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Figure 1: Left: Demonstration of a user interact with the memory augmentation agent. Right: The operation of the memory
augmentation agent using language-encoded egocentric perception unfolds as follows. Initially, egocentric videos are encoded into
linguistic representations using our bespoke large multimodal model, an egocentric vision language model. These language-encoded
outputs are then held in a buffer, segmented into numerous chunks, featured as embeddings, and uploaded to a vector database.
When a user poses a question—a common memory augmentation task such as “Where did I leave my keys?”—the process begins
by taking the user’s query to generate a corresponding embedding. This produced embedding vector is then used to query the
Database Interface with the intention of identifying relevant chunks related to the question by using vector similarity search algorithms.
The retrieved chunks are subsequently amalgamated with the question to form a prompt for the large language model. The final
response is then generated and presented to the user.

ABSTRACT

We depend on our own memory to encode, store, and retrieve our
experiences. However, memory lapses can occur. One promising
avenue for achieving memory augmentation is through the use of
augmented reality head-mounted displays to capture and preserve
egocentric videos, a practice commonly referred to as lifelogging.
However, a significant challenge arises from the sheer volume of
video data generated through lifelogging, as the current technology
lacks the capability to encode and store such large amounts of data
efficiently. Further, retrieving specific information from extensive
video archives requires substantial computational power, further
complicating the task of quickly accessing desired content. To
address these challenges, we propose a memory augmentation agent
that involves leveraging natural language encoding for video data
and storing them in a vector database. This approach harnesses
the power of large vision language models to perform the language
encoding process. Additionally, we propose using large language
models to facilitate natural language querying. Our agent underwent
extensive evaluation using the QA-Ego4D dataset and achieved
state-of-the-art results with a BLEU score of 8.3, outperforming
conventional machine learning models that scored between 3.4 and
5.8. Additionally, we conducted a user study in which participants
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interacted with the human memory augmentation agent through
episodic memory and open-ended questions. The results of this study
show that the agent results in significantly better recall performance
on episodic memory tasks compared to human participants. The
results also highlight the agent’s practical applicability and user
acceptance.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented
reality; Information systems—Information retrieval—Retrieval
tasks and goals—Question answering; Computing methodologies—
Artificial intelligence—Computer vision—Computer vision tasksVi-
sual content-based indexing and retrieval

1 INTRODUCTION

Augmented reality (AR) enhances user perception by superimposing
virtual content onto their environment, traditionally augmenting
vision with digital overlays on real-world scenes [1,38]. However,
AR extends beyond visual augmentation to include auditory and
tactile feedback [9, 26, 35, 36, 53]. These multimodal capabilities
make AR accessible and beneficial for a wider audience, enabling
immersive and interactive experiences for all users, regardless of
their abilities. This paper introduces a human memory augmentation
agent that utilizes both the audio feedback and the egocentric front-
facing camera of an AR device.

Human memory, crucial for various cognitive functions, often
relies on external aids like photographs and reminders for enhancing
recollection of past events [24, 25, 27]. However, these aids are
limited in scope. Some researchers suggest that lifelogging can be
employed to augment memory [6, 12, 21]. Lifelogging involves the



capture of images or videos, along with a wide array of personal
data such as one’s location, audio recordings, and physiological
data [19, 22, 23].

The introduction of smart glasses, including AR headsets with
cameras, has enhanced lifelogging by enabling seamless capture
of egocentric data along with additional sensor inputs. However,
using these devices to enhance memory presents challenges, notably
in efficiently encoding and storing the large, complex video data
to maintain quality and enable real-time processing. Additionally,
compliance with data privacy regulations is essential [18]. Once the
data has been encoded and stored, the next challenge is to ensure
that this information can be retrieved in a useful and timely manner.
Therefore, we need to design a system that is able to process large
volumes of complex data and return useful results to the user, while
also managing potential privacy concerns.

To address these shortcomings, the approach presented in this
paper leverages a language-encoded episodic memory agent that
consists of three essential components that are demonstrated in
Figure 1. First, we use language encoding to represent egocentric
videos by harnessing the power of a large vision language model.
Second, we store the language embeddings in a vector database
for efficient retrieval. Third, we leverage a large language model
to facilitate open-ended question answering in episodic memory
tasks, using the vector database to enable the language model to
access encoded memories. Using this approach, we focus on fine-
tuning a large vision language model called Large Language and
Vision Assistant (LLaVA) [34], specifically for egocentric data. For
question answering (QA) in episodic memory, we use OpenAI GPT-
4 [43] and integrate it with Chroma [8], a vector database that enables
long-term memory storage and retrieval.

