2022 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)

Personalization of a Mid-Air Gesture Keyboard using Multi-Objective
Bayesian Optimization

Junxiao Shen* Jinghui Hu' John J. Dudley# Per Ola Kristensson®

University of Cambridge

0000 -

N |teration

2" |teration

15¢ lteration

( J ( J
| Y

Initial Data
Collection

Candidate

Final
Selection Candidate

Iteration
Process

Figure 1: The personalization process of the mid-air gesture keyboard using multi-objective Bayesian optimization (MOBO)
on layout size. Six different layout candidates with varying sizes are generated and evaluated by the user, then the process will
introduce another two candidates for evaluation and this forms one iteration. Such an iteration needs to be repeated four to five
times. Finally, a selection of candidates exhibiting optimal speed-accuracy trade-offs are generated. The user can then select the
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final optimal candidate based on their own preferences.

ABSTRACT

We present AdaptiKeyboard, a mid-air gesture keyboard that uses
multi-objective Bayesian optimization to adaptively change layout
size to simultaneously optimize speed and accuracy. Gesture key-
boards are well suited for enabling mid-air text entry in augmented
reality (AR) due to their relative robustness to articulation inaccuracy.
However, transplanting gesture keyboards to AR involves a larger
design and operational space compared to touchscreen interactions.
One potential advantage of this larger design and operational space
is that mid-air keyboards presented in AR can be more versatile
than their touchscreen equivalents. A key component of a mid-air
gesture keyboard is the layout size, which can be made adaptive in
order to optimize text entry speed and accuracy at the individual
user level. This adaptive personalization can refine the keyboard
design to reflect the differences users exhibit in motor behaviors and
personal preferences. In this paper, we propose a multi-objective
Bayesian optimization approach for adapting the layout size of a
mid-air gesture keyboard to individual users. We show that this
process can deliver a 14.4% improvement in speed and a 13.8% im-
provement in accuracy relative to a baseline design with a constant
size derived from the default system keyboard on the HoloLens 2.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction techniques—Text input; Human-
centered computing—Interaction design—Interaction design pro-
cess and methods—User interface design
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1 INTRODUCTION

Augmented reality (AR) head-mounted displays (HMDs) provide
users with experiences that seamlessly blend digital and physical
content. However, AR increases the operational space available to
users compared to conventional laptops and mobile devices, and
has the capacity to dramatically increase the display space. The
resulting increased design space leaves designers with considerable
freedom to tune and optimize their designs for their AR applications.
Meanwhile, 3D operational space also injects new interaction con-
siderations compared to the more familiar 2D interaction surfaces.
Further, different users exhibit different behaviors and preferences,
and an increased operational space amplifies this consideration. As
a consequence, an optimized design for one user may not be suitable
for another. Therefore, application design in AR can likely benefit
from a process that adapts the design in response to user behav-
ior to optimize the performance for individual users. The process
of adapting the design to an individual user can be framed as the
personalization of the application.

A mid-air gesture keyboard [29, 32, 56] is a generally efficient
text entry method [43] suitable for text entry in augmented reality
(AR) and virtual reality (VR) [1, 18,50, 54]. In particular, a gesture
keyboard is an example of an intelligent text entry method [30]
that satisfies two important criteria for mainstream success [31]:
good performance and high similarity to existing methods users
are already familiar with. The mid-air gesture keyboard, operating
under an enlarged operational space and exploiting the available 3D
operational space by allowing freehand 3D trajectory-based input,
is especially suitable for personalization. However, adaptive design
optimization of the mid-air gesture keyboard has not been previously
studied.

The full design space of a mid-air gesture keyboard includes a
multitude of continuous and categorical parameters. Keyboard size,
inclination angle, and delimitation distance are some examples of
continuous design parameters, while key shape and color are ex-
amples of discrete parameters. As such a keyboard offers a vast
design space for personalization. Performing personalization across
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all design parameters is impractical or perhaps even impossible.
Therefore, two authors conducted a preliminary exploration of pa-
rameters with the aim to narrow down the design space. Through
observation they uncovered prominent differences in performance
when using different keyboard sizes, hence this paper focuses on
the personalization of keyboard width and aspect ratio as design
parameters.

The objectives of the optimization procedure are to maximize text
entry speed and accuracy. However, fast gesture performance may
sacrifice accuracy due to the inherent trade-off between speed and
accuracy. Therefore, we formulate this personalization challenge as
a multi-objective optimization problem since we are optimizing two
objective functions simultaneously where the two objectives may
conflict with each other. The goal of a multi-objective optimization
problem is to identify the Pareto front—a set of optimum trade-offs,
where an improvement in one objective means deteriorating another
objective. Furthermore, this problem involves a function that is
difficult and expensive to evaluate. This function is defined by the
input being the different keyboard sizes and the output being the
resulting speed and accuracy. We propose a multi-objective Bayesian
optimization approach which is a data-efficient optimization method
for global optimization of black-box functions to solve this multi-
objective optimization problem.

