reading the alphabet serially to the user. However,
using five audio streams as input to an audio text entry
method is unexplored. It can create perceptual difficulties,
which can lead to difficulties in interpreting the user input,
especially if the design doesn’t make it easy for the user to
focus on a particularly audio channel [8].

We could not find other real world applications where
more than three audio channels are used. Several references
(see e.g., [8]) note that it becomes increasingly difficult to
switch one’s attention to a different voice when more than
two voices speak simultaneously. We therefore investigate
whether it is possible to make use of more than three audio
channels in the context of this application. More specifically,
we compare human performance in the same conditions for
three, four and five audio channels.

A useful aspect of Ticker is that it is adaptive, because
all distributions are re-trained after each word selection.
If, for example, the user’s average click-timing delay
drifts systematically, the learning algorithm is designed
to translate the click-timing distribution accordingly.
This can be useful if, e.g., a user is tired at the end of a
writing session, causing him/her to respond with a
larger latency than usual.

Our key contributions are:

a) the design of a statistical model that handles several
types of noise that inevitably occur in practice as
part of the interface design;

b) the design of appropriate simulations to validate
robustness to long user response times and false pos-
itives as part of the design interface;

c) empirical evidence indicating that some able-bodied
users, and one impaired user; could select letters
using Ticker in five channel mode;

d) empirical evidence indicating that human perfor-
mance does not differ significantly between 3, 4, and
5 audio channels;

e) open-source software libraries [9].

Fig. 1. A typical scanning interface. To select the letter “h”, at least two
clicks are necessary. In the first phase all rows are scanned. The first
click selects the desired row associated with the subset efgh. after hear-
ing the corresponding audio cue (e.g., the audio recording of the letter
“e”). Thereafter the individual letter keys of the selected row are scanned
in sequence. The second click selects the desired letter “h”. Grid2 [5]
provides software which enables one to select letters using this configu-
ration. In audio mode, the user will typically have to memorize the con-
tents of each subset which is not necessary in visual mode.
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2 TICKER

2.1 User Interface

Ticker is a new audio-based single-switch text entry method
that uses a noise model to adapt to the user’s capabilities.
Ticker uses three main strategies to cope with noise:

1) statistical models to represent noise,
2) a predictive language model,
3) an audio-interface that repeats the alphabet to the

user R times in a fixed pseudo-random sequence,
referred to as the composite audio sequence. This paper
focusses on R ¼ 2.

The user selects a word from a pre-defined dictionary in
two steps: 1) Letter candidates are selected sequentially,
and 2) the posterior word probabilities are updated after
each letter candidate selection. If the posterior probability of
any particular word is above a pre-defined threshold then
that word is selected.

Fig. 2a presents two example composite audio sequences.
In one-channel mode, one voice will read this sequence to
the user, starting at the beginning with “f”. The sequence

consists of two alphabet repetitions. The order of the second
repetition is different from the first. The user selects one let-
ter at a time to write “is_”: While listening to the composite
audio sequence, the userwill select the first letter, “i”, by acti-
vating the binary switch (“clicking”) after hearing “i”. Since
“i” is included twice in the composite sequence, two clicks
are expected. If at least one activation occurs the system will
proceed to the next letter, updating and comparing the poste-
rior probabilities of the words. If no click is received, the user
will have the opportunity to click again. Note that “i” is not
explicitly selected. If the click-timing model is not misspeci-
fied “i” will become a likely first-letter candidate after the
word probabilities are updated. The character selections
become explicit once the word is selected. This idea is similar
in spirit to the T9mobile interface.

In extreme circumstances the user might reach the end of
his/her word without any word selection made by the pro-
gram. This can happen, if, e.g., the user mostly clicked only
once per letter. In such cases, the user has to resume clicking
from the beginning of the word. In practice, it was found that
the user rarely has to repeat more than one character before
the system becomes certain of the user’s intentions. Longer
words can typically be inferred before their ends are reached
(due to the language model’s influence), reducing the aver-
age number of clicks to less than 2 clicks per character.

One can potentially increase the information rate by using
multiple audio channels to parallelize the composite
sequence into groups called clips. We only use horizontal
directional perceptions. That is, a sound source can be per-
ceived to be located to the left or to the right of a user. To indi-
cate the phase offset of the sound (i.e., the sound source
location) we use the normalized notation fe 2 ½�1; 1�, where
e 2 f1; . . . ; Eg andE is the number of sound source locations.

In two-channel mode, the user is expected to wear head
phones. Two voices will read the alphabet at two normal-
ized stereo locations, �1 (audible in their left ear), and 1
(audible in their right ear). The second composite sequence
in Fig. 2a starting with “a” can be read to the user in
sequence like before. The voices will alternate from one let-
ter to the next, e.g., the first letter “a” will be read by one
voice in the left ear, after which “o” will be read by the sec-
ond voice in the right ear. The composite sequence is
designed so that “a”, and “o” will always be read by the
same voice at the same audio location. When the user
focusses on the voice associated with the target letter (fixed
by design), all other voices will be ignored by virtue of the
cocktail party effect. In two channel mode this will cause
the illusion that the alphabet is presented to the user at half
the speed of the one channel mode.

Fig. 2b shows how the first composite sequence in Fig. 2a
is designed to enable usage in five channel mode: The user
will hear letters from the set fa; b; c; d; eg when focussing on
the voice associated with the color red.

To successfully deploy the use of stereophonic sounds
combined with the cocktail-party effect, we utilized results
from experimental psychological studies on speech intelligi-
bility [6]. It was found that, if the sound sources are not
clearly distinguishable, the brain tends to filter out some
parts of the audio sequence completely. The most promi-
nent techniques used to increase speech intelligibility were:
Every other voice was recorded from a different gender. We

Fig. 2. (a) Two example composite audio sequence that can be pre-
sented to the user. The top/bottom sequence was optimized for usage in
five/two channel mode, respectively. (b) An illustration of the system’s
state after receiving one click while trying to write r of “your_” in five
channel mode from the top composite sequence in (a). The first repeti-
tion of the alphabet is shown from top to bottom, ffqwag; . . .g, where let-
ters with the same color occur at the same sound source. The letters are
highlighted according to their probabilities. The user aimed for “r”, but
clicked slightly late, causing “x” to be the most likely candidate, followed
by “b” and “r”. (c) The color intensities indicate that more certainty is pro-
vided by the second click compared to (b), i.e., it is more obvious that
the user aimed for “r”. (d) Click times that are possible for the first/second
repetition of the alphabet m1=m2 is shown on the horizontal/vertical axis
(measured in seconds). The start- and end times of each symbol’s
sound file (black lines) are plotted for the first and second repetition of
the alphabet, as derived from the top composite sequence in (a). That is,
the composite sequence is again ffqwag; . . .g. The starting time of “s” is
at about 1.5s/3.4s during the first/second repetition of the alphabet. The
possible click times are measured from the beginning of audio file of the
composite sequence. Letters within the same channel have the same
color and correspond to the colors in (b).
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varied the pitch of the voices in different channels consider-
ably. We have also created a constant “rhythm” within each
channel, which helps considerably to stay focussed on a
voice and to improve the user’s click-timing precision.