Barman et al. [3] introduced the QA-Ego4D dataset as a novel
dataset designed for the memory augmentation task. It is offered
as an extension of the Ego4D dataset [16]. Each sample in the
QA-Ego4D dataset consists of a video, a natural language question,
and an answer. The QA-Ego4D dataset is unique in its focus on the
Episodic Memory Question Answering (EMQA) task, which intro-
duces a constant-size memory constraint. This makes it particularly
suitable for scenarios where the video content has long duration, or
the system needs to be used in a life-long manner. Barman et al. [3]
used multiple conventional vision-based machine learning models
for this task, yet they demonstrated substantial limitations. Their
performance barely surpassed a random guessing strategy, attaining
BLEU scores between 3.4 and 5.8. In comparison, the method intro-
duced in this paper achieves state-of-the-art results, outperforming
the models by Barman et al. [3] with a notable BLEU score of 8.3
for this task.

To assess the usability of our agent, we implemented it on the
HoloLens 2 device, an AR headset, and allowed participants to ask
open-ended questions to probe the agent’s capabilities. The results
of this evaluation underscore the agent’s practicality and acceptance
among users.

Hence, our research paper presents three contributions as outlined
below:

• To the best of our knowledge, we present the first memory aug-
mentation agent that integrates vision language encoding with
episodic memory tasks, while also using a vector database for
efficient storage and retrieval.

• We report the results of a lagre-scale quantitative evaluation of
our agent using the Episodic Memory QA benchmark, specifically
with the QA-Ego4D dataset. The results of these evaluations
demonstrate the effectiveness of our agent in tackling episodic
memory tasks.

• We report the results of a user study to explore the application
potential of our agent. Our study showcases the benefits of our
agent in various scenarios. By involving users and obtaining their

feedback, we gain valuable insights into the practical implications
and user satisfaction associated with our agent.

2 RELATED WORK

2.1 Augmented Reality: Augmenting User Perceptions
Augmented reality (AR) is a technology that enriches the user’s
perception of the world by superimposing virtual content onto their
physical environment [38]. Typically, AR enhances user vision by
overlaying digital images, videos, or 3D models onto real-world ob-
jects or scenes, creating an immersive and interactive experience [1].
However, AR encompasses more than just augmenting vision, as
relying solely on visual augmentation would exclude individuals
with disabilities, particularly those who are blind or have visual
impairments [9]. AR technology has the potential to be inclusive by
extending augmentation beyond vision to other sensory modalities,
such as auditory or tactile feedback [35]. For instance, AR appli-
cations could provide audio descriptions or tactile cues to convey
information about the user’s surroundings, enabling people with
visual impairments to navigate and interact with the augmented en-
vironment [26, 36, 53]. By embracing multimodal augmentation,
AR becomes accessible to a broader range of users, ensuring that
everyone can benefit from its immersive and interactive experiences,
regardless of their abilities or limitations.

Memory augmentation, for instance, is a notable application
where AR can assist users in recalling information more effec-
tively [49]. By providing contextual cues and audio feedback, AR
can help users remember important details, tasks, or information as-
sociated with specific objects or locations. This broader scope of AR
highlights its potential to enhance various facets of human percep-
tion and cognition, making it a versatile and impactful technology
in numerous fields.

2.2 Memory Augmentation through Lifelogging
Lifelogging, present for over 30 years, has evolved with technol-
ogy [20, 21]. Initially, it involved bulky equipment like helmets and
battery packs [55], but has since progressed to wearable devices
like glasses [21]. A key development was Microsoft’s SenseCam
in 2006, a notable lifelogging device [13, 37]. Lifelogging now
includes data from GPS, audio, heart rate, emails, calendar events,
and social media. Significant progress has been made in memory
augmentation through lifelogging [21]. Le et al. [30] focused on
video summaries for memory recall but didn’t address data selection
challenges. Davie et al. [11] highlighted privacy and security con-
cerns in pervasive computing but lacked comprehensive solutions.
Byrne et al. [4] developed a method for content relevance in visual
lifelogs but it was limited to everyday concepts. Our work uniquely
implements a memory augmentation agent enabling open-ended
episodic memory queries within a wearable headset.

2.3 Video Content Analysis
Natural Language Video Localization (NLVL) and Video Question
Answering (VideoQA) are distinct yet related tasks in video content
analysis. NLVL focuses on finding a video segment matching a
natural language query, requiring the model to understand both
video and query context [15,16,28,47]. VideoQA, on the other hand,
involves answering questions based on video content, demanding a
deep understanding of the video and the ability to provide precise
answers [31, 32, 39, 41, 52].

Episodic Memory Question Answering (EMQA) is a specific
subtask of VideoQA, introduced by Bärmann et al. [3]. It differs in
its memory constraints, shifting from offline analysis (VideoQA) to
an online algorithm and setting a maximum limit on memory usage
for computation, thus suitable for long-term or life-long use.

This paper focuses on EMQA due to its advantages over NLVL
and traditional VideoQA. While NLVL produces non-textual output
and VideoQA has scalability issues, EMQA offers textual outputs



and a constant-size memory constraint, enhancing efficiency for long
videos.

