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Abstract. Al-assisted, attentiona-ware systems support operators in
detecting and managing targets present in visual scenes. Such a sys-
tem typically attempts to automatically identify targets of interest and
increase the probability that an operator can detect them by, for exam-
ple, modifying their visual saliency in the visual scene. Applications of
Al-assisted attention awareness include air-traffic control, submarine de-
mining and armored vehicle situational awareness. This chapter explains
the key human-machine challenges intrinsic in this design problem and
distills six design principles based on a functional design of a general
Al-assisted attention-aware system for target identification.
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1 Introduction

Application complexity is of particular pertinence in safety critical applications,
where additional information can potentially assist the operator in making better
decisions in difficult situations. A typical example of an application is an air-
traffic control system, where the application displays a variety of information
linked to multiple tasks. This application complexity means that operators have
to maintain a high level of situational awareness, and therefore, may suffer from
cognitive overload.

Traditionally, safety critical applications strive to mitigate this complexity
with safety features that are intended to ensure operators are informed of specific
noteworthy events through warnings or alarms. Operators of these applications go
through extensive training to ensure that they have internalized the application’s
operational features, are familiar with the locations of various critical information
data points, and have sufficient experience to preempt or mitigate various possi-
ble operational situational outcomes. However, such training is costly and time
consuming, and does not guarantee optimal performance in practice. As a result,
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in some particular complex domains, operators are required to go through several
years of work experience before they have achieved the required level of proficiency.

Al-assisted target identification applications aim to overcome this problem
by providing some level of assistance to the operator during operation. At the
most basic level an Al-assisted target application seeks to manage the attention
of the operator so they are aware of important or relevant events and pieces of
information relevant for the current task (targets) while minimizing distracting
information (distractors). To successfully achieve this, the Al-assisted applica-
tion needs to make use of sensor data to infer and track the operator’s focus of
attention, detect important targets within the application, and deploy various
subtle visualization techniques to draw the operator’s attention towards relevant
information at an optimal time without jeopardizing overall task performance.

Designing Al-assisted applications is not a straightforward task. Their suc-
cess hinges on them being able to both accurately track the operator’s focus of
attention, their capacity to accurately detect targets, and their ability to preempt
the operator’s intentions or actions. Typically, they adjust the saliency of rele-
vant information on a display using a mechanism that amplifies the operator’s
decision making capabilities while avoiding to inadvertently generate further
distractors or disruptions. For an Al-assisted application to achieve balance, it
needs to be designed specifically for the application’s domain and it needs to
dynamically adjust any operator intervention strategies based on current oper-
ator performance and actions, and in response to the application’s current data
stream.

The realization of Al-assisted applications is riddled with pitfalls. In this
chapter we seek to assist system designers in avoiding those pitfalls by describing
six system design principles necessary for the development of such a system.
These principles are based on the functional design of a general Al-assisted
target identification application, which we also introduce in this chapter.

In Sect. 2 we review prior work on similar applications and the challenges of
presenting information to the operator in an optimal way. In Sect. 3 we discuss
the human-machine challenges, our approach for tackling situational awareness,
and the challenges of relying on binary classifiers for separating targets from dis-
tractors. In Sect. 4 we present a functional architecture for a generic Al-assisted
target identification system. In Sect.5 we use this functional description to dis-
till six system design principles for Al-assisted target identification systems. In
Sect. 6 we discuss the challenges and limitations of the design, and in Sect. 7 we
conclude.

The main contribution in this chapter is the functional architecture of an
Al-assisted target identification system and the six system design principles we
distill from this functional description to address the human-machine challenges
raised by a safety critical application.

2 Related Work

The human factors literature has extensively studied the potential benefits of
adaptive guidance in human-machine systems (e.g. [27,31,32,37]). The efficacy
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of these complex systems is determined by the system managing the informa-
tion presented to the user in such a way that it maximizes task performance.
The literature has primarily focused on studying interruptions and information
presentations.