In this paper, we present AdaptiKeyboard—a mid-air gesture
keyboard that can adapt the width and aspect ratio of the keyboard
to optimize speed and accuracy. The keyboard’s geometry and in-
teraction design are derived from the system gesture keyboard on
the HoloLens 2. In a user study with 12 participants we demonstrate
that AdaptiKeyboard can deliver a 14.4% improvement in speed
and a 13.8% improvement in accuracy compared to a baseline key-
board that has a fixed size. The fixed-size keyboard is the same as
the default size of the system keyboard on the HoloLens 2. From
the results of the user study, we observe that different individuals
have different optimal settings for keyboard width and aspect ratio.
This observation emphasizes the importance of making a keyboard
adaptive and thus further motivates this work.

In summary, this paper makes the following contributions:

1. We introduce AdaptiKeyboard: an adaptive keyboard that uti-
lizes a multi-objective Bayesian optimization (MOBO) ap-
proach to adapt the width and aspect ratio for different users.
To our knowledge, this is the first time that a mid-air gesture
keyboard has been made adaptive by altering the layout size
using MOBO.

. We report the results of an empirical evaluation of the adaptive
keyboard and demonstrate the improvement of this adaptive
keyboard in both speed and accuracy compared to a baseline
keyboard with constant size.

2 RELATED WORK

In this section, we briefly review the related work to provide an
understanding of adaptive interface design, multi-objective optimiza-
tion and Bayesian optimization in design, and various optimization
methods used in the design of text entry methods.

2.1 Adaptive Interface Design through Optimization

Adaptive interfaces [4, 21, 40, 46] aim to dynamically and au-
tonomously enhance the user experience by altering interface char-
acteristics to facilitate adaptivity in various dimensions such as the
environment [17], user interests [33] or user capabilities [14], based
on modeling the prior user interactions. Adaptive interface design
using optimization, in contrast to design optimization which is a one-
shot process, is an integrative approach that leverages data modeling
to optimize on the fly. Many attempts have been made in the develop-
ment of adaptivity strategies either based on expert knowledge [25]
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or generated from the collections of user data using machine learn-
ing [23,47]. More recently, neural network-based methods for
adaptive design optimization have been demonstrated [47]. Typ-
ically, this involves optimizing an objective function combining
various layout attributes for better usability performance such as in
search and pointing [48] and menu search [47]. Seonwook et al. [41]
incorporated combinatorial optimization to adaptively allocate con-
tent and layouts for real-time collaboration across multiple devices.
Lindlbauer et al. [35] presented an optimization-based approach for
Mixed Reality (MR) systems to automatically control which appli-
cations are displayed, how much information they show and where
they are placed in real-time. Evangelista Belo et al. [20] proposed
a toolkit to visualize the interaction cost in a 3D user interface and
implemented a prototype to demonstrate how creators can use this
toolkit to design adaptive ergonomic user interfaces. However, there
is no research to our knowledge that has studied the personalization
of mid-air keyboards in augmented reality or virtual reality.

2.2 Multi-Objective Optimization in Design

Multi-objective optimization involves optimizing two or more ob-
jective functions simultaneously where the multiple objectives are
often conflicting with each other, that is, optimizing one objective
may deteriorate other objectives. In contrast to single-objective opti-
mization where the superiority of a solution over other solutions is
simply selected by ranking the objective function values, the solu-
tions in a multi-objective optimization problem are determined from
the Pareto front where there exist solutions in which none of the ob-
jectives can be improved without sacrificing at least one of the other
objectives. These solutions are called Pareto optimal solutions, and
these Pareto optimal solutions can be achieved through various opti-
mization algorithms such as grid-based methods [19], evolutionary
algorithms [12,42] and Bayesian optimization [7]. Purvis et al. [42]
treated the customization of document creation according to certain
design criteria as a multi-objective optimization problem and used a
genetic algorithm. Chan et al. [7] leveraged Bayesian optimization
to investigate the positive and negative qualities of designer-led and
optimization-driven design in a study that included a multi-objective
optimization problem with novice designers. They found a supe-
rior outcome delivered from the optimization-driven design. In this
paper, we use Bayesian optimization as the multi-objective optimiza-
tion algorithm not only because it is a sample-efficient method for
optimization, but also because it shows great potential in HCI design
as detailed in Section 2.3

2.3 Bayesian Optimization in Design

The strength of Bayesian optimization (BO) is recognized as the
ability to statistically model black-box objective functions and find
the extrema in an efficient way. Greenhill et al. [24] explored the
use of BO in an experimental design methodology, namely Adaptive
Design Optimization (ADO). It was proposed to tackle and speed up
experimental design optimization problems by using an intelligent
data collection scheme. Adaptive user interface design could also
benefit in a similar manner from using BO as it integrates user
modeling and intelligent data collection. AdaptiFont [27] used
BO in a similar way to our work. It progressively refined the text
font for each individual using BO to find the optimized font space
which contributed to optimal reading speed. Dudley et al. [16]
leveraged crowdsourcing and Bayesian optimization to assist with
interface design across diverse deployment environments. However,
the aforementioned studies only have one objective whereas we
optimize two potentially conflicting objectives at the same time,
making the task particularly challenging.