If the composite sequence becomes inaudible because the
sound files overlap too much in one channel mode, the clips
can still be audible when the number of channels is
increased and the user is able to focus on a specific voice.
The input is therefore parallelized: at composite level many
things happen simultaneously, but at a specific clip level
fewer sounds overlap; see, for example, Fig. 2d: The whole
alphabet is presented twice in approximately 5s, as indi-
cated by m2, the possible click times associated with the sec-
ond alphabet repetition. Each letter is therefore presented to
the user in about 96ms. The composite sequence for one
channel may be inaudible. That is, if the first composite
sequence in Fig. 2a is played to the user at the same speed
without making use of stereophonic sounds, it might be dif-
ficult to make sense of the sequence, as many of the sound
files overlap.

Figs. 2b and 2c provide a visualization of the program’s
state during an attempt to select the fourth letter r in “your_”.
From the shown color intensities a few letters seem to be
likely after the first click, with “x” being the most probable.

The posterior probabilities of all words in the box
labelled “most probable words” are shown. After three
implicit letter selections, the word “you_” has higher prior
mass compared to “your_”, because it is used more fre-
quently in English. It is therefore at the top of the word list
before processing the fourth character.

Although “r” is the most likely fourth letter after the sec-
ond click (shown in Fig. 2c), it is not explicitly selected.
Instead, the posterior probabilities of all words are updated
after processing the two clicks. This update will place
“your_” at the top of the word list, instead of “you_”,
because “r” has a much higher probability compared to “_”.
The user will progress to select “_”, in which case the poste-
rior probability of “your_” should be well over 0.9, making
it clear that the user is not aiming for words like “yours_” or
“yourself_”. If the posterior probability of “your_” is above
0.9, the system will select it, at which point all the letter
selections become explicit.

After each word selection, the click-timing distribution is
updated. The click-timing distribution is initialized with a
Gaussian. The system then trains a non-parametric distribu-
tion after a short calibration/training phase, where the user
is required to write “yes_” (in which case the eight true click
times are known). Fig. 2b shows the click-timing distribu-
tion after the calibration/training phase. The distribution is
quantified by a histogram, and is clearly not Gaussian any
more (compared to the Gaussian that is used to initialize
calibration/training). The resulting distribution is unimodal
with an asymmetric narrow peak. Since the training is ini-
tialized with a Gaussian prior, and the training algorithms
applies some smoothing, many bins can be used to repre-
sent the distribution. Section 3.5 provides more detail
regarding the derivation of the non-parametric distribution.

Some central concepts in this paper revolve around the
computation of the distance between a received click time
and the click-timing distribution. In time, some letter are said
to be “close” to each other. If the click-timing distribution is a

very narrow Gaussian, the distance will amount to an euclid-
ean norm in an R dimensional space, e.g., Fig. 2d provides
the 2D visualization of Fig. 2a. Using the euclidean norm as
an example distance metric: If we scale each axis so that the
length of each file is one unit long (all files are assumed to
have the same unit file length), “x” and “r” are next to each
other (separated by one unit) in the first dimension. In the
second (y) dimension they are separated by 6 units, resulting
in a total distance of 6.1 units between them. The minimum
distance between any two letters is 4.1 units.

For the same aforementioned example, fg; l; x; bg are the
four nearest neighbors to “r” during the first repetition of
the alphabet, but during the second repetition the nearest
neighbors are fi;m;w; eg. After receiving the first click time
“x” can have a large probability (with the intention of select-
ing “r”), but because it is far from “r” during the second rep-
etition its probability is likely to drop significantly.

In [4] we have illustrated that the fast- and slow scan
methods cope with broad click-timing distributions by mak-
ing the scanning delay longer. To deal with the click-timing
precision as part of the interface it is necessary to include
more degrees of freedom. On a letter selection level, we
have added another degree of freedom through the second
alphabet repetition. This becomes apparent by evaluating
the composite sequence in 2D. An explicit evaluation in 2D
is necessary because, if the sequence is not carefully consid-
ered, the second dimension can be ineffective, e.g., if the
first and second repetition is exactly the same.

More degrees of freedom are created by deferring the let-
ter selection decisions to the end of a word, and making use
of a language model. Theoretically, this creates even more
resilience to the noise sources that are difficult to cope with
in standard scanning systems, but does require the user to
be able to spell.

We illustrate with a small example how Ticker manages
to be more resilient to false positives and click-timing preci-
sion compared to standard scanning systems, even if a lan-
guage model is not used.

The user is expected to click twice for each letter, which
is also the case for a standard scanning system. In a stan-
dard scanning system, however, the minimum distance
between letters is always 1 unit. This means, by design, if
the click-timing distribution is a broad Gaussian, Ticker has
a smaller probability of error for the same unit file length.

If the user has a long response time, and can click precisely,
one does not have to decrease the text entry speed in Ticker to
keep the probability of error constant (except for the last letter
scan). This means, that in theory, if the probability of error has
to be the same for both Ticker and a standard scanning sys-
tem, and that two clicks per character are required, one should
be able to communicate faster when using Ticker (provided
the sound file lengths can be made very small).

In the presence of false positives, a standard scanning
system will always select the spurious click immediately
after it was received. In Ticker the selection will be deter-
mined by the probabilities. After the presentation of the
composite sequence there will typically be three click times
to process, if one spurious click was received. With a good
noise model, the probability of the intentional letter should
be much higher compared to the unintentional selection
associated with a false positive. We therefore wait a bit to
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gather evidence, and argue that this might be a more practi-
cal solution for an impaired user than to immediately make
a spurious selection that has to be fixed.

The composite audio sequence is computed through an
optimization procedure, which is discussed in [10].

3 TICKER NOISE MODELS

With each letter selection, the same composite audio
sequence is presented to the user in T seconds. This
sequence contains R repetitions of each character. The more
the user manages to click near their desired letter, the more
confident the system can be about the user’s intentions.
Increasing R will generally decrease the probability of error
(tolerate more noise) but also decrease the text entry rate.
We mainly focus on R ¼ 2 in this paper.

After each composite audio sequence (T seconds), M
received click times t ¼ ft1; . . . ; tMg are analyzed, where
tm 2 ½0; T � and m 2 f1; . . . ;Mg. A complicated part of this
research was to find an adequate model for P ðt;M j ‘; uuÞ,
where ‘ is the intentional letter, and the model parameters
are represented by uu. The model must distinguish between
intentional and spurious clicks, and has to determine if the
intentional click times were further corrupted in some way
(e.g., occurring later than intended).

The composite sequence is quantified by the set of inte-
gers fða; rÞ : a 2 f1; . . . ; Ag; r 2 f1; . . . ; Rgg. Each index ða;
rÞ can be mapped to a symbol/letter chða; rÞ ¼ ‘r ¼ ‘, where
‘ can be one of A unique letters in the alphabet, and ‘r refers
to the rth repetition of ‘.