3 AGENT DESIGN

Human memory involves encoding, storing, and retrieving infor-
mation. Encoding is key for converting information into a format
suitable for memory storage. Storage maintains this information un-
til needed, and retrieval accesses and reinstates it into consciousness.
Our agent mimics these biological memory processes [61].

Initially, each video frame v is transformed into a language en-
coding l using the encoding function E, denoted as l = E(v). These
language encodings are accumulated over time, forming a cumula-
tive history Lhistory.

An embedding model acts as a transformation function T to
convert chunks C of Lhistory into vector representation g, expressed
as g = T (C). The vector g is stored in a vector database via a storage
function S, where S(g)→ Database.

For retrieval, the agent uses the same transformation function T to
convert a natural language query q into a query vector qv: qv = T (q).
The retrieval function R then fetches the most relevant language en-
codings c as context based on qv, formulated as R(qv,Database)→ c.
This context c and the query q are concatenated and processed by
large language models to generate an answer based on the context.

3.1 Encode
We employ language as a means to encode egocentric visual per-
ceptions. Specifically, our focus lies on adopting a frame-based
approach rather than encoding clips using a sliding window. This
decision stems from the fact that encoding clips using a sliding
window can result in excessively long inference times, rendering
it impractical for real-time usage. Furthermore, the field of video
captioning is still in its early stages, and even state-of-the-art models
are unable to provide accurate and detailed encodings [54, 56–58].
Consequently, we opt to encode videos by their individual frames.

We present a novel model, Ego-LLaVA, for egocentric video
encoding. This model is fine-tuned from LLaVA (Large Language
and Vision Assistant) [34] on egocentric data, which captures first-
person experiences in a 3D environment. This fine-tuning procedure
leads to better performance in understanding first-person data which
involves interpreting human-object interactions and complex social
behaviors.

To tackle this issue, we curated our own egocentric video frame
description dataset from Ego4D [16] and fine-tuned the LLaVA
model to learn egocentric features.

The fine-tuning process is described below:

• Training Data: We begin by employing LLaVA using a descrip-
tor prompt P, to generate detailed descriptions for a randomly
sampled set of 3,000 images. Subsequently, we engaged three
research assistants from our institution to correct the descriptions
in scenarios where objects were inaccurately identified or signifi-
cant objects within the frames were missed. This process results
in a collection of 3,000 image/video frame-text/description pairs.
It has been observed by Zhu et al. [60] that a set of 3,000 train-
ing pairs is adequate. Zhu et al. [60] successfully fine-tuned a
visual-language model using only 3,500 image-text pairs, which
yielded exceptional performance in tasks such as image question
answering.
The practice of training language models using responses gener-
ated by larger language models has become increasingly common
due to the robustness of these models. Vicuna-13B [7] is an ex-
ample of a model trained by fine-tuning the LLaMA-13B [58]
base model with approximately 70,000 user-shared conversations
gathered from ShareGPT [50], a website that collects conversa-
tional data from OpenAI ChatGPT. Similarly, MiniGPT-4 [60]
and LLaVA [34] are trained using large language model-generated

content, achieving state-of-the-art results and saving significant
time on human labeling.

• Fine-Tuning: In our experiment, as shown in Figure 2, we use
Vicuna-13B [7] as the 13B language model and MPT-7B [40] as
the 7B language model. MPT (MosaicML Pretrained Transformer)
is optimized for efficient training and fast inference, utilizing
FlashAttention [10] and FasterTransformer [42] techniques.
More specifically, Ego-LLaVA is fine-tuned on image-text pairs
where the descriptor question P prompts a description of the video
frame v, and the ground truth prediction answer l is the original
detailed description. During training, the weights of both the
visual encoder and LLM are kept constant, and the probability
p(l|v,P) of the target answers l is maximized by only training
the parameters of the linear projection layer between the visual
encoder and the LLM. This process allows for the alignment
of the video frame features Hv with the pre-trained LLM word
embedding.

3.2 Store and Retrieve
Our approach involves segmenting language-encoded data into fixed-
size chunks of 1024 tokens with a 256-token overlap to maintain
semantic context, discarding any chunks under five characters. We
attach relevant metadata to each chunk for enhanced search capa-
bilities in vector databases. For capturing semantic meanings, we
use OpenAI’s text-embedding-ada-002 to create vector embeddings,
which are then stored in the Chroma [8] vector database. This setup
facilitates efficient management and retrieval of high-dimensional
vector data.

The retrieval system operates by converting a user’s input question
into an embedding using OpenAI’s text-embedding-ada-002 model.
This embedding serves as a query to the Chroma [8] database, which
searches for closely related vector-indexed data chunks. These
chunks are then incorporated into a prompt along with the question
for OpenAI GPT-4 to generate a response [5, 51].