2.4 Optimization in Text Entry

Various optimization methods have been applied to text entry tech-
niques. These methods include gaze-assisted selection-based text en-
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try [36], model-based strategies to simulate human data for interface
development in evaluating touchscreen keyboard designs [26,44]
and alternative keyboard layouts [11,38,55]. The Qwerty layout has
been adopted almost universally on modern devices despite other
optimized keyboard layout alternatives such as the Metropolis [55],
Opti [38] and Dvorak [11] layouts providing notionally faster entry
rates. However, these layouts suffer the alienation problem that
introduce issues with learnability, and thus prevent them-self from
being adopted on modern devices. Similar work has also been done
on touchscreen gesture keyboards. Smith et al. [45] focused on ges-
ture clarity to reduce the ambiguity and similarity between identical
or similar gestures by rearranging the keys to reduce error rates
in gesture recognition. Although Smith et al. [45] considered the
similarity of the optimized keyboard to the standard Qwerty key-
board using a multi-objective optimization method, none of these
optimized keyboards have gained mainstream adoption due to issues
with learnability. Bi et al. [S] suggested that alternation of only one
pair of keys will significantly increase expert typing speed without a
significant detrimental impact on learnability. Nevertheless, there
are no notable examples of adoption. Gesture keyboard design op-
timization has been well explored in touchscreens but is still in its
infancy in the AR/VR environment. The AR/VR design space intro-
duces unique additional challenges given the extra dimensionality
of interaction and the extensive display space available.

In this paper, we optimize the design of the mid-air gesture key-
board by altering the layout size. Despite the aforementioned re-
search optimizing the keyboard by proposing new layout alternatives,
the performance metrics they optimize still provide general guid-
ance on what we should optimize during the personalization process.
Both Smith et al. [45] and Bi et al. [5] used gesture clarity to quantify
gesture typing accuracy and gesture speed to estimate how quickly
users can gesture type on a keyboard layout. However, these metrics
do not apply to mid-air gesture keyboards as the interaction paradigm
may be fundamentally different due to the extra dimensionality. For
example, the gesture speed metric is based on the CLC (curves, line
segments, and corners) model by Cao et al. [6] which was designed
to predict the amount of time it takes for a person to make an arbi-
trary pen stroke gesture, and this CLC model may not generalize
to stroke gestures on a mid-air gesture keyboard. Moreover, text
entry throughput, proposed by Zhang et al. [57], is a theoretically
unified speed-accuracy metric built on Shannon information theory.
However, both speed and accuracy provide essential practical insight
and we optimize these two objectives to prevent any information
loss during the optimization process.

3 PERSONALIZATION AS A MULTI-OBJECTIVE OPTIMIZA-
TION PROBLEM

We formulate the problem of the adaptive keyboard as a multi-
objective optimization problem to provide a better understanding of
how we address the personalization of the mid-air gesture keyboard
size.

We have a set of allowable design parameters, C, available to an
adaptive strategy for modifying the design of the gesture keyboard.
We choose the aspect ratio and width to be the design parameters
as these two parameters can in general determine the overall size
of the keyboard, which are critical factors affecting users’ eventual
speed and accuracy. We propose a grid of design candidates which
forms the design space of Bayesian optimization. Here the design
candidate is defined by the width and aspect ratio, and we will
use the term candidate to denote design candidate for brevity. We
use the height-to-width ratio to represent the aspect ratio. The
minimum and maximum height-to-width ratios are 0.1875 and 0.5
respectively. The minimum and maximum acceptable keyboard
widths are 100 mm and 600 mm respectively. These values are
determined from preliminary experiments. We normalize the width
(W) and height-to-width (HW) ratios by dividing by the maximum
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bound, such that the normalized parameter values have a maximum
of 1. There are other parameters in the keyboard design that can
be optimized in addition to the parameters considered in this paper.
However, our preliminary experiments suggest that these parameters
are not as critical as keyboard size.

In addition, we have a process performance measure, R, that
specifies the performance of the keyboard with design parameters C
under user inputs U. As we previously discussed in Section 2.4, we
focus on speed and accuracy. In this paper, we measure speed (entry
rate) in words per minute (WPM), which is the number of words
entered per minute with each word standardized to be five characters
long, including spaces. We quantify accuracy as one minus the
Character Error Rate (CER) and then multiply it by 100 to arrive
at a percentage value. CER is the minimum number of character
insertion, deletion and substitution operations that transform the
response text into the stimulus text, divided by the length of the
stimulus text.

