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ABSTRACT
Dasher is a promising fast assistive gaze communication method.
However, previous evaluations of Dasher have been inconclusive.
Either the studies have been too short, involved too few partici-
pants, suffered from sampling bias, lacked a control condition, used
an inappropriate language model, or a combination of the above. To
rectify this, we report results from two new evaluations of Dasher
carried out using a Tobii P10 assistive eye-tracker machine. We
also present a method of modifying Dasher so that it can use a
state-of-the-art long-span statistical language model. Our experi-
mental results show that compared to a baseline eye-typing method,
Dasher resulted in significantly faster entry rates (12.6 wpm versus
6.0 wpm in Experiment 1, and 14.2 wpm versus 7.0 wpm in Exper-
iment 2). These faster entry rates were possible while maintaining
error rates comparable to the baseline eye-typing method. Partici-
pants’ perceived physical demand, mental demand, effort and frus-
tration were all significantly lower for Dasher. Finally, participants
significantly rated Dasher as being more likeable, requiring less
concentration and being more fun.

Categories and Subject Descriptors
K.4.2 [Computers and Society]: Social Issues—Assistive tech-
nologies for persons with disabilities

General Terms
Human Factors, Performance, Experimentation

Keywords
Assistive gaze communication; eye-typing; Dasher

1. INTRODUCTION
Text entry is an important daily activity among computer users.

However, writing text using eye-tracking is difficult. The most
common method to enter text by gaze is by eye-typing. To write
text using eye-typing, the user serially gazes at the intended keys
on an on-screen keyboard. For a key to become activated the user
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has to fixate on the key for a preset time interval, the so-called
dwell-timeout. There has been considerable research into the de-
sign, development and evaluation of eye-typing interfaces (e.g. [8,
10]).

Besides eye-typing, researchers have explored alternative ways
to write using gaze. For example, one method is to create hier-
archical layouts which require users to enter individual letters by
activating a series of keys. This enables the interface to maximize
button sizes for quick, easy selection (e.g. [2, 13]).

Other attempts to improve entry rates for gaze-based communi-
cation move away from the discrete fixation and saccade movement
required by eye-typing. EyeWrite [20] uses a gesture alphabet that
allows users to draw their intended characters with basic gestures.

Unfortunately, both hierarchical layouts and EyeWrite result in
relatively low entry rates ranging between 5–8 wpm (words per
minute) [2, 13, 20].

Recently, Kristensson and Vertanen [5] proposed a new paradigm
for writing by gaze that they call dwell-free eye-typing. Dwell-
free eye-typing might enable users to write fast by removing dwell-
timeouts from eye-typing. Instead, users’ intended text is decoded
using a pattern recognition algorithm. No complete dwell-free eye-
typing system has been implemented but a human performance
study indicates that such a system might enable users to write faster
than 40 wpm [5].

One promising alternative gaze-based text entry method is Dasher
[18]. Dasher is a predictive text entry interface in which text is en-
tered by navigating a world of nested boxes. Each box in Dasher
is labeled with a letter or other symbol (see Figure 1). The size of
each box is proportional to the probability of that box’s letter under
a language model.

As shown in the upper-left part of Figure 1, boxes with corre-
sponding letters are arranged vertically in alphabetical order. To
write a given letter, the user zooms into the box labeled with the
desired letter. As the user zooms into the box, subsequent boxes
containing further letters will become gradually visible. Boxes of
letters with low probabilities might at times be too small to be vis-
ible. However, the boxes are there nonetheless and the user can
navigate to them by zooming to the appropriate location in the al-
phabetical ordering.

Zooming is controlled by any sort of pointing device (e.g. a
mouse or eye-tracker). Pointing to the right of the screen midpoint
causes the display to zoom in. As a box crosses the midpoint of the
screen, that box’s letter is considered to have been entered. Users
can erase previously written text by pointing to the left of the mid-
point to zoom back out. The vertical location of the pointer controls
exactly which letter is entered. Zooming speed is either controlled
manually or via Dasher’s automatic speed control feature. The au-
tomatic speed control adjusts zooming speed based on the observed
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Figure 1: Example of a user writing “this time” in Dasher.

writing proficiency of the user.
Dasher’s text entry performance using an eye-tracking interface

is unclear. Ward and MacKay [19] tested two expert and two novice
users’ Dasher performance for 60 minutes. They found that one ex-
pert user reached 22 wpm, the other expert user reached 25 wpm,
and the two novice users reached entry rates of around 12 and 14
wpm (Figure 1 in [19]). The study is problematic because no con-
trol condition was used for the novice users, and the sample was
biased as the two expert users were the authors of the study. The
study was also too small to be generalizable.