4 STUDY 1: LARGE-SCALE EVALUATION OF THE MEMORY
AUGMENTATION AGENT

To study the proposed memory augmentation agent’s performance
we carry out a large-scale quantitative evaluation using the public
dataset QA-Ego4D. The evaluation focuses on the EMQA task,
which is detailed in Section 2.3.

4.1 Dataset - QA-Ego4D
The QA-Ego4D dataset, an extension of the Ego4D dataset’s Nat-
ural Language Query (NLQ) subtask, features egocentric videos
paired with natural language questions, answers, and annotations
for answer-relevant video segments [3, 16]. Figure 3 illustrates an
example QA pair from the QA-Ego4D dataset [3]. Each video av-
erages eight minutes in length. The dataset includes 19.2K queries
from 227 hours of video across 34 scenarios from ten universities.
Queries average 8.3 words, with response windows averaging 9.3
seconds, presenting a search challenge. The dataset omits “When?”
questions due to undefined natural language answers.

It’s divided into training, validation, and test sets, with 997 train-
ing videos, 162 for validation, and 166 for testing, comprising
10,746, 1,913, and 1,854 question-answer pairs for each set re-
spectively. The test data uses half of the validation set’s canonical
videos, as Ego4D’s test data is unpublished. Explicit measures
were implemented during the splitting process of the train and val-
idation datasets to avoid any overlap, thereby preventing model
overfitting [16].

4.2 Baseline Models
In our comparison, we include models from the QA-Ego4D pa-
per [3]: Differentiable Neural Computer (DNC) [17], Self-attentive-
Associative-Memory-based Two-memory Model (STM) [29], Long-
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Figure 2: The Egocentric Vision-Language Model is developed through a process called fine-tuning. This process involves extracting knowledge
from a large model and transferring it to smaller models, resulting in improved accuracy and faster inference times. The Egocentric Vision-Language
Model combines the power of vision and language to effectively process and understand egocentric video data. 13B and 7B refer to large language
models with 13 billion and 7 billion parameters.

Figure 3: An example QA pair from the QA-Ego4D dataset adopted
from [3].

Term Comprehensive Transformer (LT-CT) [46], and Rehearsal
Memory (RM) [59].

We also employ alterations to the encoding methods:

• Language-Encoded QA (with Video-LLaMA [58]): We em-
ploy a sliding window approach with a width and stride of
6 seconds each to encode video clips into language. Video-
LLaMA is a state-of-the-art video QA model which is suitable
for video captioning.

• Language-Encoded QA (with LLaVA [34]): We use the origi-
nal LLaVA as the encoding method.

We prompt both the above two models using the same prompt as
for Ego-LLaVA. These contrasting models provide a comprehensive
comparison for the model proposed in this paper.

4.3 Evaluation Metrics
We report standard Natural Language Processing metrics for EMQA
tasks, including BLEU-4 [44], METEOR [2], and ROUGE-L (f-
score) [33]. These metrics all measure the similarity between a
machine-generated sentence and a reference sentence. We report the
values in percentage values. A higher value indicates better perfor-
mance. More specifically: BLEU-4 [44] measures the precision of
n-grams (up to four words) in the generated text against the refer-
ence text, METEOR [2] evaluates based on precision, recall, and
alignment, incorporating synonymy and stemming, and ROUGE-L
(f-score) [33] assesses the longest common subsequence between
generated and reference texts.

4.4 Results
Table 1 shows the outcomes of the various methods explained above
applied to the QA-Ego4D test set. We observe that the language-
encoded approach significantly outperforms conventional machine
learning models. Additionally, we find that Ego-LLaVA surpasses
the original LLaVA as an encoding method. This improvement
can be attributed to the fine-tuning of LLaVA using egocentric data.

Model BLEU METEOR ROUGE
DNC [17] 3.4 17.9 27.0
STM [29] 5.8 17.6 26.2

LT-CT [46] 5.3 18.5 27.5
RM [59] 4.5 17.7 26.6

Language-Encoded QA
(with Video-LLaMA [58]) 5.8 19.3 30.7

Language-Encoded QA
(with LLaVA [34]) 7.4 36.1 50.7

Language-Encoded QA
(With Ego-LLaVA) 8.3 42.3 54.7

Table 1: EMQA results on the QA-Ego4D test set.

Despite the relatively small size of the fine-tuning dataset, which con-
sists of only 3,000 image-text pairs, the model successfully learns to
align image embedding features with text features. The performance
in using Video LLaMA as the encoding model is poor because it
suffers from severe hallucination issues.