Our personalization task is thus a multi-objective optimization
(MO) problem as the goal is to optimize the two potentially conflict-
ing performance measures: speed and accuracy. Note that improving
one objective may result in worsening another objective. We aim to
find the Pareto optimal solutions which are discussed in Section 2.2.

First, to tackle this MO problem, we formalize this design prob-
lem as a function f(C) where C is the feasible design space. It is in-
herently challenging to optimize the design of a keyboard because: 1)
the design has two parameters and two objectives, and the exact map-
pings f(-) are unknown; and 2) each design takes time to evaluate
with users. Furthermore, we can only observe function values f(c)
when making an evaluation at an input location ¢ without knowing
the first- or second-order derivatives at that location. This prevents
the application of first- and second-order methods, such as gradient
descent, Newton’s method, or quasi-Newton methods. Problems
with this property are referred to as “derivative-free” [22]. A data-
efficient approach to solving such a black-box and derivative-free
optimization problem, that is mea():g f(c), is to use Bayesian optimiza-

C

tion, which can alleviate the aforementioned challenges. Bayesian
optimization offers a more sample-efficient method for solving MO
problems compared to some multi-objective optimizers, which re-
quire a large number of function evaluations [12].

4 THE BAYESIAN OPTIMIZATION APPROACH

Before we introduce the proposed multi-objective Bayesian opti-
mization approach, we present a brief introduction on Bayesian
optimization.
Bayesian optimization is a class of machine-learning-based op-
timization methods focused on solving meaéc f(c), where C is the
c

feasible design space. Bayesian optimization consists of two compo-
nents: a surrogate model, which is an approximation of the objective
function f(C) to provide a posterior distribution over the true func-
tion values given the observed data, and an acquisition function that
uses the posterior distribution generated by the surrogate model to
provide the guidance of the design space C to balance exploration
and exploitation. Exploitation is evaluating in areas where the sur-
rogate model estimates a good objective prediction. However, too
much exploitation is a waste of time and resources as the gain may
be marginal, as well as the risk of exploiting a local minimum and
missing a global minimum. Exploration is evaluating in a region that
has high uncertainty to prevent the model from being trapped in the
local optimum, and thus there exists a higher possibility of finding
the global optimum. A Gaussian process (GP) is usually used as
the surrogate model because it benefits from properties inherited
from the Normal distribution. This allows the distributions of vari-
ous derived quantities to be obtained explicitly, which subsequently
empowers the acquisition function to assign a utility value to a set
of candidates to be evaluated on the true expensive-to-evaluate func-
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tion. Thus Bayesian optimization uses very little data to optimize the
black-box design functions, enabling fast and data-efficient design
optimization.

‘We propose a multi-objective Bayesian Optimization (MOBO)
algorithm to adaptively change the keyboard size. First, we initialize
the model f(C) by placing a Gaussian process prior on it. Then
we generate n = ng initial candidate points by drawing samples
from quasi-Monte Carlo (QMC) sampler, and observe outputs of
f(C), which is the performance measures at the initial candidate
points. Second, we update the posterior probability distribution on
f(C) by fitting past observed data which is the vector composed of
the performance metrics and the design parameters describing the
candidates to the GP model (Surrogate Model), and define the qMC
sampler to estimate and optimize the acquisition function and get
N new suggested design candidates (candidates of different layout
sizes). Third, we observe new performance metrics f(C) at new
design candidates and update training points (past observed data).
Fourth, we reinitialize the models so that they are ready for fitting
on the data points from the next iteration. Then we repeat step two
to four iteratively to form the Pareto front.

We find the candidates on the Pareto front by: 1) computing the
convex hull of points; 2) saving the non-dominated points from the
convex hull; and 3) filtering the dominated points by the convex hull
elements. Finally, we return design candidates on the Pareto front
and the user can choose the final candidate from the selection of
candidates based on their subjective preferences. This algorithm
provides a detailed view of how Bayesian optimization works by it-
eratively and intelligently collecting data by the acquisition function
and fitting the Gaussian process (surrogate model) to the collected
data. We describe the implementation of the surrogate model and
the acquisition function in detail in Sections 4.1 and 4.2.

4.1

We use a GP as the surrogate model. In this GP, we use a standard
homoskedastic Gaussian likelihood with inferred noise level:

Py f)=f+e,

where y represents noisy observed function values, f represents
noise-free observed function values, and o is a noise parameter.
The noise parameter is modeled by a Gamma distribution which is
parameterized by concentration ¢ and rate 3.

We further compute the covariance matrix based on the Matern
kernel with Automatic Relevance Discovery (ARD) between inputs
x and x’. Informally, a kernel function furnishes a notion of similarity
between points. The Matern covariance function can be seen as a
generalization of the Gaussian radial basis function. The Matern
kernel is used as we believe the data points to be more correlated if
they are closer in the design space. It has been shown to perform well
in an application where font is made adaptive [27]. We then apply
an output scale on the Matern kernel to make this kernel suitable to
our specific problem and dataset:

Surrogate Model

£~ N (0,62) 1)

(@)

kscaled = 6scalekorig
where B¢y is the output scale parameter.