Inference in Ticker revolves around the following inverse
probability (using Bayes’ theorem)

P ð‘ j t;M; uuÞ ¼ p‘P ðt;M j ‘; uuÞX
8‘0

p‘0P ðt;M j ‘0; uuÞ ; (1)

where uu is the set of parameters, j t j ¼ M is the number of
clicks received, and p‘ ¼ P ð‘Þ is a prior distribution over
letter ‘. Likewise, p‘0 is the prior over letter ‘

0. We will use C
to denote the number of true clicks, and N ¼ M�C to
denote the number of spurious clicks.

The derivations of this section concentrate on developing
a model for P ðt;M j ‘; uuÞ ¼ P ðt j ‘; uu;MÞP ðM j uuÞ , initially by
assuming a Uniform prior, p‘, for each letter ‘, and assum-
ing uu is known.

3.1 Simplified Noise Model

A useful property of a generative model is that one can draw
samples from it. One can analyze a sequence of samples to
see if they match reality, and to see how the system behaves
when they are used as input to the system. The generative
model used in Ticker, allows one to sample sequences of
click times. Each click time can be intentional or spurious.

We make use of a sampling procedure in later sections to
simulate Ticker’s performance and compare that to a simula-
tion of a standard scanning system. During the comparison,
the noise sources (probability distributions) for both systems
are the same, and we would like to evaluate the effect on
both systems if the parameters of the distributions are varied.

In this section we start with a simple generative noise
model, and derive our final model from it. To generate

samples, consider that the following process generates a sin-
gle click and its associated click time:

1) Flip a coin with bias g to decide if a click should be
spurious (with probability g) or true (with probabil-
ity 1� g).

2) If the click from step 1 was classified as spurious,
sample its click time tm � Uð0; T Þ. Otherwise flip a
coin with bias f to decide if the true click should be
falsely rejected (with probability f) or not (with
probability 1� f).

3) If the non-spurious click from step 2 was accepted,
generate its click time by first sampling a discrete
index r uniformly from 1; . . . ; R, where R is the num-
ber of times the alphabet was repeated. The user is
assumed to have some average response time
latency D with standard deviation s. We assume the
same D and s for all letters. We define m‘r 2 ½0; T � as
the beginning of the sound file associated with ‘r
(the rth repetition of ‘). Subsequently sample tm �
NðDþ m‘r ; sÞ.

By repeating the above steps M times, we obtain a gener-
ative model for a simple click-timing distribution. For exam-
ple, it can accommodate situations where all clicks are
spurious (false positives), in which case tm � Uð0; T Þ; 8m or
where all clicks are true clicks tm � NðDþ m‘r ; sÞ8m; r. Of
course, when receiving click times from a real hardware
switch, the corresponding hypothesis that generated each
click time is unknown. We therefore marginalize (sum) over
all possible hypotheses to obtain a distribution that directly
models the times of received clicks. The resulting model
after marginalization is

P ðt;M j uu; ‘Þ ¼ M!
YM
m¼1

ð1� fÞð1� gÞpm‘ þ g

T

h i
; (2)

where

uu ¼ ffuu‘1 ; . . . ; uu‘Rg; g; f; T; Rg; (3)

uu‘r ¼ fDþ m‘r ; sg; (4)

pm‘ ¼ 1

R

XR
r¼1

Nðtm j uu‘rÞ: (5)

The normalization factor M! results from the constraint that
time always increases, so that t1 < . . . < tM .

If M ¼ 1, R ¼ 2, g ¼ 0, and f ¼ 0:5, Equation (2) will be a
simple mixture of two Gaussians. The latter mixture model
is shown in Fig. 3a, where ‘ ¼ b, and D ¼ 0, so that each
Gaussian is centered at the beginning of the sound file asso-
ciated with the letter “b”.

If M ¼ 2, R ¼ 2, g ¼ 0, and f ¼ 0:5, Equation (2) will be a
sum of four Gaussian products, each representing a hypoth-
esis of how the two click times could have been generated

h1 ¼ Nðt1 j uu‘1Þ N ðt2 j uu‘2Þ;
h2 ¼ Nðt1 j uu‘2Þ N ðt2 j uu‘1Þ;
h3 ¼ Nðt1 j uu‘1Þ N ðt2 j uu‘1Þ;
h4 ¼ Nðt1 j uu‘2Þ N ðt2 j uu‘2Þ:

(6)
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The mixture model P ðt;M j uu; ‘Þ ¼ 1
2

P4
k¼1 hk is illustrated in

Fig. 3b. Note that the click-time probability is zero where
t2 < t1. There is a full sphere associated with h1. However,
probability mass is also assigned to the other hypotheses,
leading to the half spheres on the diagonal of the figure. We
specifically refer to h3 and h4 as the same-letter hypotheses, as
they imply that the same Gaussian can be responsible for
both click times.

Note from Figs. 3a and 3b that the alphabet is presented
to the user rapidly (twice in 5 seconds). When looking
closely at Fig. 3a, the two Gaussian bumps associated with
“b” imply that two letter groups that can easily be confused
are lrxbhms and otybgpu. If s > 0, it may be challenging to
infer the user’s intentions whenM ¼ 1without the help of a
language model (even if D ¼ 0). However, none of the let-
ters in the latter letter groups co-occur except for “b”, which
means that the second click should greatly improve confi-
dence for the user’s intentions.

Fig. 3c plots the maximum posterior letter probabilities
P ð‘� j uu; t1; t2;MÞ for the shown click-timing pairs ft1; t2g,
where Equation (1) is computed for each pair ft1; t2g with
p‘ ¼ 1=A. The letter with the highest posterior probability is
then selected for that pair, i.e.,

‘� ¼ arg max
‘

ðfP ð‘ j uu; t1; t2;MÞ; 8‘gÞ: (7)

Hence, for each pair there is a corresponding “best letter” ‘�,
which automatically leads to a Voronoi-type of diagram [11]
in the top-left part of the figure. Each Voronoi cell is labelled
with its corresponding ‘�, and the decision boundaries are
shown in light green. If e.g., the received click-time pair
ft1; t2g falls inside cell labelled “f”, the probability of “f”
will be almost 1.0 except on the boundaries where the prob-
abilities are closer to 0.5.

The artifact on the diagonal is a result of the same-let-
ter hypotheses. This can e.g., cause confusion for click-

times close to the letter “d”, where the maximum poste-
rior probability can be as high as 0.7 that the user
selected another letter that is far from its nearest neigh-
bors (shown in Fig. 2d). Due to the same-letter hypothe-
ses, the current model is only plausible if the false-
positive rate is extremely low and the click-timing distri-
bution associated with each ‘r is a good approximation
for the user’s click-timing accuracy.

A second problem with the model in Equation (2) is the
hypothesis that all the received clicks may be considered as
intentional even ifM > R.

A third problem is that the false-positive rate is indepen-
dent of T . In a more plausible model, one would expect the
number of false positives to increase as T increases. The
remaining part of this section concentrates on addressing
the three problems above.