Another study of Dasher was carried out by Tuisku et al. [12].
They recruited 12 Finnish-speaking participants who wrote phrases
from the MacKenzie and Soukoreff phrase set [7] translated into
Finnish. After 150 minutes of practice, participants reached an
average entry rate of 17.3 wpm. However, no control condition
was used (such as an eye-typing interface). A further complication
is that Dasher’s Finnish language model was trained on a Finnish
novel called Pereat Mundus by Leena Krohn, which is not repre-
sentative of the type of text users are likely to write using Dasher.

Finally, another study tested three participants’ text entry perfor-
mance with Dasher, with one of the participants being the inventor
of Dasher [16]. After 120 minutes of practice, the first and second
participants reached 17 wpm, and the inventor of Dasher reached
22 wpm after 90 minutes of practice (Figure 6 in [16]).

In summary, previous studies of Dasher are flawed in a number
of ways. The studies have been too short, involved too few partici-
pants, suffered from sampling bias, lacked a control condition, used
an inappropriate language model, or a combination of the above.

In this paper we contribute the results of two studies of Dasher.
In both our studies we configure Dasher to use a state-of-the-art
long-span language model. We show our language model pro-
vides superior predictive performance to Dasher’s built-in language
model. In the first experiment we compare a standard eye-typing
interface with a 1-second dwell-timeout with Dasher in a multises-
sion experiment involving nine participants. In the second experi-
ment we compare an eye-typing interface in which participants can
adjust the dwell-timeout with Dasher in a multisession experiment

involving 12 different participants. Both studies show that Dasher
is significantly faster than eye-typing with no significant difference
in error rate.

2. EXTENDING DASHER
Writing in Dasher relies on making character predictions based

on the user’s previously written text. If the user’s desired next char-
acter is well-predicted, it will appear in a big box and the user will
be able to locate it easily and navigate to it quickly. On the other
hand, poorly predicted characters may initially be too small to be
seen. The user must decide on the correct area to point at based
solely on knowledge of the vertical alphabetical ordering of char-
acters. Even once pointed in the right direction, it takes time to
reach the poorly predicted character’s small box.

Dasher makes its predictions using the text compression algo-
rithm prediction by partial match (PPM) [1]. Similar to n-gram
language models, PPM makes predictions based on counting how
often certain characters appear in some training text after differ-
ent prior contexts. In PPM terminology, the model order refers
to how many prior characters are used to predict the next charac-
ter. An order-1 model uses a single previous character of context,
e.g. P (e|h), an order-2 model uses two previous characters of con-
text, e.g. P (e|th), and so on. PPM blends the probability estimates
from different model orders to obtain robust predictions. Dasher
uses the PPM-D blending strategy and by default uses models up
to order-5.

When Dasher starts, its PPM model is trained from scratch using
a file containing a collection of text. The exact file depends on the
user’s configured language and alphabet. For example, for British
English with an alphabet of the lowercase letters, A–Z, and limited
punctuation, the file training_englishLC_GB.txt is used
to train PPM. This training file contains 55K words and 317K char-
acters. Additionally, Dasher may train on any past Dasher writing
by the user.

During usage, Dasher adapts its PPM model, allowing the model
to better predict the user’s writing style, vocabulary, etc. This is ac-
complished by incrementing counts in the PPM trie data structure
every time the user writes a new character. The changes from this
adaptation can be kept between Dasher writing sessions by append-
ing the user’s writing to the training text Dasher loads at startup.