Table 2 shows the agent’s performance on various question tem-
plates. We observe that simpler questions, such as “Where is object
X?” or “Where did I put X?”, generally yield better results due
to their straightforward nature, demanding less complex reasoning
from the agent. Conversely, questions involving more intricate rea-
soning or understanding of dynamic elements, such as “Where is
object X before / after event Y?” or “What X did I Y?”, may not
perform as well. This is attributed to the current encoding method’s
limitations in capturing temporal correlations, which are crucial for
comprehending dynamic activities. Quantity-based questions, such
as “How many X’s?”, pose a challenge due to the encoding model’s
resolution limitations, making accurate object counting difficult.

Questions about the state of an object could also be challenging if
the state involves fine details, or dynamic elements that change over
time. Without the ability to apply attention to the data, the agent
might not capture these dynamic subtleties, leading to a significant
loss of crucial information. In essence, the agent’s performance
on different question templates largely depends on the question’s
complexity, the required level of detail, and the agent’s ability to
understand dynamic elements and temporal correlations. Future
improvements in these areas could potentially enhance the agent’s
performance on more complex question templates.

5 STUDY 2: USABILITY STUDY FOR OPEN-ENDED QUES-
TIONS

Having established quantitative performance benefits of the memory
augmentation agent in theory it is natural to ask whether the agent
is usable in practice. To this end, we carried out a user study with
two objectives. The first objective is to evaluate and contrast the



Figure 4: The settings of the different scenarios and the duration of each scenario.

Category Template BLEU

Objects

Where is object X before
/ after event Y? 8.7

Where is object X? 8.9
What did I put in X? 7.6
How many X’s?
(quantity question) 7.4

What X did I Y? 8.3
In what location
did I see object X? 8.5

What X is Y 8.0
State of an object 7.8
Where is my object X? 9.0

Place Where did I put X? 8.2

People

Who did I interact
with when I did activity X? 8.1

Who did I talk to
in location X? 8.4

Table 2: The templates span a wide range of inquiries that individuals
can make use of to enhance their memory, and retrieve information
about various objects, locations, and individuals they encounter in their
daily lives. We also show the average BLEU score for the proposed
memory augmentation agent for each template. We adopted the
same scale as prior work [3], which uses a percentage as given by
SacreBLEU [45].;

performance of human participants with that of the memory aug-
mentation agent in answering a set of episodic memory questions.
The second objective is to explore the framework’s capability in
handling open-ended questions, which could potentially demand
strong reasoning power and access to an external knowledge base.

We did not incorporate another memory augmentation agent as
a comparison because we are the first to propose such a memory
augmentation framework and hence no such baseline exist. The
conventional machine learning models have very limited usability as
suggested by the results of the large-scale evaluation we described
previously.

5.1 Methodology

5.1.1 Participants

We recruited a total of 12 participants using opportunity sampling to
take part in the study (average age = 26.7, sd = 5.2; 7 males and 5
females).

A G*Power’s analysis [14] based on a t-test suggested a sample
size of 12 as being adequate for the study based on an effect size
of 0.81 (calculated from the collected results), an error probability
of 0.05, and a power of 0.8. Among the 12 participants in the
user study, four were students, five were employed, and three were
self-employed. We envisage the intended users of this memory
augmentation agent to be early adopters within the age range of 25
to 34, possessing AR/VR devices.

5.1.2 Materials

The study used a HoloLens 2 device which has an inbuilt front
camera to stream egocentric videos. The encoding, storage, and
retrieval tasks were performed by calling APIs hosted on our server.

5.1.3 Protocol

1. Study procedure: The study consisted of two stages. During the
first stage, participants were equipped with a HoloLens 2 device and
were instructed to perform a series of tasks. These tasks were divided
into five different scenarios: (1) looking at a painting in a living
room; (2) switching TV channels in a living room; (3) cooking eggs
in a kitchen; (4) reading a book in a study room; and (5) selecting
a movie on a laptop. These tasks took place in an actual house
equipped with a variety of furniture and items. Figure 4 illustrates
the settings of the different scenarios and indicate the duration of
each scenario. Participants were encouraged to freely engage in
the tasks to simulate a normal daily life experiences. Between five
and seven days later, participants proceeded to the second stage of
the study. This delay was used based on the concept proposed by
Rivera-Lares et al. [48]. They suggest that after a week, the amount
of retained information may have diminished to a level referred to as
the “floor”, making it challenging to detect or observe any additional
instances of forgetting. This can be represented by the forgetting
curve, which hypothesizes a decline in memory retention over time
in the absence of deliberate attempts to retain information.
2. Episodic memory questions to the participants and the agent:
During the second stage of the study the participants were pre-
sented with a set of questions modeled after Table 2, which were
derived from the tasks they performed. Standard questions included
“Where did you place the TV remote?”, “Name the list of movies you
browsed on the laptop?”, “What was the dominant color of the paint-
ing you observed?”, “How many eggs did you cook?”, and “Name
the book you read?”. In addition to these task-related questions,
there were other queries that were not directly linked to the tasks but
remained relevant to the scenarios, including “What color was the
guitar beside the painting?”, “What was the person you interacted
with (study facilitator) wearing?”, “What is the color of the kettle
beside the pan” and “How many vases did you see on the dining
table?”. An example of a description type question for the third cat-
egory of queries is the following: “Describe the painting in detail”.
We asked each participant these ten questions. Same questions were
used to ask the memory augmentation agent to generate responses.
3. Open-ended questions to the agent: Subsequently, participants
were encouraged to ask the memory augmentation agent five open-
ended questions through an interactive conversational interface. Ex-
amples of questions were “What movie would you recommend for
next time?”, “Based on what you know, do you think I eat healthily,
and if not, what suggestions do you have for my diet?”, and “What
are the steps to better cook an egg?”.
4. Rate the agent’s responses: Thereafter the participants were
asked to rate the responses generated by the agent as well as their
own answers using a scale ranging from 1 (very bad) to 5 (very good).