By focusing on interruptions and information presentation, human factors
researchers have attempted to balance attention allocation between bottom-up
and top-down processes [33]. Bottom-up processes are said to be automatic and
capture the user’s attention without the user consciously acknowledging them;
for example, becoming aware of a stimulus. Top-down processes require the user’s
conscious action and effort; for example, reading. Attention is understood to be
a finite resource. However, there is still much debate about how attention is
allocated and consumed across various stimuli, such as which stimuli will enter
working memory and consciousness, and which stimuli will be acted on and with
what response. This definition of attention as a finite resource that is subdivided
among processes has become known as attention by selection [1,11,23,30,34].

Determining the rules that dictate which stimuli will capture the attention of
a bottom-up or top-down process has proven difficult in some cases. For exam-
ple, very salient stimuli can remain completely unnoticed under certain circum-
stances, such as when the user is engaged in another task demanding attention
to other stimuli at the same time [38]. Other stimuli, such as alarms [42] and
moving or looming objects [16], capture attention consistently. Somewhat con-
tradictory to intuition, increasing the mental load of the operator has been shown
to reduce distractor interference and increase the capacity for stimuli perception
[22]. Desimone et al. [7] observed that stimuli relevant to the current user task
tended to be favored for processing and entering consciousness.

Another reason for the literature to focus on interruptions is that interrup-
tions affect working memory by causing retrospective and/or prospective mem-
ory failures. Prospective memory is what allows users to function—remembering
to remember what we need to do or be aware of in the future. Retrospective mem-
ory is what is normally referred to as simply recalling something from the past.
Einstein et al. [12] suggest that cues in the environment can trigger automatic-
associative memory and lead to activating actions associated with the appropri-
ate stimulus. In light of these results, the human factors literature has focused
on manipulating the presentation of information to reduce the negative effects
of interruptions.

The effects of interruptions on task performance have been studied exten-
sively both in general (e.g., [5,21,26]) and in task-specific fields, such as air-
traffic control research (e.g., [20,41]). Avoiding interrupting the user during the
task and/or delaying the interruption until the latter half of the task has been
observed to be effective [5]. More advanced strategies include context-sensing
and/or using the contents of the message (notification) to infer an optimal time
to interrupt the operator [18,26]. In office settings, listening for voices or noises
has been shown to be effective for determining an appropriate time to interrupt
users [15].
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Saliency changes can be used to minimize change blindness [39] and inatten-
tional blindness [38]. However, saliency changes are difficult to use effectively as
there are many factors that affect how they are perceived. For example, Healey
et al. [19] found that hue and target orientation work best for numerical esti-
mations, while colors are discriminated by their distance, category and linear
separation. Textures are discriminated by their size and density. In the case
of multi-dimensional data, Healey et al. [19] found that the best strategy was
to reduce feature interference as much as possible. Simple motions have been
observed to be easily detectable both in the near and far field of view, perform
well in peripheral visualizations, and interfere less with color and hue features [3].

Despite all of the benefits of saliency manipulation, complex changes in
saliency can easily cause negative effects. A study focusing on air-traffic con-
trollers demonstrated that some visualizations resulted in adverse effects on sec-
ondary task performance while only simple and subtle visualizations, such as
pulsating objects, were relatively effective [20].

Prior work has used sensors to estimate the position and presence of users
to expose them to proximity-aware applications [9,25]. Further research used
multi-sensing to expose contextual information that allowed the development
of more complex strategies to avoid interruptions. Gellersen et al. [18] used
various external sensors to feed contextual information into mobile phones to
reduce interruptions. Lopez-Tovar et al. [24] used a Bayesian network to enable
smartphones to infer the correct notification preference for each user based on
previous user choices and contextually sensed information during meetings.