2.1 Improved Language Model for Dasher
We found the existing Dasher language modeling infrastructure

was insufficient to provide state-of-the-art language modeling per-
formance. To achieve the best predictions, we anticipated the need
to condition on more than five characters of context. However, to
estimate longer-span language models requires substantially more
training data than 300K characters. We wanted to train on billions
of characters, something that would be too time consuming to do
every time Dasher starts up. Additionally, Dasher’s current PPM
implementation lacks any model pruning - attempting to train on
large amounts of data would result in running out of memory.

To address these problems, we modified Dasher to load an n-
gram language model pre-trained using the SRILM toolkit [11].
This toolkit supports training on very large amounts of data, and
allows pruning of models to help control memory requirements.

We created our character-based language model using data col-
lected from the microblogging site, Twitter. Prior research has
demonstrated that Twitter data models Augmentative and Alterna-
tive Communication (AAC) text much better than other publicly
available large data sources, such as Wikipedia or newswire text
[14]. We sampled a small percentage of worldwide tweets from
December 2010 to June 2012 using Twitter’s free streaming API.
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We first eliminated any tweets marked as retweets and any tweets
not identified as English using a language identification module
[6]. Additionally, we only kept tweets with a source attribute iden-
tified as having been written from a mobile client (e.g. “Twitter
for iPhone”, “Twitter for Android”, etc). We also eliminated any
repeated tweets from the same Twitter user. After these filtering
steps, we had 291M tweets.

We split each tweet into one or more sentences. We only kept
sentences where all words (after removing punctuation such as com-
mas) were in a list of 330K English words. We obtained our word
list by concatenating a number of human-edited dictionaries (Wik-
tionary, Webster’s dictionary, CMU pronouncing dictionary, and
GNU aspell). Our final training set consisted of 94M sentences
(3.1B characters).

We report the predictive power of our language models using
the per-character perplexity. Perplexity is the degree of uncertainty
the model has about the next prediction given the previous context;
lower perplexity is better. For example, the per-character perplexity
of a completely random sequence of numeric digits would be 10.

Our language model used a vocabulary of the letters A–Z plus
the following symbols: space, apostrophe, comma, period, excla-
mation mark, and question mark. We tested a variety of model
orders on a development set and found the majority of perplexity
gains were realized by a 10-gram model (i.e. the probability of the
next character depended on the previous nine characters).

We trained our model with SRILM using Witten-Bell smooth-
ing and no count cutoffs. Our resulting 10-gram model had a com-
pressed disk size of 1.6 GB. To reduce the model’s size, we entropy-
pruned our model. This resulted in a compressed disk size of 39 MB.

2.2 Language Model Comparisons
Our pre-trained language model allowed us to condition on a

much longer context (nine characters instead of five) and to train
on much more data (3.1B characters instead of 300K). However,
we also did give up the adaptive feature present in Dasher’s origi-
nal PPM implementation. We wanted to investigate how our static
language model performed compared to Dasher’s default PPM lan-
guage model as well as PPM without adaptation. To measure this,
we used each model to predict the characters in a sequence of 1347
sentences drawn from the Mobile Enron data set [15].

Figure 2 shows the average per-character perplexity of adaptive
PPM, non-adaptive PPM, and our MobileTwitter language model.
The curves show the moving average of the last 100 sentences out
of the sequence of 1347 sentences. As can be seen in Figure 2, our
MobileTwitter model outperformed the non-adaptive PPM model
for the entire sequence. It also outperformed the adaptive PPM
model for the first 900 sentences. After this, adaptive PPM and
our model performed similarly. Overall, the perplexity on the 1347
sentences was 5.6 for non-adaptive PPM, 4.6 for adaptive PPM,
and 4.2 for our pruned MobileTwitter model. For comparison, our
unpruned 1.6 GB model has a perplexity of 3.8. In our experiments,
participants never wrote more than 385 sentences with Dasher.

3. EXPERIMENT 1
We carried out a within-subjects experiment with a single in-

dependent variable (Text Entry Method) with two levels (Dasher
and Eye-Typing). Participants were presented with memorable sen-
tences and asked to write them using each interface as quickly and
as accurately as possible.

3.1 Method
We recruited nine participants from our university campus via

convenience sampling. Their ages ranged between 19–27. Six were

Figure 2: Comparison of the per-character perplexity as we
simulated the writing of a sequence of 1347 sentences from the
Mobile Enron data set. The curves are a moving average with
a window size of 100 sentences.

