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Figure 1: Static Machine Learning: The model undergoes a single training session using existing data and is subsequently
deployed to the device. Adaptive Machine Learning: Recognizing the dynamic nature of real-world scenarios, this approach
continuously updates and refines the model as new data become available. Consequently, updated models are regularly deployed
to the device. Open-World Gesture Recognition: In the context of wrist-worn devices utilized for gesture recognition, there are
two distinct cases where new data will appear. In these cases, the gesture recognition model must adapt and learn from this new
information.

ABSTRACT

Providing users with accurate gestural interfaces, such as gesture
recognition based on wrist-worn devices, is a key challenge in mixed
reality. However, static machine learning processes in gesture recog-
nition assume that training and test data come from the same underly-
ing distribution. Unfortunately, in real-world applications involving
gesture recognition, such as gesture recognition based on wrist-worn
devices, the data distribution may change over time. We formulate
this problem of adapting recognition models to new tasks, where new
data patterns emerge, as open-world gesture recognition (OWGR).
We propose the use of continual learning to enable machine learning
models to be adaptive to new tasks without degrading performance
on previously learned tasks. However, the process of exploring pa-
rameters for questions around when, and how, to train and deploy
recognition models requires resource-intensive user studies may be
impractical. To address this challenge, we propose a design engineer-
ing approach that enables offline analysis on a collected large-scale
dataset by systematically examining various parameters and compar-
ing different continual learning methods. Finally, we provide design
guidelines to enhance the development of an open-world wrist-worn
gesture recognition process.

Index Terms: Computing methodologies—Machine learning—
Learning paradigms—Lifelong machine learning; Human-centered
computing—Human computer interaction (HCI)—HCI design and
evaluation methods—User models
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1 INTRODUCTION

Wrist-worn gesture recognition using inertial measurement unit
(IMU) signals offers a convenient, always-on interface for vari-
ous applications in mixed reality [21, 42, 46, 54]. Currently, most
hand gesture recognition algorithms are optimized for closed-world
settings, where training and test data come from the same underlying
distribution [53]. However, in real-world applications [3, 43], the
assumption that training and test data belong to the same underlying
distribution no longer holds as: (1) new gesture data continuously
arrives with changing characteristics; (2) gesture data may change
over time; and (3) entirely new data patterns can emerge. We here
call this problem open-world gesture recognition (OWGR). A static
machine learning process, in which a recognition model is trained
once and subsequently deployed, cannot effectively tackle this prob-
lem. What we seek is an adaptive machine learning process that can
continuously train and deploy the model on newly emerging data, as
illustrated in Figure 1.

Various approaches can be used for adaptive machine learning.
Simply retraining a recognition model with the entire joint dataset,
past data and new data from new tasks, is sometimes infeasible due
to limited computational power on embedded devices. Storing the
entire past dataset is also challenging due to the limited memory
of the device and privacy concerns. On the other hand, if a model
trained from past data is naı̈vely fine-tuned on a new task, that model
will dramatically decrease the recognition performance on the old
tasks [47]. This is called catastrophic forgetting. Continual learn-
ing, sometimes called lifelong learning, methods are specifically
designed to alleviate catastrophic forgetting by balancing the trade-
off between plasticity (transferring knowledge from an old task to a
new task) and stability (catastrophic forgetting).

We identify two real-world cases that fall under OWGR, new
context and new user, as shown in Figure 1. In all two cases, we



Figure 2: The open-world gesture recognition process is structured
around five stages. Out of these, two stages including retraining
trigger and updating policy introduce essential design considera-
tions, all underpinned by an engineering approach that facilitates
offline analysis. In contrast, the other three stages including device
deployment, data logging and data curation require online analysis.

wish to preserve performance on previously learned tasks, to avoid
catastrophic forgetting, while at the same time learning the new task.
Here, a new task may refer to a new context, or a new user. In
Section 3, we present a key contribution in this paper—a detailed
formulation of the open-world gesture recognition problem and its
associated real-world scenarios, in terms of these two cases: (1) new
context; and (2) new user.

In a static machine learning process, we only need to log the data
from the device, optimize the recognition model on the logged data to
best fit the data once, and then deploy a trained model onto the device.
However, in an adaptive machine learning process for OWGR, we
additionally introduce additional stages as illustrated in Figure 2.
In particular, this OWGR process includes two additional stages
that require careful design considerations: (1) when to update the
model; and (2) how to update the model. When refining a wrist-worn
open-world gesture recognition system, developers face challenges
due to the complexity of user studies and numerous parameters. For
instance, evaluating new context requires recruiting participants to
perform gestures in various real-world contexts, not just in a lab.
Additionally, optimizing the OWGR process often needs multiple
evaluations, making it difficult to execute and validate.

We therefore follow a prior approach [25], which proposes using
a design engineering approach to assess a process that is challenging
to evaluate via user studies. We have adopted this design engineering
approach by translating it into a strategy that outlines a functional
design of open-world gesture recognition and examines its con-
ceptual design in which the key function of the process (such as
Updating Policy) is translated into six potential function carri-
ers (five different implementations of continual learning methods
and one finetuning baseline). We then distinguish between control-
lable and uncontrollable parameters of these functions and assess
the process’s effectiveness through quantitative envelope analysis.
Moreover, given the lack of prior research that focuses specifically
on OWGR, it is crucial to first apply the most advanced and general-
izable continual learning methods to address this issue. Only after
extensive exploration and evaluation of OWGR using other more
generalizable and well-established continual learning methods are
we in a position to best understand how to propose new algorithms

to further enhance the system. Therefore, proposing a new algorithm
is beyond the scope of this paper.