The idea of extending system design and development with sensors to create
attention aware systems has been advocated in the literature [2,36]. Such solu-
tions aim at providing general purpose solutions that reduce interruptions and
improve cognitive abilities of operators. Toolkits to manage attention by push-
ing notifications towards peripheral displays have been explored [36]. Other prior
work investigated strategies, such as reducing interruptions, managing context
switches, and tagging actively used objects, to improve task resumption [8,35].
Task-assisted resumption was shown to be effective in a learning system that
managed interruptions and attention changes during learning sessions [35]. Tag-
ging or marking the current position on the current task during notification
interruptions was shown by Cutrell et al. [5] to be ineffective as improvement
was only noticeable when no interruptions were present. In an earlier study,
Crerwinski et al. [6] demonstrated that interruptions during the early stages of
the task, that is, before the user entered the planning, execution or evaluation
stage, reduced overall task performance time. However, users experienced signif-
icant disruptions when the interruptions occurred later in the task and required
the use of reminders to resume the current task [5]. Bailey and Konstan [2] sug-
gested using a two-level hierarchy within tasks to separate coarse events from
fine events. They observed that interruptions between coarse events yielded less
disruption.
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Dostal et al. [10] used RGB cameras to develop an inattention aware multi-
display system that detected if an operator was attending to a particular display.
It used this information to derive subtle visualizations in unattended displays to
reduce distractions while allowing the operator to perceive changes in peripheral
vision. Garrido et al. [17] extended this system into a graphical user interface
(GUI) toolkit.

Other recent work has used eye-tracking to increase the saliency of unob-
served changes in a radar task [40]. However, the results were mixed as the system
did not have the knowledge of several application-dependent factors, such as the
task, the situational context, and the current workload of the operator. Nicosia
and Kristensson. [28] developed an inattention management middleware to incor-
porate several of the techniques previously discussed in multi-display setups.
The middleware provided a software layer that allowed distributed applications
to query the status of the operator and trigger specific visualization logic as a
result of operator action, attention and task performance. The idea of a dynamic
system was based on allowing the operator to further their understanding about
their current task and performance, as established in the situational awareness
literature [13]. The system was later extended to support a consumer-producer
competitive task setup in which the system dynamically adjusted the saliency of
each target based on operator performance against externally supplied expected
performance metrics [29]. The system effectively demonstrated improvement in
performance for some of the task metrics, but it also highlighted the complexity
of balancing dynamic strategies for multiple conflicting tasks.

3 Human-Machine Challenges

There are four challenges that need to be addressed in the design of an Al-
assisted target identification system.

First, the system has to be able to separate targets from distractors. A target
is a data point of any number of dimensions that is relevant to the operator at a
particular point in time. A distractor is any data point that detracts, prevents,
delays or confuses the operator in carrying out a task. Additionally, the system
has to provide flexibility to manage incorrectly classified targets (false positives).
We discuss this later in more detail in Subsect. 3.2.

Second, the system has to be able to account for target and task priorities.
This accounting allows the system to apply specific strategies to ensure that the
operator can distinguish the importance of specific targets and their relation to
the current task.

Third, the system has to be capable of conveying all of the previously dis-
cussed information to the operator in such a way that it does not reduce task
performance or overload the operator.

Fourth, the system has to be able to identify if the operator has failed to
notice a specific data point that has been deemed important or relevant for
a specific task (a target), and to be able to construct a strategy that brings
such information to the operator’s attention without compromising overall task
performance.
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3.1 Attention and Situational Awareness

There are several models that explain Situational Awareness (SA). We will focus
on Endsley’s model [13] and Situated Situational Awareness [4] as they are the
most suitable models for addressing the complexity of Al-assisted systems.

Endsley’s model [13] describes the process of building SA by identifying three
stages of the operator. These stages are: 1) perception of the elements in the
environment; 2) comprehension of the current situation; and 3) projection of
future states. Depending on how the operator approaches the task and what
their current goal is, the operator may progress through these stages in order,
jump between them, or iterate through them to arrive at a particular SA level.