4.2 Acquisition Function

A natural acquisition function for MOBO is Expected Hypervolume
Improvement (EHVI), which is the expected increment of the hyper-
volume indicator. It has been shown to achieve good convergence
and diversity to a true Pareto front [8, 52,53, 58]. Hypervolume
measures the volume of the space dominated by the Pareto set and
bounded from below by a reference point. The reference point is the
lower bound on the objectives. The lower bound is the minimum
acceptable value of interest for each objective. We set the reference
point by using domain knowledge so that the reference point is made

705

to be slightly worse than the lower bound of objective values. The
Hypervolume is computed by partitioning the space dominated by
the Pareto front [34,51].

As our goal is to optimize two objectives and generate multiple
candidate points per design iteration, we need to estimate and op-
timize otyervi(Xcana), Which is an exact computation of the joint
EHVI of g new candidate points, X, (up to the Monte-Carlo (MC)
integration error) [10]. The candidate points are the candidates of
different layout sizes to be evaluated on the keyboard. Because
the objectives are not independent and modeled with independent
GPs, we can not express Oyenvi(Xcang) in closed form [52]. In line
with prior work [10], we use the re-parameterization trick and quasi-
Monte Carlo (QMC) sampling using Sobol sequences for optimiza-
tion and estimation of the otyrrvi(Xcana) acquisition function [49].
More details of the computation of the 0trrv(Xcana) can be found
in [10].

4.3

‘We implement the MOBO in BoTorch as it provides implementations
for a number of acquisition functions specifically for multi-objective
scenarios [3]. We leverage several features of BoTorch for GPU
acceleration and quasi-second order methods for acquisition op-
timization to ensure efficient computation and optimization. We
impose a Gamma prior on the noise parameter with concentration,
o = 1.1 and rate, § = 0.05. We further constrain noise with a lower
bound of 10~4 and an initial value of 2, which is calculated from
O‘T’l, These practices are in line with prior work [10]. We apply

Implementation Details

a Gamma prior to the output scale parameter with concentration,
o =2.0 and rate, § = 0.15. The smoothness parameter in the Matern
kernel is set to 2.5 and we apply a Gamma prior with concentration
3.0 and rate 6.0 to the length scale parameter. We use 128 as the
number of samples in the quasi-MC based sampler. For each itera-
tion, we generate ¢ = 2 candidates jointly using 20 random restarts
and 1024 raw samples via multi-start optimization.

5 EVALUATION

The primary goal of this evaluation is to test whether the Bayesian
optimization approach applied to adapting the keyboard size can
lead to a performance improvement in comparison with the baseline
size (same as the HoloLens 2 system keyboard size), which is held
constant. To this end, we carried out a user study where participants
completed a text entry task on the mid-air gesture keyboards with
various layout sizes.

5.1 Method

We use SHARK? [32], a simple but effective gesture keyboard decod-
ing strategy to demonstrate the improvements achievable by intro-
ducing personalization. SHARK? has been previously implemented
by many researchers under various settings and forms [39, 54].
SHARK? decodes the gesture trajectories by measuring the sim-
ilarity through different channels, such as shape and location, be-
tween the target trajectories and template trajectories, which simply
connect the key centers. SHARK? is chosen not only because it is
lightweight, but also it is explainable and bias-neutral for different
keyboard geometries compared to data-driven decoders, which re-
quire a large amount of training data that can induce strong bias [2].
Template matching in SHARK? is performed in two dimensions by
taking the x and y coordinates in the keyboard coordinate system.
This is motivated by users’ tendency to gesture consistently within
a plane [13]. SHARK? returns the top-n words based a ranking of
their corresponding probability.

We further use simulated word auto-correction to simulate a ro-
bust decoder with high-quality auto-corrections in a similar vein to
Dudley et al. [15]. When using the system for personalization, users
are not provided with a facility for correcting any errors encountered.
Instead, as long as one of the top five ranked word recognitions
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Figure 2: Visualization of two different design candidates. The green dot indicates lift on and the red dot indicates lift off. The top left boxes

show the participant ID and the design candidate ID respectively.

matches the target word, the output is automatically chosen as the
target word. This experimental setting is used to minimize user
input noise, such as the time to consider which alternative word to
choose and perform word selection on the interface. These noise
sources also depend on the design of the word selection interface
and therefore we try to minimize the dependent effect of the two
objectives on other design elements other than the two parameters
we have chosen: the width and the height-to-width ratio. The ratio-
nale for using a simulated auto-correction approach is that SHARK?2,
despite its easy implementation and suitability for our use-case as
a size-independent decoder, is not robust enough to recognize the
trajectories gestured by the user in 3D space due to noisy trajectories
introduced in mid-air gesturing. Therefore, we simulate a robust de-
coder to provide an accurate decoding capability, essentially serving
as a ‘Wizard-of-Oz’ [9] decoder for the users. Furthermore, using
simulated auto-correction does not suggest that the final accuracy
performance is biased. Instead, as long as all the design candidates
are using the same decoder, the result will be consistent throughout.