3.2 Poisson Process: Spurious Clicks

A homogeneous Poisson process [12] can be used to model
noise in a way that takes into account a rate � of false-posi-
tives per unit time. One way to construct a Poisson process
is to discretize time into a set of bins (of equal width), so
that no more than one event can take place in any particular
bin. In our problem the probability that two false positives
are detected almost simultaneously is negligibly small,
allowing the construction of a Poisson process to model
spurious click-times. The result is that the number of spuri-
ous clicks N in a finite time interval T always has a Poisson
distribution

P ðN jT; �Þ ¼ ð�T ÞNe��T

N !
; (8)

where � is the average number of false positives per unit
time. The longer we wait, the smaller the probability that
N ¼ 0. The Poisson process addresses the third problem
mentioned at the end of Section 3.1.

Furthermore,

P ðt jN; �; T Þ ¼ N ! � 1

T

� �N

� dð j t j �NÞ; (9)

where the normalizing constant N! results from the time
constraint t1 < t2 < . . . < tN . It follows that

P ðt; N j�; T Þ ¼ P ðt jN; �; T ÞP ðN j�; T Þ ¼ �Ne��T ; (10)

whereN ¼ j t j .
When using the Poisson process to model the false posi-

tives, the collection of parameters from Equation (3) is mod-
ified by replacing gwith �

uu ¼ ffuu‘1 ; . . . ; uu‘Rg; f; �; T;Rg: (11)

where Equation (4) defines uu‘r .

3.3 Deriving the Click-Timing Distribution

The second problem that was mentioned at the end of
Section 3.1, the hypothesis that all M clicks can be inten-
tional, can be addressed by assuming that the user never
clicks more than necessary to make a selection. This assum-
ption can be expressed with a Binomial distribution

Fig. 3. A depiction of P ðt;M j uu; ‘ ¼ bÞ from Equation (2), where the com-
posite audio sequence corresponds to Fig. 2a, s ¼ 0:2 s, T � 5 s,
D ¼ 0 s, f ¼ 0:5, and g ¼ 0. (a) M ¼ 1, ‘ ¼ b, where m‘r þ D for each
letter is indicated with a labelled line. (b) M ¼ 2 and ‘ ¼ b.
(c) P ð‘� j uu; t1; t2;MÞ is computed from Equations (7) and (1); see the
text for detail.
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P ðC jR; fÞ ¼ R!

C! ðR� CÞ! f
R�Cð1� fÞC; (12)

where C is the number of true clicks intended by the user, R
is the number of times the alphabet was repeated to the
user, and f is the probability of falsely rejecting a click.
Equation (12) assigns zero probability to the event that
C > R. The probability that a spurious and a true click hap-
pen simultaneously is assumed to be negligibly small, so
that P ðM jN;CÞ ¼ dðM � ðN þ CÞÞ.

It is assumed that a true click and a set of spurious clicks
are generated independently from each other. An auxiliary
binary vector n of length M is introduced to label each click
time tm as either a false positive (nm ¼ 1) or a true click
(nm ¼ 0). There are M!

C!N ! possible assignments of these
labels—we assume a Uniform distribution over them.

False negatives can lead to uncertainty regarding which
letter repetition was responsible for a true click. One can
construct another auxiliary binary vector c of length R for
each combination of C and n, to associate each true click in
n with a repetition r of a letter. It follows that cr ¼ 1 for the
hypothesis that tm was generated with the intention of
selecting the rth repetition of ‘, which can only happen if
nm ¼ 0. There are R!

ðR�CÞ!C! possible cases to consider; again,
we assume a Uniform distribution over these.

To address the same-letter hypotheses problem men-
tioned in Section 3.1, all click-times of true clicks are hence-
forth assumed to have been generated by a unique
Gaussian distribution. For the two click-time example in
Section 3.1, this will have the implication that only h1 and
h2 will be evaluated. In fact, the latter of the two hypotheses
is also unnecessary, as it suggests that a click-time from the
Gaussian associated with ‘2 can be observed before the one
associated with ‘1. We therefore also omit this hypothesis.
For the general case, a true click time from a Gaussian asso-
ciated with ‘r cannot be observed before the ones from
‘1; . . . ; ‘r�1. The overlap between any pair of distributions
associated with the same letter is assumed to be insignif-
icantly small. Note that this is clearly the case in Fig. 3a,
where the two Gaussians associated with “b” do not overlap
significantly, even for a relatively large s. This implies that a
click from the second Gaussian is exceedingly unlikely to
occur before a click from the first Gaussian.

All assumptions are combined to compute

P ðt;M j uu; ‘Þ ¼ e��T
XC0

C¼0

�N � fR�C � ð1� fÞC � pC‘; (13)

where C0 ¼ minðR;MÞ, N ¼ M � C, uu is given by Equa-
tion (11),

pC‘ ¼
X
c;n

pzt‘; (14)

pzt‘ ¼
YM
m¼1

YR
r¼1

Nðtm j uu‘rÞgzmr ; (15)

gzmr ¼ dð1� nmÞ � dð1� crÞ � d
Xm
m0¼1

nm0 �
Xr
r0¼1

cr0 �
 !

; (16)

where z ¼ fn; c; C;Ng, t1 < . . . < tM andm‘1
< . . . < m‘M

.
Fig. 4 illustrates the changes made to Fig. 3 by replacing

Equation (2) with Equation (13).
Fig. 4a illustrates that the Gaussian bumps are less

peaked due to the non-zero “floor rate” to compensate for
false positives, where for M ¼ 1, a false positive can only
result if the false negative probability is non-zero. Figs. 4d
4e illustrates the effect of switch noise for M ¼ 2. The light
blue regions in Fig. 4d correspond to the hypothesis that
one click is a true positive and the other a false positive. The
switch-noise parameters were chosen quite large to make
the effect of switch noise obvious for illustration purposes:
� ¼ 0:3/s and f ¼ 0:5 will result in an average of 1–2 false
positives every time the alphabet is presented to the user
(in 5 seconds), and true clicks will be ignored 50 percent of
the time.

3.4 Language Modelling

Our language model is similar to Nomon [13]. We also use a
slightly modified version of the British National Corpus
word-frequency list [14], and keep track of the posterior
probability of all words. If the posterior probability of any
word is above a certain threshold, that word is selected.
After each explicit/implicit letter selection in Nomon/
Ticker, the posterior probability of the word is updated.

Fig. 4. The differences to Fig. 3 are pointed out. First, Equation (2) was
replaced with Equation (13) to compute P ðt;M j uu; ‘ ¼ bÞ, with uu as
defined by Equation (11). (a) The effect of switch noise is shown,
whereas Fig. 3a was drawn without switch noise: f ¼ 0:5 and � ¼ 0:3/s.
(b)–(c): Compared to Fig. 3, there is only one 2D Gaussian, and there
are no artifacts on the diagonal in (c). (d)–(e): Adding switch noise to
(b)–(c): f ¼ 0:5 and � ¼ 0:3/s.
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We have to keep track of which letter the user intends to
select at any specific time for each word hypothesis in order to
compute P ðt;M j uu; ‘Þ. This is slightly more complicated than
in Nomon, where one letter is selected at a time. If the user
tries to write “is_” using Ticker, and the system has not
selected the word when the user has implicitly selected the
space, it is assumed that the user will start over with the word.