Figure 3: A participant seated in our laboratory in front of the 
Tobii P10 eye-tracker machine used in the experiments.

male and three were female. None of the participants had used an
eye-tracking interface before. Participants were compensated with
a £30 Amazon voucher for volunteering to participate. All par-
ticipants studied at the university. Two of the participants studied
computer science, the other participants studied history, physics,
chemistry, international relations, mathematics or art history. All
participants were fluent in English.

As stimuli we used the Mobile Enron data set [15]. This set
consists of sentences from genuine mobile emails that have been
validated to be memorable. It has also been shown [4] that this set
of sentences results in comparable performances to the earlier and
less externally valid phrase set by MacKenzie and Soukoreff [7].

We used a Tobii Technology AB P10 assistive work station with
an integrated eye-tracker running Windows XP (see Figure 3). The
screen size was 30 × 23 cm and the screen resolution was 1024 ×
768 pixels. The eye-tracker had a sampling rate of 40Hz and an
accuracy of 0.5◦.

Both Dasher and Eye-Typing were configured to run in full-
screen mode on the workstation to minimize potential distraction.

Dasher was configured with the language model we described
previously. In this first experiment, we also enabled Dasher’s auto-
matic speed control setting, which sets the zoom speed as a func-
tion of an individual participant’s proficiency in using the interface.
This is the default setting in Dasher.

As a control condition, we implemented a standard eye-typing
keyboard for our Eye-Typing condition. Our dwell-based eye-typing
keyboard was modeled after the assistive P10 workstation machine’s
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Figure 4: The eye-typing keyboard.

default eye-typing keyboard. It had the exact same keyboard lay-
out (QWERTY) and geometry, in terms of the key sizes, spaces
between the keys, and the key positions on the screen. The system
in the Eye-Typing condition also behaved identically to the built-in
eye-typing keyboard, showing a visual dwell-timeout indication as
a graphical clock. The dwell-timeout was set to 1000 ms, the de-
fault setting on the assistive P10 workstation machine and a com-
mon default setting in eye-typing experiments [10]. Our software
was written in C++ and we used the Tobii SDK to interface with
the eye-tracker and to implement the fixation detection code.

The keyboard (Figure 4) was 288.6 × 103 mm (985 × 344 pix-
els). Individual letter keys were 24.9 × 24 mm (85 × 80 pixels).
The spaces between the columns were 4.4 mm (15 pixels). The
spaces between the rows were 2.4 mm (8 pixels). The width of the
space and backspace keys were 49.8 mm (170 pixels).

3.1.1 Procedure
This experiment consisted of one practice session and nine test-

ing sessions for each condition. Each session was separated by a
break. Sessions were spread out over five consecutive days.

In the practice session, the Dasher and Eye-Typing interfaces
were explained to the participants. To minimize the risk of intro-
ducing a novelty bias, participants were not told that eye-typing was
an established paradigm. Instead, both the Dasher and Eye-Typing
conditions were presented as two different methods researchers were
investigating to help users with motor disabilities write using an
eye-tracker.

Thereafter, participants calibrated the eye-tracker using the To-
bii P10 built-in calibration tool. Calibration was repeated until it
was successful and the Tobii P10 eye-tracker was able to accurately
track the participant’s gaze. Any participant who could not be suc-
cessfully calibrated at this stage was removed from the study. This
happened with three participants, who were compensated for their
time.

Participants were then shown how to use Dasher and Eye-Typing.
Participants completed a few test sentences in each method to en-
sure they understood how both methods worked.

Nine testing sessions followed the practice session. In each test-
ing session, participants used Dasher and Eye-Typing to write sen-
tences randomly drawn from the set of test sentences. The order of
Dasher and Eye-Typing was balanced across the sessions and the
starting condition was balanced across participants insofar as pos-
sible. Participants wrote for 10 minutes using one interface before
taking a break. After the break, they wrote for 10 minutes using the
other interface.