5.2 Participants

We recruited 12 participants (8 male, 4 female, mean age = 22.2,
standard deviation = 3.3, max = 27, min = 20).

5.3 Baseline

We use a baseline keyboard which has constant size (the same size
as the system keyboard on the HoloLens 2). We chose to imple-
ment our own keyboard in order to exercise precise control over
the keyboard’s appearance and behavior. Before and after the per-
sonalization process, participants enter phrases using the baseline
keyboard size so that the improvement yielded by MOBO could
be assessed. This protocol also serves to identify if there exists a
learning effect between the start and the end of the personalization
process.

5.4 Stimulus Phrase Set

We used the Enron Mobile Corpus [28] and the MacKenzie phrase
set [37] as stimuli. We constrained the length of phrases to 20-60
characters and 4—16 words. The final stimulus set consisted of 1,598
phrases with 2,428 unique words. Each phrase contained on average
7.05 words, with the maximum and the minimum number of words
being 15 and 4 respectively.

5.5 Procedure

Participants were first instructed to complete a practice session to
develop their gesture typing skills using the experimental applica-
tion. Keyboard geometries in the practice session were randomly
selected to prevent familiarization towards certain geometries and
thus biasing the Bayesian optimization process. The reference point
for gEHVI optimization is set from the practice session, which is
80% of the average of the aggregated speed and accuracy for three
randomly selected design candidates.

Thereafter the actual adaption process began (see Figure 3). This
process consisted of two stages. The first stage was MOBO and the
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Figure 3: The procedure for the user study.

second stage was to enable the user to choose from the generated
Pareto front based on their own subjective preferences, considering
the trade-off between speed and accuracy as well as their visual
preferences. For each design candidate during the MOBO process
and the baseline size, each participant was instructed to gesture 20
phrases of which the first 10 were dropped from the analysis to mini-
mize any initial variability associated with learning a new size. This
was the familiarization stage. The choice of dropping 10 phrases
was determined from our preliminary results that demonstrated that
the performance curve saturated at around 10 phrases, after which
the intrinsic performance metrics of the specific design candidate
emerged. The accuracy and entry rate of the remaining 10 phrases
for each design candidate were collected to update the surrogate
model. Furthermore, during each candidate, participants were pe-
riodically reminded to pay attention to their accuracy or speed if
either accuracy or speed decreased below 10% of the aggregated
measures from the familiarization stage.

We used six design candidates as the number of initial samples
for MOBO. Thereafter, in the MOBO process, participants started
by entering text based on six initial design candidates suggested by
the initialized acquisition function. The choice of the number of
initial samples was based on an established heuristic for the number
of initial samples, 2(p+ 1), where p is the number of varying pa-
rameters. Each iteration will suggest two candidates. The number of
iterations plays a more important role than the number of data points
in each iteration [10]. Therefore, five iterations with two data points
per iteration will enable the GP to better fit to the function f(C)
than two iterations with five data points. In order to provide the
user with a better experience, we should not require users to gesture
many different candidates overall because such a process can overly
burden users. Each completion of a design candidate is followed by
a 10-minute break to ensure that muscle fatigue did not influence the
results. After the initialization stage, the acquisition function would
suggest two design candidates in each iteration for the participant to
complete. The MOBO stage ended when the hypervolume stopped
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improvements from the baseline candidate for speed and accuracy
of each iteration during the optimization process. Iteration O is the
initial data collection. The improvement on the y-axis indicates the
percentage improvement of the performance (speed and accuracy)
of the new design candidates at each interaction compared to the
baseline candidate.

increasing for at least two iterations as preliminary experiments sug-
gested that if the hypervolume stopped increasing for more than two
iterations, it rarely increased further and the marginal gain was small.
When MOBO was completed, a Pareto front was shown to each
participant in a gallery view where candidates would be displayed
consecutively. Each participant could then select their preferred
design from the Pareto front. All the performance metrics were
reported as aggregates and reset after the familiarization stage for
each design candidate. At the completion of the study, participants
were asked to comment on the two questions “What do you think
of the personalization process?”, and “What do you think of the
selected candidates?”.

6 RESULTS

Participants selected their preferred choice from the Pareto front
determined using the MOBO process and indicated that the designs
presented were valid and matched their preferences. Overall, we
found that the percentage improvement from the optimal candidate
over the baseline was on average 14.4% with a standard deviation of
14.07% for speed and 13.8% with a standard deviation of 13.41%
for accuracy. A paired t-test showed that these differences were
statistically significant for both speed (1(11) = —3.40, p = 0.0059)
and accuracy (¢(11) = —3.55, p = 0.0046).