These stages do not guarantee that the operator will build a correct SA
model—the stages merely describe the operator’s cognitive activities. For exam-
ple, if the operator’s focus of attention are not on important information at that
point in time, the operator will not perceive it and, subsequently, will build an
incorrect or incomplete understanding of the current situation and its potential
future states. Similarly, if the information is presented in a confusing or unclear
manner, the operator may perceive it, but the operator may still build an incor-
rect understanding of its importance and its future potential states. Finally, an
operator could still arrive at an incorrect SA model even if all of the informa-
tion has been presented in an optimal manner due to external factors outside of
the system, such as, for example, a failure to recall critical information, stress,
fatigue, or poor decision-making skills.

In the Situated Situational Awareness model [4], the operator builds the
SA by repeatedly sampling the environment for limited amounts of informa-
tion based on its relevance. This model emphasizes SA building on the working
memory of the operator and the capacity to maintain and update it. Ends-
ley [14] criticized this approach, suggesting that expert operators will normally
build their SA using their understanding of the possible projection scenarios from
information stored in their long-term memory to reduce the necessity to continu-
ously sample and notice relevant information. Further, Endsley [14] argued that
operators will seek to validate their understanding or complete their projections
actively, as maintaining full SA in working memory is suboptimal for experts
and in most cases almost impossible.

The approach taken in this chapter is that the solution for an Al-assisted
target identification system lies somewhere in between. We agree that expert
operators will draw from their experience in long-term memory. However, it is
also important that the system leverages the potential capacity for associative
memory and automaticity of action that can arise from manipulating the rele-
vance of information at a specific point in time.

An Al-assisted system needs to ensure that the information is presented in
a clear manner to the operator, and that the operator’s focus of attention is
on the relevant data point at the correct time. As such, managing attention is
instrumental to increasing the probability of the operator building a successful
SA model and to reducing any adverse influence.
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3.2 Classifier Interaction

A target identification system can be fundamentally viewed as a binary classifier
that attempts to identify targets among distractors. In a binary classifier there
are four possible outcomes: 1) a true positive (TP)—a target is correctly classified
as a target; 2) a false positive (FP)—a distractor is incorrectly classified as a
target; 3) a true negative (TN)—a distractor is correctly classified as a distractor;
and 4) a false negative (FN)—a target is incorrectly classified as a distractor.

These four outcomes give rise to a set of metrics for understanding the binary
classification performance of the system. A Receiver Operating Characteristic
(ROC) curve is used to analyze the operating envelope of a binary classifier. A
perfect classifier has 100% TP and TN rates. A random classifier, similar to a
coin toss, has an even distribution of TP, FP, TN and FN. Classifiers that are
worse than random classifiers can be reversed to increase their positive predictive
power. The area under the ROC curve, also called the c-statistic, can be used
to calculate the predictive power of the classifier as this area will reflect the
probability that the classifier will score a randomly chosen positive outcome
higher than a randomly chosen negative outcome. The higher this probability,
the better the classifier.

Fundamentally, an Al-assisted target identification relies on an AI module
to perform binary classification on information presented to the operator. This
information may be either correctly classified as relevant (a true positive target),
correctly classified as irrelevant (a true positive distractor), incorrectly classified
as relevant (a false positive target), or incorrectly classified as a distractor (a
false positive distractor). While great efforts are spent maximimzing classifica-
tion performance, it is important to realize and accept that incorrect classifica-
tions are unavoidable in practice. Therefore, any system solution must assume
the presence of both incorrectly classified targets (which now serve as danger-
ous distactors to the operator) and incorrectly classified distractors (which may
potentially obscure critical information).

4 Functional Architecture

We here present six system design principles for Al-assisted target identifica-
tion systems. We introduce a generic high-level functional architecture for this
purpose in the form of a function-structure model and use this model to distill
design principles.