The equations for the posterior word probabilities, and
P ðt;M j uu; ‘Þ are derived in [10]. Note that the current ver-
sion of Ticker does not make provision for words that are
not defined in the dictionary. If the user wishes to add a
word, an assistant will have to include it manually in the
“text” file that contains all the words, which is then
uploaded by Ticker.

3.5 Training the Click-Timing Model

The parametric Gaussian distribution assumption to model
the user’s click-timing precision can be restrictive, especially
when learning how to use the system. A novice user might
click a bit early during the first reading of the clip (in antici-
pation to the well-known alphabet sequence), and click
slightly later during the second (less familiar) reading. This
discrepancy can cause a mismatch between the assumed
unimodal click-timing distribution and the actual bimodal
click-timing distribution. It is possible that the two modes
do not overlap, causing one click time to always be classi-
fied as a false positive, which will, in turn slow down the
entry rate significantly.

To allow for asymmetric and multi-modal click-timing
distributions, a similar approach to Nomon [13] is followed:
the Gaussian distribution that has been used to represent the
user’s click-timing distribution is converted into a non-
parametric distribution. The main difference between our
approach and that of Nomon is that we takemore noise sour-
ces into consideration, which introduces more latent varia-
bles to account for. To deal with these latent variables during
training, we make use of the Expectation-Maximization
(E-M) algorithm [15]. The result is a histogram as shown in
Fig. 2b. For this example, the learned distribution is asym-
metric with a narrow peak, but depending on the user’s
response time, the distribution can assume any shape.

Similar to Nomon [13], the click-timing distribution is
retrained after each word selection, which allows it to
dynamically adapt to systematic drift. The training algo-
rithm and all equations can be found in [10].

4 SIMULATION RESULTS

We compare the first and second-order statistics of the text
entry rate (#scans), the total number of clicks (#clicks), and
the number of character errors (#errors) between a simula-
tion of a standard scanning system [4] and Ticker. The stan-
dard scanning system we compare against is summarized
in Fig. 1: The configuration/layout is the same, and the
scanning system is assumed to be used in audio mode.
In [4] we have developed a Markov chain model for the
standard scanning system described in Fig. 1. The Markov
chain model allows one to simulate a large universe of user
actions when using a standard scanning system, and incor-
porates all the noise sources defined in this paper (the click-
timing model and false negatives/positives). This allows us

to compare both systems in the same noise conditions. Our
implementation of the standard scanning system that was
used in all user trials, as well as the simulation model used
to compare against Ticker are available online [9].

All statistics are derived on a per word basis. The number
of clicks to write a word can be normalized with the length
of the word to measure the number of click per character
(cpc). Numerical performance measurements are made by
processing one word wx

k at a time from a list of words that
constitute a phrase set ofK words,W x ¼ fwx

1; . . . ;w
x
Kg.

It is assumed that the user immediately corrects any
errors, and does not proceed to the next letter if an error is
not corrected. For each ground-truth word wx

k, the simula-
tion ends with a corresponding output wy

k, encapsulating
three possible scenarios:

1) the selected word is correct,wy
k ¼ wx

k;
2) an erroneous word was selected, wy

k 6¼ wx
k, where

wy
k 6¼ ;;

3) system failure, wy
k ¼ ;. This happens if the system

can not cope with the noise, making it inaccessible.
Ticker results are superimposed on the standard scan-

ning system results from [4] to allow for a direct comparison
via simulation.

4.1 Simulating Ticker

Ticker is simulated in 1- and 5-channel mode. For each letter
in wx

k, the number of false positives, the number of true
clicks and the click times of all the synthetic clicks are gener-
ated from their corresponding distributions. These samples
are then used as input to Ticker, pretending that they come
from a real user. A measure of Ticker’s performance is then
obtained through a numerical approximation after repeat-
ing the above procedure 1,000 times, and computing expect-
ations from the measurements.

For each wy
k, #clicks and #scans are immediately avail-

able (as one sample of a numerical approximation), and
#errors is computed as the minimum edit distance between
wx

k and wy
k. Similar to the scanning system simulation, a

time-out error occurs if the simulation runs for longer than
kM audio sequences and wy

k ¼ ;, where M ¼ jwx
k j . In all

simulations k ¼ 5. Unlike scanning systems, no output char-
acters can exist when the system fails. Hence, #errors ¼ M
and wpm ¼ 0 in such a case.

For the Ticker simulation we henceforth represent the
scanning delay with T �

S . The scanning delay of the scanning
system is represented by TS. In both systems TS and T �

S are
varied to change the speed at which the alphabet is pre-
sented to the user.

The recorded audio file of each letter is 210 ms. The scan-
ning delay is increased by adding a waiting time after a let-
ter is played. The scanning delay is decreased when a new
sound file is played to the user before the previous one was
finished, i.e., if the scanning delay is less than 210 ms.

All relevant simulation parameters for this paper are
summarized as

uuS ¼ fD; s; f; �; TS; T
�
Sg; (17)

where D, s is the average and standard deviation of the
user’s response time, representing the parameters of the
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Gaussian click-timing distribution, f is the probability of a
false negative, � is the false positive rate, and TS, T

�
S is the

scanning delay of the standard scanning system and Ticker,
respectively. Similar noise conditions therefore exist for
both Ticker and the scanning system, and one can easily
sample from the Gaussian click-timing distribution.

A Gaussian click-timing distribution is assumed throug-
hout the simulations. We didn’t assess the additional per-
formance improvement offered by the non-parametric click-
timing distribution mentioned in Section 3.5.

4.2 Simulation Parameters

During all simulations, results are computed for the pan-
gram W x ¼ “the quick brown fox jumps over the lazy dog.”
The parameter ranges D 2 ½0:25; 3� s, and s 2 ½50; 200� ms
were tested. Following the Grid2 manual [5] we assume the
boundaryD ¼ 3 s, s ¼ 200ms is associatedwith a slow speed
setting. The other extreme boundary D ¼ 0:25 s, s ¼ 50 ms,
represents an exceptional able-bodied user (see e.g., [13]).

In theory one should obtain similar performance with the
scanning system and Ticker if T �

S ¼ 0:14TS. For example, if
TS ¼ 300 ms and T �

S ¼ 42 ms a text entry rate of 4.7 wpm
should, in theory be possible.

One can, in theory, obtain a factor 4-5 speedup by using
five stereophonic sound channels instead of one. One could,
also potentially achieve much higher entry rates by making
use of shorter sounds. For example, a clear “click” sound is
only 10 ms instead of the recorded 210 ms for a fast letter
pronunciation.

4.3 Simulation Results

The first simulation compared robustness to variations in
latency D between Ticker and the scanning system. Results
are shown in Fig. 5a.