To tease out any learning/adaption effects resulting from partic-
ipants simply becoming better at the task, we took the speed and
accuracy differences between the baseline performances before and
after the evaluation process from the 12 participants and calculated
the mean and standard deviation. The mean and standard devia-
tion for the differences in speed were 0.85 WPM and 1.70 WPM
respectively. The mean and standard deviation of the differences in
accuracy were -1.32% and 2.61% respectively. Given these small
differences we can conclude that any learning/adaptation effect stem-
ming from the participants themselves was negligible.

Figure 7 shows the various final candidates selected from the
Pareto front by the individual users. The candidates are represented
as dots that have varied normalized height-to-width ratio and nor-
malized width ratio in the design space.

Figure 4 shows the percentage improvement of speed and accu-
racy for each iteration along the adaptive process. We can see the
performance measures increase with the adaptive process. Figure 5
shows the percentage improvement of speed and accuracy from
the design candidates that were presented in the Pareto front and
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Figure 5: Percentage improvement from the baseline candidate
to the optimal candidate for speed and accuracy for the individual
participants. The improvement on the y-axis indicates the percentage
improvement of the performance (speed and accuracy) of the final
selected design candidate compared to the baseline candidate.

ultimately chosen by the participant as their preferred design. We ob-
serve that most of the chosen candidates outperformed the baseline
candidate in both speed and accuracy. P9 shows the most benefit
from the personalization process with more than 40% improvement
on text entry speed. We observed that the width of the P9 final cho-
sen candidate is 25% smaller than that of the baseline candidate, and
the height-to-width ratio is 43% larger than that of the baseline can-
didate. The exceptions are P4, P7, P10, as one of the performance
metrics deteriorated. However, the other metric shows an improve-
ment, demonstrating a possible personal preference to achieve high
performance on one objective over the other. The baseline condi-
tion’s size was derived from the HoloLens 2 system keyboard, and it
is reasonable to expect that some effort has been taken to ensure the
system keyboard design yields an acceptable performance for some
users (especially P4, P7, P10). Crucially, it is clear that different
participants have very different preferences. While some of them
prefer a balanced trade-off between speed and accuracy, some of
them have a strong preference for one over another, such as P2 who
has chosen the candidate that offers a large speed improvement but
negligible accuracy improvement. This reinforces the motivation of
this work.

6.1

In the post-study questionnaire, participants were also asked to
provide responses to questions asking what they think of the process
and the final candidates. We analyzed the qualitative responses
from the participants by grouping related keywords referring to their
user experience on the process and on the result: 1) fast, efficient; 2)
balance, trade-off; 3) smart, intelligent. These results are provided on
the basis that they allow an indication of the individual participants’
sentiments in our study. We do not claim these remarks generalize
to the wider population. The common feedback that emerged from
participants’ comments is summarized below:

Qualitative Feedback

1. This personalization process is efficient to find the final candi-
dates. (P4, P5, P8, P9, P10, P12)

. The final candidate selection achieves a balance between speed
and accuracy. (P1, P2, P3, P5, P8, P9, P11, P12)

. The process is intelligent such that it often gives a better candi-
date in terms of the trade-off of speed and accuracy at every
iteration after the first several candidates. (P2, P3, P5, P9, P11,
Pi2)
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Figure 7: The blue dots represent the various final design candidates
chosen by the participants from the Pareto front. The orange dot
represents the baseline candidate’s position in the design space. This
figure summarizes the final candidates chosen by all participants and
highlights the significant variety in the selected designs. This result
indicates that keyboard size affects each user differently and it is
difficult to arrive at any generalizable relationship.

Specifically, for responses regarding final candidate performance,
P8 commented, “I really like the final candidates that it suggested to
me, all of them seems to be one of the most comfortable keyboard
layouts I tried during the personalization process.” Furthermore, par-
ticipants also commented on the optimization process efficiency. For
example, P9 commented, “The personalization process is efficient
and I quickly reached to the final candidate.” However, two par-
ticipants, P7 and P10, commented that the personalization process
was tedious despite the fact that the final candidates found suited
their preferences for a speed and accuracy balance. Overall, the
participants in the study were positive in their feedback on usability
in terms of the efficiency of the personalization and noted the final
selected candidates effectively balanced performance in terms of
speed and accuracy.