The function-structure model of the joint human-machine system is shown
in Fig. 1. Dashed arrows indicate signal flows. The overall function is Detect
and Process Target. The overall function outputs a signal Processed Targets
in response to two Sensor Data signals, which may be identical, or be received
from an identical signal source, however, this is not a requirement. The overall
function is decomposed into nine key subfunctions. We separate functions into
two categories: 1) Al-functions, which are carried out by a technical embodiment
of the system; and 2) operator functions, which are carried out by a human
operator.
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Fig. 1. A function-structure representation of an Al-assisted target identification sys-
tem with operator inattention support.

Fundamentally, the functional architecture in Fig. 1 identifies three modules:
1) a human operator; 2) an Al-based target identification and prioritization mod-
ule; and 3) an Al-based operator intervention module.

The Al-function Infer Target receives a Sensor Data signal and infers
any targets in the sensor stream. The output of this function results in an
Inferred Targets signal transmitted to the Al-function Prioritize Target,
which assesses the importance of each target and determines its priority for
an operator’s attention. Collectively, the two Al-functions, Infer Target and
Prioritize Target, represent a machine learning module that identifies and
prioritizes targets in a scene.

The first operator-function, Detect Target, detects targets, which can be
both detected directly by the operator in a raw Sensor Data signal, or pre-
sented to the operator as a Prioritized Targets signal. The second operator-
function Process Target receives the signal Detected Targets and performs
actions in response to them. This last step results in Process Target finally
outputting a Processed Targets signal from the system. Collectively, the two
operator-functions, Detect Target and Process Target, represents a human
operator tasked with identifying and processing targets on a display assisted by
an automatic target identification system.

However, merely assisting the operator by automatically identifying and pri-
oritizing targets may not be sufficient. First, the Al-functions Infer Target and
Prioritize Target are likely to occasionally generate erroneous results, such
as failing to identify targets or incorrectly identifying targets (distrators). The
presence of such uncertainty around prioritized targets increases the cognitive
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load on an operator; Second, the cognitive load on the operator may also increase
further, for example, as a result of operator overload, fatigue, stress, etc.

Therefore, a critical component of a well-functioning Al-assisted target iden-
tification system is an operator intervention module. This module uses three Al-
functions to collectively track the operator’s target awareness, target intention
and target interaction (Track Operator Target Awareness, Track Operator
Target Intention and Track Operator Target Interaction). For clarity,
the input signals to these functions are not shown in Fig. 1.

These three Al-functions generate corresponding signals to the Al-function
Balance Operator Attention, which is tasked with managing the operator’s
current ability to identify and process targets. If the operator is overloaded,
Balance Operator Attention sends an Intervention Instruction signal to the
Al-function Intervene Operator, which can intervene with the two operator-
functions Detect Target and Process Target by sending them an Intervention
signal.

5 System Design Principles

The Al-functions Infer Target and Prioritize Target are domain-specific
applications of machine learning infrastructure. We are therefore here concerned
with distilling six system design principles for improving the operator functions
Detect Target and Process Target by realizing effective operator interven-
tions.

5.1 Determine Operator Focus of Attention

Establishing the focus of attention is the first necessary step in order to track
operator awareness. Determining the operator’s focus of attention requires recon-
ciling target locations with the sensor stream or detecting targets from applica-
tion data events. The specific realization of this function will be application spe-
cific, as different domains will have different constraints or requirements on how
data is represented, as well as the number of dimensions that are represented.
Data dimensions can include, for example, color changes, location changes, and
value changes. Data may also consist of video or audio streams, still images and
visualized sensor data (such as sonar data).

Regardless of these factors, a typical implementation will use eye-tracking
data to convert fixations into operator attention focus points. A fixated target,
or area, can then be used by the system to determine that a data point has been
recognized by the operator. Further program logic can be constructed based on
the duration of the fixation and the proximity of the fixation to the target data
point. However, such modifications will be domain dependant.