A waiting time of Dþ 3s s at the end of each composite
audio sequence is included in the simulation to reflect the cur-
rent implementation of Ticker. This delay is there because of
software implementation issues that can easily be amended
in a future release. The shown text entry rate for Ticker is
therefore slightly lower than what it should be (red dashed
line), as this delay should be included at the end of aword.

Both systems have the same starting point so that one can
evaluate the effect of increasing the scanning delay of both
systems without an offset. In [4] it is shown that the scan-
ning delay TS has to be at least as long as D for a standard
scanning system, otherwise the user will always select the
wrong cell. The scanning delay is therefore linearly
increased with D, while the other noise sources are fixed.
The scanning system’s text entry rate decreases at a much
faster rate compared to Ticker because the delay happens at
every scan, and shows that Ticker is more resilient to an
increase in D compared to a standard scanning system.

The second simulation tested the influence of varying
T �
S=s. Fig. 5b indicates that the behavior of Ticker and stan-

dard scanning systems differ in failure mode. That is, when
the scanning delay becomes small relative to s. In Ticker,
time-out errors occur, where many clicks are used to gener-
ate no output word (with an error of 100 percent and a text
entry rate of zero). In scanning systems, many erroneous
characters lead to the system failure, as the text entry rate
and error rate are both high. This means that in the scanning
system the noise causes erroneous outputs at a faster rate
than the user can correct it. Note that #error > 100% if an
erroneous word is selected which is longer than the word
the user is supposed to select.

If a reasonable accuracy (#error < 5%) and click rate
(#clicks 	 2) are required, all three systems have similar
performance (2.5-3 wpm), with Ticker in 1-channel mode
slightly outperforming the rest.

Fig. 5. (a) The click-time delay (D) is varied for s ¼ 50 ms, f ¼ 0:05, � ¼ 0:001/s, TS ¼ 0:5 s and T �
S ¼ 70 ms. Ticker (5-channel mode) results are

shown in red. The red solid lines indicate the average results (with error bars at one standard deviation). The dashed red line indicates the expected
text entry rate without the unnecessary waiting time of Dþ 3s s at the end of each composite audio sequence. Ticker results are superimposed on
the results from [4] (black), where for the scanning system TS ¼ maxð0:5;Dþ 3:0sÞ seconds. (b) The effect of varying the scanning delays TS and T �

S
are investigated for D ¼ 0 s, s ¼ 100 ms, f ¼ 0:05, � ¼ 0:001/s. Average entities for Ticker in 5-channel mode (red) and Ticker in 1-channel mode
(blue) are superimposed on the results for the scanning system (black) from [4]. (c) The effect of varying � is investigated for D ¼ 400 ms, s ¼ 50ms,
f ¼ 0:05, TS ¼ 300 ms, T �

S ¼ 42 ms. Average entities for Ticker in 5-channel mode (red) and Ticker in 1-channel mode (blue) are superimposed on
the results for a standard scanning system (black) from [4].
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Scaling the scanning delay in any of the systems will not
have an effect on the shape of the curve as the curve is var-
ied as a function of T �

S=s, making the performance measure-
ment scale invariant.

Ticker in 5-channel mode performs slightly worse than
the 1-channel version. The latter robustness to noise of the
1-channel version can be attributed to the nearest neighbor
of each letter (in the composite audio sequence) which is
further away from it, on average, compared to the 5-channel
version. As mentioned above the waiting time at the end of
the composite sequence should be deferred to the end of the
word (a practical implementation issue), which should
increase the text entry rate of Ticker.

A useful insight from this experiment is that, if the user
clicks imprecisely (large s) neither the five-channel version
of Ticker, nor the standard scanning system might be viable
text entry methods. A possibility is Ticker in one channel
mode, and in severe cases, the alphabet has to be repeated
more than twice.

The third simulation tests the effect on both systems if spu-
rious clicks are randomly injected into the system. Such false
positives are not expected to originate from the click-timing
distribution but from an unreliable switch recording device.
In this experiment it is assumed that the corresponding distri-
bution is a Poisson process defined in Section 3.2. The Poisson
Process has the same false positive rate for both systems
when they are compared. Results are shown in Fig. 5c.

Similar initial speeds (TS ¼ 300ms, T �
S ¼ 42ms, � ¼ 0) for

both systems have been chosen. Ticker in 5-channel mode
and the standard scanning start with similar text entry
speeds (� ¼ 0), so that effect of � > 0 can be seen more
clearly for comparison. For the same reasons as explained for
the second simulation, Ticker in 1-channel mode theoreti-
cally outperforms Ticker in 5-channel mode. The Ticker per-
formance measurements do not significantly change for any
of the tested values of �. It is therefore clear from the third
simulation that Ticker is, in general, significantly more
robust to false positives than the standard scanning system.

5 DESIGN VALIDATION

First, we validate the basic design assumptions in a stereo-
phonic-sound controlled experiment with able-bodied par-
ticipants. Then we validate that the design works in its
intended context by evaluating Ticker with a non-speaking
individual with motor disabilities who is unable to commu-
nicate without human assistance using a standard hierarchi-
cal scanning system. Third, we validate the modelling
assumptions by training a single able-bodied user to use
both Ticker and a standard scanning system at expert per-
formance level with closed eyes and little audio guidance.
This enables us to validate the predictions of the modelling
reported in the previous section by comparing predictions
against an empirical expert human performance envelope.

5.1 Stereophonic-Sound Controlled Experiment

In theory, five or more audio channels have the most
potential for high text-entry speeds, since multiple inputs
are effectively presented to the user in parallel. However,
we could not find any verification that so many audio
channels is a possibility in the context of our application.

As mentioned in Section 1, going beyond two audio chan-
nels where the cocktail party effect applies can make it
exceedingly hard for a user to change their focus from one
voice to another [6], [7], [8]. These problems are enhanced
when increasing the number of audio channels. Some
design recommendations from [6] were integrated into
Ticker to help the user switch their focus to a particular
voice; see Section 2.1. The most important decision is
probably that each target letter is always associated with
the same voice. We aim to test the efficacy of the design
choices associated with changing focus in this section.

Since the literature points out that human performance
typically decreases with an increase in the number of chan-
nels (as one can naturally expect), we believe that our
design is validated if there is no significant difference in
human performance between 3, 4 and 5 channels in the
same conditions. If, e.g., the alphabet is presented to the
user at the same speed but the number of channels are
increased from 4 to 5, we isolate the effect of increasing the
number of channels by measuring and comparing the
human performance.

The main focus of the user trials in this section is to com-
pare human performance between channels. However, we
also discuss absolute performance in 5-channel mode. We
specifically compare the performance of able-bodied users
to the performance of a non-speaking individual with motor
disabilities in similar conditions.

The user trials were carried out as a controlled experi-
ment with a within-subject design with two independent
variables: 1) the speed at which the alphabet is presented to
the user (with three levels: slow, medium and fast) and 2)
number of audio channels (with three levels: 3, 4 and 5);
and three dependent variables: entry rate, error rate and
number of clicks per character.