Note that the order of queries and the order of which responses to
score were randomized. Participants were also requested to score
the agent’s responses to open-ended questions using the same scale.
5. Post-study Likert scale questions: We then used post-study
questionnaire to gather feedback from the participants regarding
their subjective opinions on the overall experience with the agent.
The participants were asked to respond to the following Likert scale
questions: (1) The memory augmentation capability is valuable; (2)
The information provided by the memory augmentation agent is ac-
curate; (3) The response to my open-ended questions by the memory
augmentation agent is creative; (4) I am willing to wear an always-on
camera for language-encoded memory augmentation; and (5) I am
willing for others in my close vicinity to wear an always-on cam-
era for language-encoded memory augmentation. The participant
responses are distributed across five categories: Strongly Disagree,
Disagree, Neutral, Agree, and Strongly Agree, for different aspects
of the memory augmentation agent, including its capability, accuracy,
creativity, and willingness to use.
6. Open-ended survey: Finally, we asked four open-ended ques-
tions: (1) Under what circumstances would you use this memory
augmentation feature?; (2) Do you have any concerns regarding the
memory augmentation capability?; (3) What improvements would
you suggest for the memory augmentation agent? and (4) Do you
have any other feedback or suggestions regarding the memory aug-
mentation feature?

5.1.4 Implementation
The process begun with the uploading of the video to the server.
To optimize the speed of the encoding process, we extracted four
frames per second from the video. To expedite this process and
approach near real-time encoding, we used multi-process threading.
This technique allows multiple encoding tasks to be executed simul-
taneously, significantly reducing the overall time required. Once the
frames were encoded, they were stored in a vector database. We used
LangChain [5] and Chroma [8] as the implementation framework
for vector data storage and retrieval, and OpenAI GPT-4 as the large
language model to implement the conversational AI assistant that
performs question-answering for memory augmentation.

5.2 Results
5.2.1 Episodic Memory Questions
Figure 5 illustrates a comparison of scores for the memory augmen-
tation agent’s response and human responses across various episodic
memory questions. To clarify how a rating score corresponds with
a response, we relate findings to the scored responses. Consider
an example question: “What was the person you interacted with
wearing?” An answer of “grey t-shirt” would receive a score of
5/5, while a response of “grey” would score 4/5, and a completely
unrelated answer, such as “red” or “I don’t know” would receive a
score of 1/5. For color and quantity questions, the closer the answer
is to the actual response, the higher the score. For instance, “blue”
would be rated around 4/5 in response to the color “green”, and a
response of “4” would get a score around 4/5 for a quantity of “5”.
The memory augmentation agent outperforms humans in general,
as evidenced by the performance shown in Figure 5, particularly
for standard episodic memory questions. It excels in tasks that
require detailed descriptions, as it demonstrates the capability to pro-
vide thorough descriptions of paintings. The ego-LLaVA decoding
method surpasses human memory in capturing finer details.

However, the language encoding method exhibits a weakness
in tasks that involve counting, such as determining the number of
eggs or vases. Moreover, in tasks involving dynamic elements,
such as the question “Where did you place the TV remote?”, while
the ego-LLaVA accurately identifies the TV remote, it encounters
a failure mode in distinguishing between “pick up” and “place”.
Sometimes, it provides an answer based on the former action, and

when participants do not place the TV remote in the same location,
the agent may provide an incorrect response. We also observed
that human memory is highly proficient in specific tasks but the
participants tended to struggle with remembering things they did not
pay attention to, such as the color of a kettle, or the presence of a
guitar, when unrelated to their current tasks. Additionally, recalling
a list of five movie names poses a challenge for human memory,
resulting in subpar performance.