The primary concern in the realization of this function is in the reconciliation
of the sensor data and the application’s data points. The first challenge arises
due to how the data is presented in the application. Applications that display
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data points in clusters or in close proximity to each other will cause the reconcil-
iation of events and data points to be non-deterministic as there will inevitably
be uncertainty around the correctly determined operator’s focus of attention. In
such cases, the system will need to operate under the assumption that the oper-
ator fixated on all nearby data points and apply some further heuristics based
on the likelihood of specific data points being noticed during the fixation time,
or use a corroboration mechanism by highlighting (or moving) subsets of data
points, that reveal to the user what the system has recognized.

The second challenge arises due to the system misclassifying an operator’s
focus of attention due to the operator zoning out, possibly due to sleep depriva-
tion, information overload, stress, or trauma, and the system incorrectly detect-
ing this behavior as an eye-tracking fixation and hence an operator’s focus of
attention. Since the operator’s mind is unobservable, the system will need to
filter such instances out. Possible solutions include: 1) require additional data
from the primary attention-tracking channel (for example, an eye-tracker) to
confirm the focus of attention, such as increased fixation duration, or a series of
fixations; 2) require additional data from a secondary attention-tracking chan-
nel (such as a head tracker) to confirm the focus of attention (for example, the
operator rotating its head in the direction of the inferred focus of attention);
and/or 3) track the operator user interface activity to confirm focus of attention
by, for example, analyzing the mouse cursor movement in the vicinity of the
hypothesized point of the operator’s focus of attention.

5.2 Track Operator Target Awareness

The ability to determine operator awareness separates a dynamic intelligent
system from a system that can only react using fixed predetermined output for
each configured situation. The system can only produce a tailored output signal
that addresses the current operator state if the system incorporates information
about the operator’s target awareness.

A system able to establish the operator’s awareness of each target on the
display, by reconciling the operator’s focus of attention with data points on the
display, can infer which targets the operator may be unaware of. This infer-
ence permits the system to predict what the operator has perceived and thus
allows the system to estimate the level of SA of the operator. The system can
then transmit this signal, together with other output signals, to the Balance
Operator Attention function.

Realizing this function requires the system to reconcile data point
changes, data point priorities, and associated operator events. The implemen-
tation of this function is typically relatively straight-forward, assuming the
Determine Operator Focus of Attention function and the Infer Target
and Prioritize Target functions are reliable, that is, they exhibit low false-
positives rates.
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5.3 Track Operator Target Intention

Once the system has acquired knowledge about which targets the operator has
perceived, the system can use this information to infer what the operator com-
prehended of the current application state and attempt to use this inference
to project what the operator’s intentions are towards any targets on the dis-
play. The previous operator interaction, or logged traces of previous operator
performance, can be used to guide the system’s inference. Having the system
generating hypotheses of operator intentions can be used to assess current oper-
ator performance and incorporate error prevention strategies to preempt future
operator errors.

For example, if the operator has recently fixated on a set of specific targets,
it is probable that the operator will carry out actions related to those targets
in the near future. Correspondingly, the operator is less likely to follow-up on
actions for targets that have not been fixated on recently. Similar logic can be
applied for tasks within the application. The system can infer if a specific task
is being neglected based on which targets are being fixated upon or interacted
with by the operator the most. The output of this function will be used by the
Balance Operator Attention function to estimate future operator actions and
whether they will be in line with expected actions and baseline performance.

The primary challenge in realizing this function is accurately inferring the
operator’s intention within the application’s domain for specific circumstances
and actions. One approach to implement this function is to have the system use
a task template matching mechanism to predict the likelihood of specific follow-
up actions as a result of target fixations and then match these predictions with
actual operator outcomes. Since intention is closely related to task execution,
the system needs to account for the specifics of each task within the application
and its domain.