The speed level defines how much successive sounds in
the composite sequence overlap. In “slow” mode the com-
posite sequence is presented to the user in a longer time
compared to the other modes causing the successive sounds
in the composite sequence to overlap less. More specifically,
in fast mode the alphabet is presented twice to the user in
9s. If word completions are ignored this means that the user
can not write faster than 1.33 wpm. On average, a word is
five characters long, and word completions are unlikely to
occur (many words have this length). One can therefore
expect the average text-entry speed rate be about 1.33 wpm
if the composite sequence is repeated only once per charac-
ter, and the user clicks twice on target per character. Simi-
larly, in “medium”/”slow” it takes 11.2 s/12.5 s to play the
alphabet twice, which can result, at most, in text-entry rates
of 1.07 wpm/0.96 wpm in the absence of word completions.
We call the aforementioned expected text-entry rates the
baseline text-entry rates.

The baseline number of clicks is 2 cpc, which can be achieved
without word predictions, and if the user clicks twice on
target for each character. The baseline error rate is 0%.

It is important to note that we derive the text-entry rate
only from the length of the composite sequence, and the num-
ber of times it has been presented to the user. We therefore
exclude all other system delays, and other audio cues that
can be used to assist the user. This makes it easier to directly
compare to simulations, and othermethods such as Grid2.
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5.1.1 Method

Entry rate was measured in words-per-minute (wpm), with
a word defined as five consecutive characters, including
spaces. Error rate was measured as the minimum edit dis-
tance between the response text and the stimulus text,
divided by the number of characters in the stimulus text.
We recruited 12 able-bodied participants from a university
campus via convenience sampling.

The experiment was carried out as a single two-hour ses-
sion, consisting of a 30-minute practice session and a 90-minute
testing session. To reduce fatigue, the testing session was inter-
leaved with breaks (30 minutes total). In the practice session
the participant listened to the composite audio sequence with
visual assistance, and practised selecting a few letters. In the
testing session the number of channels were tested in random
order and the speed was incremented slowly. Participants
were exposed to roughly seven minutes per speed setting. To
reduce cognitive load participants were visually shown the
prompted phrase, with the current target letter highlighted.

Participants were also given a chart indicating which let-
ters occurred in which channel. However, to successfully
select the letters they had to understand how the system
worked, and they had to correctly identify the letters when
they heard it. Phrases were processed one word at a time.
Thus, if the participant selected a word, the participant
couldn’t go back to change his selection, and had to proceed
to the next word. The phrases were drawn from a widely
used phrase set for text entry experiments [16].

The experiment was carried out similarly to the simula-
tions described in Section 4.1. The participant was allowed
to listen for as many composite audio sequences as desired
before clicking. The participant was allowed only 2M com-
posite audio sequences where one or more clicks occurred,
otherwise a time-out failure was assumed (M is the length
of the input word). In case of failure, wpm was set to zero
and #errors was set to 100 percent, and the system pro-
ceeded to the next word.

5.1.2 Results

The results from the controlled experiment are summarized
in Fig. 6. We analyzed the potential effect of the audio
channels using a General Linear Model repeated measures
analysis of variance at initial significance level a ¼ 0:05with
Greenhouse-Geisser correction for violation of sphericity.
The analyses, summarized in Tables 1, 2, and 3, revealed no
significant differences in either entry rate, error rate or
clicks-per-character.

The latter analyses revealed no significant differences in
either entry rate, error rate or clicks-per-character. By
inspection of the box-and-whisker plots in Fig. 6 and taking
into account the low effect sizes (h2p above), it appears
unlikely that the number of audio channels would have an
effect if this experiment would be replicated. Hence, we
keep the null hypothesis and conclude that the number of
audio channels (3, 4, or 5) is unlikely to exhibit a large effect
on entry rate, error rate or the number of clicks per letter
for the particular speed configurations considered in the
experiment.

Human performance therefore does not seem to degrade
substantially when increasing the number of channels from
three to five, thereby validating our design choices related
to assisting the user to change focus to a different voice.
Note that the tested speeds were rather conservative. That
is, there is overlap between the sound files, but we haven’t
tested the speed saturation point. The result from this exper-
iment motivates further research to measure the saturation
point for all channels, in order to better quantify the speed
benefits of the proposed audio parallelization. An experi-
ment can be constructed to measure the fastest speed attain-
able for the number of audio channels (for a reasonable
error rate). The number of channels should also be increased
up to breaking point.

Fig. 6. Box-and-whisker plots for the multi-channel stereophonic user tri-
als indicating the 5th, 25th, 50th, 75th and 95th percentile values.
Results are plotted for each channel, and each speed setting (as indi-
cated by the labels on the x-axis at the top and bottom of each plot).
Results are computed over all words and over all participants. For exam-
ple, the text entry rate plot on the left shows that 50 percent of users
could select words at 1wpm when phrases were presented to them in 3-
channel mode in “Slow” mode. Outliers are shown as circles. Black lines
indicate results for able-bodied participants in the stereophonic-sound
controlled experiment. The performance results obtained from a non-
speaking individual with motor disabilities are shown in red.

TABLE 1
The Analysis for the Potential Effect of the Number of Audio

Channels on the Text-Entry Rate

Fast F2;22 ¼ 1:729 h2p ¼ 0:136 p ¼ 0:201

Medium F2;22 ¼ 0:222 h2p ¼ 0:020 p ¼ 0:803

Slow F2;22 ¼ 0:327 h2p ¼ 0:029 p ¼ 0:725

TABLE 2
The Analysis for the Potential Effect of the Number of Audio

Channels on the Error Rate

Fast F1:352;14:870 ¼ 3:948 h2p ¼ 0:264 p ¼ 0:056

Medium F1:371;15:080 ¼ 3:338 h2p ¼ 0:233 p ¼ 0:077

Slow F2;22 ¼ 0:808 h2p ¼ 0:068 p ¼ 0:459

TABLE 3
The Analysis for the Potential Effect of the Number of Audio

Channels on the Clicks per Character

Fast F2;22 ¼ 1:015 h2p ¼ 0:084 p ¼ 0:379

Medium F2;22 ¼ 0:518 h2p ¼ 0:045 p ¼ 0:603

Slow F2;22 ¼ 2:053 h2p ¼ 0:157 p ¼ 0:152
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5.2 Non-Speaking Individual with Motor Disabilities

In addition to the controlled experiment we also carried out
a case study with a non-speaking individual with motor dis-
abilities who was unable to communicate on his own using
the standard scanning system Grid2. This user communi-
cated mostly by raising his eyebrows in an interactive con-
versation with his carer. The carer could also guess well
what he tried to say after he selected a few letters. We auto-
mated this process using an Impulse switch attached to the
user’s eyebrow muscle and connected to Ticker.

The Impulse switch is quite prone to false positives and
drift, especially if the user communicates for a while and
his body temperature slightly increases. Since this end-user
had vision problems all visual cues had to be replaced with
audio cues.

We trained the end-user to use Ticker in four 2-hour ses-
sions. During the last session the end-user was able to select
20 words (four phrases) at a rate of 1.3 wpm. No time-out
errors occurred, and four of the 20 words were wrong. How-
ever, due to the context one could easily see which words the
end-usermeant. For example, “throb_”were selected instead
of “three_” from the phrase “three_two_one_zero_blast_”.
All the other wordswere selected correctly.