In summary, the memory augmentation agent proves useful in
several scenarios, including: (1) memory-intensive tasks; (2) tasks
requiring detailed descriptions; and (3) situations where people do
not focus on, or pay attention to, certain aspects. The memory
augmentation agent yielded a higher mean response with 4.1/5 com-
pared to a human response of 2.5/5, indicating its superiority over
human performance. A Friedman’s test revealed a statistically sig-
nificant difference between the memory augmentation and human
responses (χ2 = 37.928, df = 1, p = 0.0009), providing evidence
to reject the null hypothesis of no difference. Further, the memory
augmentation agent resulted in a smaller standard deviation (1.1/5,
compared with 1.7/5 for humans), suggesting increased stability in
responses compared to the less reliable human memory. Overall, the
memory augmentation agent performs better and exhibits greater
consistency compared to human responses.

5.2.2 Open-Ended Questions
Participants rated the responses provided by the memory augmenta-
tion agent in response to open-ended questions at an average score
of 3.97/5, and a standard deviation of 0.604. This suggests the ad-
ditional value of using a large language model like OpenAI GPT-4
as a conversational interface with access to an external knowledge
base, enhancing its context awareness regarding memories. Some
frequent questions are to recommend a movie or a book. Then the
agent responded with “Certainly! Based on the context provided, I
suggest you watch The Godfather. It’s a classic and highly acclaimed
film that you might enjoy.”, or “I would recommend checking out
The Dark Knight as it seems to be a popular choice in the given
scenarios. It is a movie and comic book series that you might find
interesting.” These responses are usually rated as 5/5. There are also
questions related to instructions, such as “How can I cook my egg
better?”. The memory augmentation agent responds by listing very
detailed steps for cooking the eggs while also being aware of the
quantity of the eggs the user cooks. Such responses are often rated
as 4/5 to 5/5.

5.2.3 Post-Study Likert Scale Questions
Figure 6 shows the distribution of the participant responses for the
memory augmentation agent. Participants value the memory aug-
mentation agent, indicating a strong recognition of its utility in
enhancing memory recall effectively. The accuracy of the informa-
tion provided by the agent also received positive feedback, affirming
its reliability. Responses about the agent’s creativity, though mixed,
still highlight a level of engagement that could be built upon. Some
participants showed a willingness to wear an always-on camera,
suggesting an openness to integrating this technology into daily life
despite potential privacy concerns. This acceptance is mirrored in
their comfort with others using the technology, pointing towards its
feasibility in social or communal settings.

5.2.4 Open-Ended Survey
From the open-ended survey, we observed that participants empha-
sized the importance and value of having a memory augmentation
agent, highlighting various applicable scenarios such as biomedical
experiments, conferences, attending lectures/meetings, and explor-
ing new places (P1, P3, P4, P6, P7, P10, P11, P12). However,
participants expressed concerns about the agent being socially awk-
ward to wear (P1, P2, P6). Ethical concerns were also raised, such
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Figure 5: Comparative analysis of scores for the memory augmentation agent and Human responses across various questions. Each question
has multiple pairs of AI and human scores represented by the bars. The x-axis enumerates different questions, while the y-axis shows the scores
ranging from 1 to 5. The bars are color-coded, with one color representing AI and another representing human scores. The legend on the top-right
corner outside the plot area distinguishes between AI and human bars.
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Figure 6: The five-point Likert responses to the post-study question-
naire. Q1. The memory augmentation capability is valuable; Q2. The
information provided by the memory augmentation agent is accurate;
Q3. The response to my open-ended question by the memory aug-
mentation agent is creative; Q4. I am willing to wear an always-on
camera for memory augmentation through language encoding; Q5. I
am willing for others in my close vicinity to wear an always-on camera
for memory augmentation through language encoding.

as the potential degradation of people’s memorization capabilities if
they rely solely on the agent (P4, P10). Additionally, some partici-
pants highlight privacy issues concerning individuals donning it and
recording their actions. For example, P3 noted that “the agent’s pow-
erful and accurate capabilities could pose safety risks if breached”,
while P2 expressed worries about “discomfort with others wearing
the system and recording their activities”.

However, as the understanding of the agent’s function through
language encoding grew, the majority of concerns diminished (P1,
P3, P5, P6, P7, P8, P12), although a few participants still felt uneasy
(P1, P2, P9, P11). Participants proposed specific improvements to
address these issues, including incorporating indicators to make
people aware of the agent’s operation and limiting its use to specific
scenarios such as teaching and conferences rather than everyday life
(P1, P3, P4, P12). Additionally, participants suggested making the
always-on camera device as lightweight and inconspicuous as possi-
ble to minimize social awkwardness and increase social acceptance
(P2, P5, P6, P8, P9, P11).

6 DISCUSSION

In this paper we have demonstrated a novel memory augmentation
agent and demonstrated its performance. Besides being lightweight,
as it is reliant on language-encoding as opposed to vision-based, we
discuss three additional advantages of this approach: performance,
privacy, and device agnosticism.