Participants were shown a stimulus sentence in a pop-up dialog
box and asked to remember it. The sentence was also spoken to
them by playing back pre-recorded sound files. If the participant
forgot a sentence during the writing process, they could press the
physical SPACE key to replay the audio file. When the participant
felt ready they pressed the physical SPACE key to begin writing
the sentence. Participants were instructed to write sentences “as
quickly and as accurately as possible”. To terminate a sentence in

Figure 5: Mean character error rate and 95% confidence 
interval as a function of session for Experiment 1.

Dasher the participant gazed at the centre of the screen and waited
for a set dwell-timeout. To terminate a sentence in Eye-Typing, the
participant gazed at an END key on the keyboard and waited for a
set dwell-timeout.

3.2 Results
In total we collected 27 hours of data and participants wrote a

total of 2472 sentences. No transformations were applied to our
data before statistical significance testing. All statistical signifi-
cance tests used an initial significance level of α = 0.05.

3.2.1 Error Rate
Error rate was measured as Character Error Rate (CER). CER is

the minimum edit distance between the stimulus sentence and the
user’s response, divided by the number of characters in the stimulus
sentence.

The character error rate as a function of session is shown in Fig-
ure 5. The character error rate in the first session was 9.9% CER
for Dasher and 5.8% CER for Eye-Typing. This character error rate
was reduced in the last session to 1.7% CER for Dasher and 2.2%
CER for Eye-Typing.

Character error rates were analyzed using repeated measures anal-
ysis of variance. The difference in character error rate between
Dasher and Eye-Typing was not significant (F1,8 = 0.11, η2p =
0.001, p = 0.918), nor was the difference across Session (F1,8 =
3.516, η2p = 0.305, p = 0.098). There was also no significant
interaction between Input Method and Session (F8,64 = 0.748,
η2p = 0.086, p = 0.412).

3.2.2 Entry Rate
Entry rate was measured in words per minute, with a word de-

fined as five consecutive characters including spaces. The time in-
terval used to compute entry rate was the time interval from the par-
ticipant pressing a physical SPACE key to the time participants en-
tered the last letter in the stimulus sentence. Timing data was mea-
sured using the CPU’s high-resolution time stamp counter, which
provides microsecond precision.

Entry rate as a function of session is shown in Figure 6. Dasher
resulted in approximately twice as fast an entry rate as Eye-Typing.
The entry rate in the first session was 6.6 wpm for Dasher and 4.6
wpm for Eye-Typing. Entry rates increased with practice. In the
last session the entry rate had increased to 12.4 wpm for Dasher
and 6.0 wpm for Eye-Typing.

Entry rates were analyzed using repeated measures analysis of
variance. The difference in entry rate between Dasher and Eye-
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Figure 6: Mean entry rate (wpm) and 95% confidence interval 
as a function of session for Experiment 1.

Figure 7: Mean Dasher speed (bps) and 95% confidence 
interval as a function of session for Experiment 1.

Typing was statistically significant (F1,8 = 129.448, η2p = 0.942,
p < 0.001). We also found a significant main effect for Session
(F1,8 = 28.987, η2p = 0.784, p = 0.001), which means partici-
pants improved with practice. There was a significant interaction
between Input Method and Session (F8,64 = 13.959, η2p = 0.636,
p = 0.006). Pair-wise Bonferroni-Holm corrected post-hoc tests
revealed that all pair-wise differences between Dasher and Eye-
Typing across sessions were significant, with (p < 0.003) for all
sessions, except the first (p = 0.031).

Recall that Dasher was configured to use automatic speed con-
trol. Figure 7 plots the Dasher zoom speed in bits per second (bps)
for all participants as a function of session. As is evident in the
figure, Dasher’s speed in bps strongly correlated with the entry rate
shown in Figure 6.

3.2.3 Perceived Task Load
Perceived task load was measured using the full version of the

NASA-TLX perceived task load index. Since these ratings result in
residuals that are non-normal, we performed the statistical signifi-
cance tests using Friedman’s non-parametric test.

We found no statistically significant differences for Temporal
Demand, Performance Load or Overall Task Load (Table 1). Par-
ticipants’ perceived physical demand, mental demand, effort and
frustration were significantly lower for Dasher.