A related challenge that can arise in some applications is that an operator’s
actions may be ambiguous and thus match multiple task templates at once. In
such cases, the system can use two strategies: 1) the system can use past history
or other data feeds about the overall state of the system to predict operator
intentions; and 2) the system can operate under the assumption that all of the
operator’s intended actions take place at the same time and allow the Balance
Operator Attention function, which has access to both Target Interaction and
Target Awareness signals, to perform more accurate inferences of the operator’s
intention.

5.4 Track Operator Target Interaction

The operator’s interaction with the system is a rich source for the system to
infer the current awareness state of the operator and possible future state pro-
jections. The system can also use the information associated with an action to
estimate its impact on the overall future application state. The degree to which
the system can estimate this information depends on the application’s domain.



Design Principles for Al-Assisted Attention Aware Systems 241

Nevertheless, the system can gain important operator insights by tracking the
operator’s interactions.

The operator’s interactions can be classified into two types: 1) definite
actions; and 2) precursors to definite actions. The first type of interaction can
inform the system of the culmination of the awareness of the operator. The sec-
ond type of interaction can inform the system about potential definite actions
that the operator may take. For example, when the operator selects a group
of targets, the operator performs an interaction of type 2. When the operator
executes an action for selection, the operator performs an interaction of type 1.

Both of these types of interaction provide information on the operator’s focus
of attention. If the user has interacted with a particular target, or a set of
targets, the operator is definitely aware of them. Conversely, this information
also informs the system about what the operator is not aware of (inattention).
A system having knowledge about the current operator’s awareness is a system
capable of both estimating future system states and the level of comprehension
of the operator of any targets and potential follow-up actions. For example, the
system is able to detect if an operator is acting on low priority targets instead
of high priority targets, or whether an operator is neglecting one task in favor
of another task.

The system can also estimate delays and the costs of actions by examining
the timing associated with task execution and target fixations. Such statistics
can then be used to detect anomalies, for example, fatigue or lapses in individual
operator performance. These statistics can then be propagated to the Balance
Operator Attention function to allow the system to execute an appropriate
operator intervention tactic. Alternatively, or in parallel, these statistics can be
used to evaluate the effectiveness of prior operator intervention tactics.

5.5 Balance Operator Attention

Balancing operator attention is carried out by the system reconciling all informa-
tion from the Track Operator Target Awareness, Track Operator Target
Intention and Track Operator Target Interaction functions in order to
decide if an Intervention Instruction signal should be sent to the Intervene
Operator function in the system.

Balancing operator attention is necessary to manage the operator’s attention,
which is a limited resource as explained in the Related Work Sect. 2 previously in
this chapter. Balancing operator attention means distributing operator attention
across tasks and targets to ensure the operator chooses the most relevant actions
at any given time.

To balance the operator’s attention, it is necessary for the system to have
knowledge about the operator’s awareness of any targets, the operator’s inten-
tions regarding targets, and the operator’s interaction with any targets. Using
this information, the system can balance the operator’s attention in several ways.

First, the system can balance operator attention by assessing the operator’s
performance in comparison to an expected benchmark. For example, the system
can estimate changes in target priorities as a result of possible operator actions
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and compare such changes against previous actions to assess if the operator’s
actions are resulting in expected performance. If the observed operator perfor-
mance is below a threshold, the system can intervene with the operator; for
example, by drawing the operator’s attention to higher priority targets.

Second, the system can balance operator attention by distributing attention
across tasks. Successfully achieving this distribution depends critically on the
system’s ability to infer the operator’s target awareness, target intention and
target interaction.

A challenge in balancing operator attention in an optimal fashion is the fact
that the system is dynamic—the system changes states both due to new incoming
data and to operator actions, which may or may not be influenced by feedback
from the system itself (such as an operator intervention). One way to tackle
this challenge is to associate specific operator actions with potential application
state outcomes. System applications that have clear definite actions are able
to evaluate outcomes with higher a accuracy compared to system applications
where outcomes are not easily attributed.