6.1 Ego-LLaVA Paired with Language Encoding
Achieved State-of-the-Art in QA-Ego4D

The evaluation of the system using the QA-Ego4D dataset demon-
strated superior performance, surpassing traditional machine learn-
ing models with a substantial BLEU score of 8.3. On the other hand,
the baseline models exhibit subpar performance on the EMQA task
due to primarily three factors. First, memory constraints: the EMQA
task imposes a constant-size memory constraint, requiring models
to compress all potentially relevant information into a fixed-size rep-
resentation. Baseline models not designed to handle this constraint
may struggle to effectively manage and utilize the limited memory
space. Second, model specialization: certain baseline models, such
as STM, use a simplistic implementation that may not be sufficient
for the EMQA task. For example, STM’s reliance on a single hidden
vector in its implementation could account for its low performance.
Third, relevance selection: the EMQA task necessitates the model
to appropriately select relevant information due to the memory con-
straints. This could be a challenge for some models, leading to poor
performance.

6.2 Language Encoding is Lightweight
In this paper, the Language Encoding Approach and the Vision-
based Approach are compared. Language Encoding stores textual
data from video, requiring around 0.517 TB/year uncompressed,
reduced to 0.246-0.345 TB with compression, while the Vision-
based Approach needs 5.74 TB/year for low bitrate 720p video.

6.3 Language Encoding is Device Agnostic
For question and answering, the language encoding approach intro-
duced in this paper gives rise device agnosticism due to its design.
This contrasts with vision-based QA models which may exhibit di-
minished accuracy, or necessitate fine-tuning, when transitioning
across different devices. Moreover, the device-agnostic nature is
carried through in our language encoding model. The novel egocen-
tric vision language model we introduced in this paper is cultivated
using a diverse array of devices including GoPro, Vuzix Blade, Pupil
Labs, ZShades, ORDRO EP6, iVue Rincon 1080, and Weeview, to
capture egocentric videos. This breadth of training sources fortifies
our framework’s compatibility with any device capable of delivering



egocentric video streaming. While we use the HoloLens 2 as the
AR headset, its usage is solely as a conduit for streaming egocentric
videos, further illustrating the adaptability of the model.

7 LIMITATIONS AND FUTURE WORK

We introduce an encoding method that operates on an individual
frame basis. However, this method struggles to capture temporal
correlations, which are essential for understanding dynamic features
like activities. Figure 5 shows the lower performance on the two
questions related to dynamic elements, including “place” and “cook”.
Such movements or scene changes, are better understood when
temporal correlations between frames are considered. Without this,
the encoding method may miss these dynamic subtleties, leading
to a significant loss of crucial information. Activities usually occur
over a series of frames. Ignoring temporal correlations can make
it challenging to fully understand these activities. For example,
the action of a person picking up an object involves a sequence of
movements across several frames. Despite these shortcomings, this
encoding method excels in capturing static features, as each frame
is encoded separately.

Another limitation is that while human memory augmentation has
been shown to augment users’ memory in a controlled lab setting,
as suggested by the results in Study 2, we acknowledge that this has
not been tested in real-world scenarios. Additionally, a longitudinal
study is lacking to assess its long-term effectiveness.

Looking forward, we suggest research could focus on two main
areas. First, to develop a high-resolution, accurate egocentric vision-
language model. This model will integrate vision and language
processing from a first-person perspective, similar to human percep-
tion of their surroundings. The high-resolution aspect of this model
will allow it to capture intricate details in visual data, potentially re-
sulting in significant performance improvements. Second, to create
a vision-language model that can process dynamic video data. This
model will provide a more holistic view of the environment by cap-
turing temporal changes and movements over time. This approach
will yield richer and more contextual information, enhancing the
model’s understanding of the visual scene. However, it is important
to note that processing video data is more complex and computa-
tionally demanding than handling static images, presenting its own
unique challenges.

8 CONCLUSION

We have presented, memory augmentation agent, a novel system
that combines language encoding with episodic memory tasks. The
agent incorporates several essential elements made possible using
natural vision language encoders, including other features, such as
long-term memory integration, a lightweight implementation using
hosted APIs, and real-time inference capabilities. This integration of
language encoding and episodic memory represents a state-of-the-art
approach in the field, enabling enhanced performance and efficiency.
Moreover, while privacy is a significant concern in lifelogging and
memory augmentation agents, the use of language encoding presents
a viable solution forward. By transforming video data into language
data and carefully managing the encoding process, privacy can be ef-
fectively safeguarded while still providing a useful tool for memory
augmentation. The agent was evaluated to verify that it is effec-
tive and efficient. In comparison to traditional machine learning
models, the new model demonstrated superior performance on the
QA-Ego4D dataset. Further, a user study revealed that the agent
yielded statistically significant better performance when handling
episodic memory tasks. Taken together, the results demonstrate the
memory augmentation agent to be viable in practical applications
and another example of how AI can work in tandem with AR to
create new ways of supporting users in their daily lives.
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