3.2.4 Subjective Ratings
We also asked participants to rate five statements on a 1–7 Likert

scale (1 = Strongly Disagree, 7 = Strongly Agree). The results are

Table 1: Significance test results for perceived task loads in the 
experiment. Significant differences are boldfaced. All tests in 
the table had a single degree of freedom

First Session Last Session
χ2 p χ2 p

Physical Demand 0.143 0.705 4.500 0.034
Mental Demand 0.111 0.739 7.000 0.008
Temporal Demand 1.000 0.317 0.000 1.000
Performance Load 0.000 1.000 0.111 0.739
Effort 1.000 0.317 4.500 0.034
Frustration 9.000 0.003 9.000 0.003
Overall Task Load 1.000 0.317 2.778 0.096

Figure 8: Median subjective ratings and interquartile ranges 
on a 1–7 Likert scale for Experiment 1.

shown in Figure 8. There was no significant difference in how users
rated the ability to easily spot errors (χ2 = 2.778, df = 1, p =
0.096). There was also no significant difference in how users rated
how distracting each interface was. Participants liked using Dasher
significantly more than Eye-Typing (χ2 = 9.000, df = 1, p =
0.003), and found it more fun to use (χ2 = 9.000, df = 1, p =
0.003).

3.2.5 Open Comments
Participants were invited to write down any open comments they

had about the experiment. Invariably, there were negative com-
ments about Eye-Typing. One participant wrote that “the physical
concentration required to write took a lot of effort”. Conversely,
participants expressed enjoyment with Dasher, with one participant
stating that it “makes the keyboard seem so slow” and more than
one participant stating it was “like a game”.

4. EXPERIMENT 2
In Experiment 1, the ability to adjust the Eye-Typing dwell-

timeout was not implemented. In this experiment we wanted to in-
vestigate whether enabling participants to adjust the dwell-timeout
would substantially increase the entry rate for Eye-Typing. We also
wanted to test more participants and therefore recruited 12 partici-
pants instead of nine as in the previous experiment. To enable par-
ticipants to fully learn both interfaces, we extended session times
from 10 to 15 minutes. Further, to avoid potentially confusing par-
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Figure 9: Mean character error rate (%) and 95% confidence 
interval as a function of session for Experiment 2.

ticipants, in Experiment 2 participants first completed all their test-
ing sessions with one interface before moving onto the other inter-
face. The starting condition was balanced across participants.

4.1 Method
For this experiment, we recruited 12 participants from our uni-

versity campus via convenience sampling. 11 of the participants’
ages ranged between 18-27, with one participant aged 59. Eight
were male and four were female. Three of the participants had
used an eye-tracker before, but none had used it for text entry. Par-
ticipants were compensated with a £40 Amazon voucher for vol-
unteering. All the participants studied at the university. Nine of the
participants studied computer science, the other participants either
studied either history or physics. The material was the same set as
used in Experiment 1.

The apparatus was identical to Experiment 1. In this experiment,
the automatic speed control on Dasher was disabled. Instead, a
spinner widget was placed in a toolbar at the bottom of the screen,
allowing participants to manually adjust their zoom speed. In the
Eye-Typing condition, the spinner allowed participants to adjust the
dwell-timeout.

4.1.1 Procedure
The experiment consisted of one practice session and nine test-

ing sessions for each condition. Each testing session lasted 15 min-
utes, with breaks in between. Participants came for eight one-hour
periods, where they would complete up to three sessions. These
periods were spread out over a minimum of four days, and a max-
imum of 14 days. During all testing sessions, participants were
allowed to adjust the speed of the Dasher interface zoom. For the
Eye-Typing testing sessions, participants were allowed to adjust the
dwell-timeout after the fifth session.

4.2 Results
We collected 54 hours of data and participants wrote a total of

5067 sentences. Statistical analyses were performed identically to
Experiment 1.

4.2.1 Error Rate
The character error rate as a function of session is shown in Fig-

ure 9. The character error rate in the first session was 3.7% CER
for Dasher and 4.1% CER for Eye-Typing. This character error rate
was reduced slightly in the last session to 3.3% CER for Dasher and
4.0% CER for Eye-Typing. The lowest character error rate of all
sessions was 3.1% for Dasher and 1.3% for Eye-Typing.

Figure 10: Dasher entry rate for all participants as a function 
of session for Experiment 2.