Hence, balancing operator attention is challenging. To avoid the main pitfalls,
as discussed in the Related Work Sect. 2 previously in this chapter, it is advisable
to: 1) avoid unnecessary interruptions; 2) ensure that relevant information is
clearly shown without confounding the operator; and 3) prevent adverse effects,
such as inducing additional confusion or stress.

5.6 Intervene Operator

When the system intervenes with the operator the system performs an action
in response to an Intervention Instruction signal from Balance Operator
Attention.

Operator interventions can be carried out in a number of ways. The central
idea is to modify operator behavior to respond to targets or tasks in a domain-
appropriate way. One straightforward example is for the system to increase the
visual saliency of targets the system believes the operator is unaware of.

Realizing such a function is fundamentally application specific as these oper-
ator interventions must be carefully designed to not intrude on established work-
flows. Poorly designed operator interventions can confuse the operator or add
further cognitive overload.

A typical way to achieve an operator intervention, as previously mentioned,
is modifying visual saliency. Visual target attributes, such as hue, color and
movement, can be modified to attract an operator’s attention to specific targets
or individual data attributes. This method necessitates careful design work to
ensure the visual attribute modifications are compatible with existing workflows
and the visual grammars used in the domain.

The primary challenge in the realization of a needed function is in ensur-
ing any operator intervention does not detract the operator from other critical
targets or tasks and that any operator intervention has a clear purpose and
does not result in unexpected operator behavior. This requirement necessitates
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that interventions are coordinated to ensure that they do not clash, overload or
confuse the operator.

6 Discussion

A particular challenge for any Al-assisted target identification system is realiz-
ing the Balance Operator Attention and Intervene Operator functions. As
previously discussed, these two functions are critical in enhancing operator per-
formance. Fundamentally, this means ensuring that the operator’s attention is
optimally allocated to allow the operator access to the highest quality informa-
tion at any given point in time.

The efficacy of the Balance Operator Attention function depends on two
factors: 1) the quality of logged traces available for predicting expected operator
actions based on the estimated states of the operator and the application; and
2) the capacity for establishing a baseline that allows the system to evaluate the
current application’s state to determine when to intervene the operator.

The Balance Operator Attention function is one of the distinguishing fea-
tures that separates an Al-assisted target identification system from static sys-
tems that rely on simplistic tactics, such as highlighting important information
regardless of the current state of the operator or application. This capacity to
balance operator attention for the joint human-machine system to adapt to the
operator’s awareness and the current application state is critical for the success-
ful operation of challenging tasks in this area. On the other hand, this very same
system adaptability is what the literature has identified as being a source of
potential pitfalls and challenges. Therefore, any Balance Operator Attention
function must be realized with great care.

In general, an Al-assisted target identification system needs to ensure that
it does not cause detrimental performance. This case requires a careful consid-
eration of many design parameters and functions, e.g. as determining when to
intervene, how to intervene, and how to verify and validate that performance
does not degrade under certain task conditions, such as during an unusually
high complexity period of operation.

A benefit of the functional architecture introduced in Fig.1 is that by turn-
ing off the Intervene Operator function, the output of the Balance Operator
Attention function can be used to assess operator performance live. The data
can then be used to identify any common operational challenges that are expe-
rienced under particular operational situations, as well as any weaknesses in the
design of the system application. This data also serves to establish a baseline,
which can be used to assess the improvements induced by an Al-assisted tar-
get identification system that re-couples these two functions. The logged data
can also be used to gain further insights into operator behavior, or be used to
support operator training activities.
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7 Conclusions

In this chapter we have introduced a high-level functional architecture for Al-
assisted target identification systems. From this functional description, we have
distilled six system design principles required for the optimal operation of such a
system. While successful implementation of operator intervention is challenging,
we believe the incorporation of these Al-assisted functions is critical for successful
operation in safety critical domains, in particular when the task complexity is
difficult to predict and occasionally very high.
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