Results are also shown in red in Fig. 6. Note that the
median text-entry rate is 1.3wpm, thereby corresponding to
the baseline text-entry rate defined earlier in this section.

A video of the participant using Ticker during one of the
sessions is provided as supplemental material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2018.2865897,
where the user writes the word “friend_”. To reduce the
cognitive load slightly, some audio cues were provided to
tell the user which letter to select. The user had to be able to
select letters from the sound files and had to know how the
interface works in order to write words successfully.

5.3 Model Validation by Expert User

In order to further validate our modelling assumptions and
observe the performance envelope of Ticker in relation to a
standard hierarchical scanning system, such as Grid2, we
recruited a single able-bodied participant for a model vali-
dation exercise.

We trained this participant to reach expert performance
in both systems. For each system, training and testing were
done in 4–5 hours, in several sessions and over several
days. During training, the user gradually practised to mem-
orize the alphabet layout and practised to write at fast and
slow speeds. Eventually the participant became an expert
user of both Ticker (5-channel mode) and the scanning sys-
tem (audio mode) with closed eyes, and with little audio
guidance. We used a phrase set specifically designed for
testing text entry methods intended for non-speaking indi-
viduals with motor disabilities as stimuli [17] and added
synthetic noise to simulate the practical realities of noisy
single-switch systems (see Fig. 7b for more information
regarding the synthetic noise).

In both systems the target phrase was read out the user.
Each word constituting the target phrase was then proc-
essed in succession. After an audio prompt read out “new
word”, the target word was read to the user. In both sys-
tems, the letter index was presented to the user after two
successive group scans in which no clicks were received.
For example, the audio cue was “second letter” if the user
waited for two group scans and the user already clicked for
the first letter.

In Grid2 a time-out error was generated after 2M output
characters (as part of an unsuccessful attempt to select the
target word), where M was the number of characters in the
target word. Similarly, in Ticker, a time-out error was gener-
ated if clicks were received during 2M scans of the compos-
ite audio sequence (allowing the user to listen to many
group scans, but not to keep on clicking for an arbitrarily
long time). A full-stop (“.”) or space (“_”) resulted in a
word selection causing the system to proceed to the next
word in the target phrase.

During the first testing phase, the speed for both systems
were gradually increased, until it felt too fast, in which case
it was slowed down again. Once optimal speed for the par-
ticipant was determined, synthetic noise was added to both
systems. Ticker noise parameters were set to the synthetic
noise parameters, and automatically refined during calibra-
tion and training according to the participant’s abilities.

At the end the participant was effectively trained to rep-
resent an expert user on the system, able to use the system
blindfolded with synthetic noise. This allows us to empiri-
cally observe an estimation of the human performance
envelope of Ticker. The results are presented in Fig. 7.

Fig. 7. Box-and-whisker plots of the audio pilot study, comparing Ticker
(T) and a standard scanning system such as Grid2 (G), indicating the
25th, 50th, and 75th percentiles. Results for two sessions are shown in
(a)-(b). Each session was 15 minutes long. Each session is numbered
(x-axis). (a) Results for a trained participant (with at least two hours of
practise) communicating in an environment with little noise. T �

S and TS

were varied. The first session was recorded when the user had at
least one hour of practise. The last session was recorded when the
user could comfortably use the system blindfolded. (b) Results for the
same participant in (a) but simulating a non-speaking individual with
motor disabilities (by including synthetic noise and using the system
blindfolded). Session 1 presents a user who can click precisely, but
with some latency; D ¼ 0:8 s, s ¼ 50 ms, � ¼ 0, f ¼ 0, T �

S ¼ 70 ms, and
TS ¼ 1:4 s. The latency during Session 2 was increased and some
false positives were randomly generated with D ¼ 1:5 s, s ¼ 50 ms,
f ¼ 0:1 and � ¼ 1=3/s, T �

S ¼ 70 ms, and TS ¼ 2:1 s. The theoretical
maximum speed that can be attained when using Ticker without the
unnecessary waiting time at the end of the composite audio sequence
is shown in blue.
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Comparing the text-entry rate of Session 1 in Fig. 7b to
Fig. 5a validates that the expert user’s performance results
closely reflect the simulation results for similar noise param-
eters. That is, for Ticker, D 2 ½0:8; 1:4�s results in wpm 2
½1:7; 2:1� in Fig. 5a. A similar text-entry range was achieved
in Session 1 of Fig. 7b. Likewise, for the scanning system,
wpm � 1:0 in Fig. 7b and and Fig. 5a (close to the point
where D ¼ 1:4 s). Note that a value close to D ¼ 1:4 s has to
be used for the scanning system in Fig. 5a. This result corre-
sponds to the scanning delay that was used to generate
Fig. 7b, compensating for both the synthetic latency of 0.8 s
and the users average response time which was unknown.

In Fig. 7b the theoretical maximum speed without unnec-
essary waiting time at the end of each composite audio
sequence is shown in blue. Even with this waiting time,
Ticker was on average about twice as fast as the scanning sys-
tem during the first session, and more than three times faster
during the second session (with similar click- and error rates).

The expert user found the long scanning delay in the
scanning system, which is necessary for a long latency, cum-
bersome to use. The small number of false positives that
were generated were difficult for him to cope with, as an
arbitrary (and distracting) selection was sometimes made
for him. In Ticker, one hardly notices the false positives, as
no selection is made that has to be undone. The user hardly
noticed the speed decreasing due to the unnecessary wait-
ing time at the end of each composite audio sequence when
using Ticker. Without any noise, the user found both sys-
tems easy to use, although it took about 30 minutes longer
to learn Ticker.

6 CONCLUSIONS

We have presented Ticker: an audio-based noise tolerant
single-switch text entry system for non-speaking individu-
als with motor disabilities. We have shown by modelling
that Ticker exhibits similar performance to existing single-
switch scanning systems when no noise is present. How-
ever, Ticker is likely to outperform scanning systems in the
presence of switch- and click-timing noise—especially in
the presence of false positives and long latencies. Such noise
sources are common in practice due to imperfect devices
failing to reliably detect switch events and due to cognitive
and motor errors arising due to user-specific disabilities.

The performance modelling was validated by observing
a single expert user’s performance in both Ticker and using
a standard scanning system and comparing predicted ver-
sus actual results.

We also feasibility tested Ticker with a non-speaking
individual with motor disabilities who was unable to com-
municate on his own using a standard scanning system.
Using Ticker this user was able to select letters from 20
words (four phrases) on his own at a rate of 1.3 wpm.

In addition, we have carried out an experiment that
reveals that users can easily make use of multiple audio
channels to select letters using Ticker. This result can serve
as a general solution principle for other user interface
designs; specifically when there is a need to use more than
three stereophononic sound sources.

We hope Ticker will inspire further research in augmen-
tative and alternative communication interfaces that

leverage models of the uncertainty in user’s interaction in
order to increase the communication rate.
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