Figure 11: Mean entry rate (wpm) and 95% confidence interval 
as a function of session for Experiment 2.

Character error rate was analyzed using repeated measures anal-
ysis of variance. The difference in character error rate between
Dasher and Eye-Typing was not significant (F1,11 = 0.153, η2p =
0.014, p = 0.703). The difference between sessions was also not
significant (F1,8 = 1.229, η2p = 0.101, p = 0.291). Finally, there
was no significant interaction between input method and session
(F8,88 = 0.905, η2p = 0.076, p = 0.362).

4.2.2 Entry Rate
Entry rate was measured identically to Experiment 1, and is shown

as a function of session in Figure 11. Again, Dasher resulted in ap-
proximately twice the entry rate compared to Eye-Typing by the
end of all testing sessions. The entry rate in the first session was
8.2 wpm for Dasher and 4.9 wpm for Eye-Typing. In the last ses-
sion, the entry rate had increased to 14.2 wpm for Dasher and 7.0
wpm for Eye-Typing.

As in Experiment 1, the average Dasher zoom speed in bps per
session is plotted in Figure 12. There is a strong similarity between
this and the entry rate means shown in Figure 11.

We saw no direct correlation between these variables. Whereas
before, the zoom speed would generally increase as the partici-
pant’s entry rate increased, the manual speed adjustment meant that
these variables were independent of one another.
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Figure 12: Mean Dasher speed (bps) and 95% confidence 
interval as a function of session for Experiment 2.

Figure 13: Mean Eye-Typing dwell-timeout (s) and 95% 
confidence interval as a function of session for Experiment 2.

Figure 13 shows the mean Eye-Typing dwell-timeout in seconds
for each session. This shows how participants adjusted the dwell-
timeout in the last four sessions when they were allowed to do so.
Despite this, the entry rate of the Eye-Typing condition remained
similar throughout all sessions, suggesting that the ability to adjust
the dwell-timeout did not have an effect on participants’ entry rates.
It should also be noted that the curve in this figure flattens out by
the final session, demonstrating that participants did not choose to
go any faster.

Entry rate was analyzed using repeated measures analysis of vari-
ance. The difference in entry rate between Dasher and Eye-Typing
was statistically significant (F1,11 = 71.219, η2p = 0.866, p <
0.001). We found a significant main effect for Session (F1,8 =
40.27, η2p = 0.785, p < 0.001), which means participants im-
proved with practice. There was also a statistically significant in-
teraction between Input Method and Session (F8,88 = 7.397, η2p =
0.402, p = 0.02). Pair-wise Bonferroni-Holm corrected post-hoc
tests revealed that all pair-wise differences between Dasher and
Eye-Typing across sessions were significant (p < 0.001).

4.2.3 Subjective Ratings
As in Experiment 1, we asked participants to rate the same five

statements on the 1–7 Likert Scale. In this experiment, we included
a question on how much they liked being able to manually adjust
the speed of each interface, which was only relevant in this experi-
ment. The results are shown in Figure 14. Contrary to the previous
experiment, there was no significant difference in how participants

Figure 14: Median subjective ratings and interquartile ranges 
on a 1–7 Likert scale for Experiment 2.

rated the intensity of concentration required (χ2 = 0.091, df =
1, p = 0.763). Despite the difference in medians, there was also no
significant difference in how distracted participants were in check-
ing what they had written (χ2 = 0.818, df = 1, p = 0.366).

4.2.4 Open Comments
Again, there was a clear bias towards Dasher in participants’

feedback. In terms of usability, one said “I found myself strain-
ing when using the onscreen keyboard”, which was mirrored by
another participant, who said “my eyes were a lot more strained
and sore with the keyboard”. However, the same participant found
Dasher “quite relaxing and enjoyable to use”. Negative comments
towards Dasher were related to participants finding it difficult to
correct errors. One participant said “getting back a level once you
had entered a letter was difficult”. Another participant said “it was
not always easy to find where to go ‘back’ to”.