7 DiscussION

The results from the user study demonstrate the effectiveness of
the MOBO process for the adaptation of size and reveal the very
different behaviors exhibited by users, motivating the need for per-
sonalization of mid-air gesture keyboards. The MOBO process is
validated through the gains in speed and accuracy we observed in
the user study. Overall, the MOBO process is efficient and effective
as our results illustrate an average 14.4% gain for speed and a 13.8%
gain for accuracy after only four iterations, and there are only two
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candidates per iteration.
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The plots in Figure 6 show the various mappings from the design
space to the objective space for two participants. Due to the limited
space in the paper we do not present the plots for all participants but
we observe that different participants have distinctive characteristics
of mappings from the design space to the objective space. This
emphasizes the importance of building adaptive user interfaces for
mid-air virtual keyboards due to different user behavior, mental
and physiological models. Further, we observe in Figure 7 that the
final candidates, which exhibit great variation, reveal that various
candidates suit individual users. This strengthens the aforementioned
argument on the importance of having a keyboard personalized
through an adaptive process. We conjecture that this type of distinct
inter-user variation in behavior may also exist in other interactions
in AR. Adaptive user interface design could therefore be fruitful in
optimizing other AR interactions for individuals.

Personalization is Important

7.2 Streamlining Personalization with AdaptiKeyboard

The experimental procedure we employed simulates daily usage
of a mid-air gesture keyboard collapsed into a single experimental
session. In practice, we expect that a user will be exposed to approx-
imately 14 layout sizes as part of the personalization process over
several days. This is because the Bayesian optimization procedure
requires 6 candidates at the initialization stage and then approxi-
mately 4 iterations (2 candidates each) to reliably identify the Pareto
front for this multi-objective optimization problem.

Assume an average user enters text at a mean rate of 40 sentences
aday. Since we use 20 sentences to assess one layout size this means
two layout sizes can be tested per day. Users are required to enter
text presented to them as stimuli from a phrase set for the purpose
of the personalization. Each day requires two candidates from the
users (approximately 5 minutes per candidate if we assume the
average text entry speed is 20 WPM). Therefore, a total of 14 layout
sizes can be assessed within a week without excessively burdening
the user. After a week’s usage, the Pareto efficient designs are
identified and displayed to the user. The user can choose from among
these suggested alternatives based on the reported performance and
thereby incorporate their own personal preferences.

More iterations (more data for fitting the GP model) are likely to
improve the model’s prediction of the output of the function f(C)
and thus help identify better designs in terms of speed and accuracy.
However, if this personalization process takes too long, users will
face a high cognitive burden due to the constantly changing keyboard
size.
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8 LIMITATIONS AND FUTURE WORK

The optimization algorithm proposed in this paper is specifically
developed for the task of personalizing a mid-air gesture keyboard.
There is no suitable existing algorithm that has been proposed to
suit this particular task. Moreover, the main focus of the paper is
to demonstrate that a mid-air gesture keyboard can be effectively
and efficiently personalized through MOBO. We therefore did not
introduce another optimization algorithm as a baseline and leave
such a comparison for future work.

In reality, users adapt their behavior both consciously and uncon-
sciously as they use an interface. Therefore, a user interacting with
an adaptive interface forms an interesting feedback loop in which
both the user and the system co-adapt. Despite our results from
the baseline performances before and after the evaluation process
suggesting that users did not adapt much to the system, we still
see promising future work in carefully studying the role of human
adaptivity in system adaptivity within the realm of intelligent text
entry in AR.

While this paper serves as a proof of concept for interactive utility,
our system still lacks some fundamental features required of any
practical text input system, such as error correction, word sugges-
tions or punctuation. Moreover, despite the fact that the current
personalization procedure is reasonably efficient as it only takes 14
days with 10 minutes per day to complete, the procedure is nonethe-
less tedious as users need to enter text as prompted by stimuli. We
see promising future work in exploring means of enabling a per-
sonalization procedure that is less demanding on users so that the
procedure can smoothly blend into their daily usage of the mid-air
gesture keyboard. However, we caution that this is highly challeng-
ing in practice as it will be difficult to accurately assess users’ speed
when users are composing text as opposed to transcribing stimulus
sentences.

Another potential avenue of future work is to enable users to
determine the size of the keyboard on their own. This would al-
low a comparison of user-led personalization with algorithmic-lead
personalization.

9 CONCLUSIONS

In this paper, we have demonstrated an effective technical method for
designing an adaptive mid-air gesture keyboard using multi-objective
Bayesian optimization. We have made the keyboard size—the width
and aspect ratio—adaptive to users’ behavior. We used MOBO
to identify an optimized keyboard size that balances speed and
accuracy for each individual. We have shown that this approach can
deliver a statistically significant 14.4% and a 13.8% improvement
in speed and accuracy respectively relative to a baseline design
derived from the system gesture keyboard on the HoloLens 2. The
process presented in this paper has demonstrated tangible gains on
mid-air gesture keyboard performance by adapting to individuals’
performance and preferences. We believe personalization will be
key to tackle the dynamic constraints that arise due to the nature
of hand-tracked mid-air gesture typing using optical see-through
head-mounted displays. We believe promising future work includes
exploring how to include users further in the personalization loop
by explaining to users the nature of adaptivity and finding means of
transferring agency of the adaptive process from the system to the
user.
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