5. DISCUSSION
It must be noted that it is only possible to make reliable entry

and error rate comparisons between techniques within the same ex-
periment. Different experimental setups sample different partici-
pants, use different apparatus and stimuli, and use slightly different
procedures. Furthermore, some previous evaluations of eye-typing
and Dasher have been conducted with Finnish participants writing
Finnish text (e.g. [8, 9, 12]). The structure of the Finnish language
is very different from English and a previous research paper has re-
ported that Finnish participants’ English text entry was 16% slower
than Finnish [3]. This confound is exacerbated by the fact that sev-
eral prior studies [8, 12] did not use a control condition.

Our eye-typing entry rate result of 7 wpm is comparable to those
in previous work, which are mostly within the range of 6-12 wpm.
Wobbrock et al. [20] found an average entry rate of 7 wpm with
an uncorrected error rate of 4.62%, highly similar to our results.
Majaranta et al. [9] conducted three eye-typing experiments, two
with a long dwell-timeout of 900 ms and one with a shorter dwell-
timeout of 450 ms. The first two studies had a grand mean entry
rate of 7 wpm. The final study with the short dwell-timeout had
a grand mean entry rate of 10 wpm and an error rate of 1.2%, al-
though this study had recruited experienced participants who had
been exposed to either the first or second study. Hansen et al. [2]
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reported a 6 wpm mean using a hierarchical keyboard. Špakov et
al. [17] achieved a higher average entry rate of 12 wpm with a 2.3%
error rate and an automatic dwell-timeout adjustment algorithm.
However, their participants were experienced with eye-typing. In
our Experiment 2, only two participants attempted to reduce their
dwell-timeout below 500 ms.

Tuisku et al. [12] found that after 10 sessions of 15 minutes, par-
ticipants were able to write at an average of 17 wpm. Their error
rate of 4.04% is comparable to our character error rate of 3.3%.
The most likely reason for this difference is that the participants in
this study wrote in Finnish, using a language model trained on a
novel. The structure of the Finnish language is entirely different to
English, so it is unclear whether these results generalize. It is im-
possible to tell whether the differences in language and training text
led to an increase or decrease in entry rate. Since Tuisku et al. [12]
did not use a control condition it is also unclear whether these par-
ticipants would also have higher entry rates in an eye-typing con-
dition. Vertanen and MacKay [16] used Dasher as a baseline con-
dition in their experiment. Two of the participants reached 17 wpm
and the inventor of Dasher reached 22 wpm (Figure 6 in [16]). In
our study we also found that some participants could reach entry
rates in the range 17–20 wpm (cf. Figure 10). However, as we sam-
pled a broader set of users, Figure 10 also makes it clear that some
users are not as fast.

The first paper on using Dasher for eye-tracking [19] claims that
users could write up to 25 wpm within an hour of practice. How-
ever, this result refers to a single expert user of the interface. Al-
though not stated in the results, Figure 1 in Ward and MacKay [19]
reveals that the other two participants in their study reached an en-
try rate between 10-15 wpm after an hour of practice. As the av-
erage entry rate of our participants after an equivalent time was 12
wpm, the entry rates obtained in our study are in line with the non-
expert users in the study by Ward and MacKay [19].

While allowing participants to manually adjust their speed re-
sulted in higher entry rates for both interfaces, it raised the issue of
participants’ awareness of their control of the interface. One partic-
ipant never increased the speed beyond a tentative 2.65 bps, despite
consistently low character error rates. Conversely, another partici-
pant increased the speed to beyond 6 bps and was only able to reach
a below-average entry rate. Generally, however, participants were
able to find their “sweet spot” by the end of the sessions and would
produce steady entry rates.

6. CONCLUSIONS
In this paper we have made the following contributions. First,

we have presented our method of modifying Dasher to use a state-
of-the-art long-span language model trained on appropriate training
texts for eye-typing. Second, we have compared Dasher’s perfor-
mance against a standard eye-typing interface and an eye-typing in-
terface using adjustable dwell-timeouts. Both experiments showed
that Dasher had a significantly higher entry rate than eye-typing (14
wpm versus 7 wpm). We also found that character error rates were
not significantly different to that of eye-typing.

We analyzed rating-based feedback provided by our participants,
and found that Dasher was significantly more likeable and less frus-
trating to use than eye-typing. These results were also reflected in
the participants’ open comments. Based on the results from these
two experiments, we recommend eye-tracking users adopt Dasher
for their text entry needs.
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