Such a design engineering approach allows us to assess control-
lable and uncontrollable parameters offline, thus sidestepping the
need for on-ground deployments and tests with real users in the first
instance. To this end, we first collect a large-scale dataset using
the IMU sensor from wrist-worn devices. To capture diversity in
the aforementioned two real-world cases, the dataset contains 50
users performing four different gestures in 25 different contexts. We
then construct a surrogate data model and a surrogate task model,
identify their controllable and uncontrollable parameters, and subse-
quently perform an envelope analysis by varying these parameters,
which allows us to assess emergent qualities of the system as a
whole via simulation. This approach is then able to illustrate that
using a continual learning method for open-world gesture recogni-
tion significantly improves gesture recognition accuracy and reduces
catastrophic forgetting compared to a finetuning method. This forms
our second contribution to the paper.

Designers using engineering methodologies to refine the OWGR
process face limitations in data collection and computational re-
sources. Envelope analysis, being computationally intensive, de-
mands extensive simulations and parameter sweeps. Our study
required over 40,000 GPU hours for dataset collection and offline
evaluation of continual learning methods, highlighting the challenge
for resource-constrained designers. To aid these designers, we pro-
vide essential design guidelines derived from our methodology. Our
diverse dataset, covering various users and contexts, ensures the gen-
eralizability of these guidelines. Therefore, our third contribution is
offering distilled guidelines for developing OWGR processes based
on our engineering approach using envelope analysis.

In summary, this paper makes three contributions: (1) a detailed
formulation of the open-world gesture recognition (OWGR) prob-
lem; (2) a design engineering approach for allowing open-world
gesture recognition to be tractable in practice; and (3) design guide-
lines for developing OWGR processes.

2 RELATED WORK

2.1 Wrist-Worn Devices with Mixed Reality

Gestural interaction offers an intuitive and natural method for inter-
facing with mixed reality [67]. More commonly, the front-facing
cameras of Head Mounted Displays (HMDs) track the hands, en-
abling hand gestures for text entry, virtual object manipulation, and
menu interaction, such as dragging virtual items or making selec-
tions [4]. However, a fundamental drawback of using front-facing
cameras is the necessity for the hands to remain within the camera’s
view. This means users cannot perform gestures with their hands
under the table or in their pockets. Once hands leave the camera’s
tracking region, gestural interaction becomes impossible.

To overcome this limitation, wrist-worn devices have been em-
ployed for gestural interaction with mixed reality devices [2, 13].
Gesture recognition is conducted using these wrist-worn devices,
eliminating the need for HMD cameras to detect hands and gestures.
Using wrist-worn devices facilitates gestural interactions even when
hands are under the table or in a pocket, offering a seamless user
experience. Moreover, wrist-worn devices can recognize gestures in
a broader variety of ways compared to front-facing cameras, which
primarily rely on computer vision techniques. There has been exten-
sive research exploring hand gesture recognition using a wide range
of wrist-worn sensing modalities, such as RGB cameras [18, 64, 65],
infrared (IR) ranging [35], inertial measurement unit (IMU) [17, 23],
acoustics [27, 38], electromyography (EMG) [6, 36, 47], electrical
impedance tomography [71], pressure [12, 22], radar [29], stretch
sensors [55], magnetic sensors [9,39], and bio-capacitive effects [57].
IMU sensors are widely used for gesture recognition owing to their
low cost and low power characteristics [66, 73].



2.2 Gesture Recognition
As for gesture recognition techniques, early trajectory-based gesture
recognition methods (e.g., dynamic time warping (DTW) [30] and
hidden Markov models (HMM) [37]) can recognize simple gesture
trajectories such as drawing a shape [37]). However, these methods
do not work well for more complex and fine-grained gestures such
as pinching or making a fist. Recently, researchers and practitioners
mainly use data-driven approaches by collecting a labeled gesture
dataset. They then either train traditional models such as SVM,
trees, (e.g., [16, 19]) or deep learning models when the dataset is
large enough (e.g., [18, 68]). However, most prior work focuses on
recognizing a pre-defined gesture set. There are very few works
addressing open-world gesture recognition. Xu et al. proposed a
few-shot learning framework for gesture authoring [66]. Shen et al.
proposed a deep-learning model that can learn a new gesture with a
synthetic dataset that is generated from a few data samples with a
deep generative model [49–51]. Wang et al. [62] identified a contin-
ual learning application for lifelong egocentric gesture recognition
such that a VR system allows users to customize gestures incremen-
tally. While these approaches are useful for models to learn new
gestures, they are not appropriate for the two cases we identified,
new context and new user. Moreover, Xu et al. [66] and Shen et
al. [51] also fail to address the catastrophic forgetting problem when
old gesture data are revisited.

2.3 Design Engineering
Design engineering is a holistic method to create products and sys-
tems. This approach transitions from the initial stage of problem
identification to tackling design-related aspects during the life cycle
of a product or system, including production, upkeep, and eventual
decommissioning. Validating certain systems, such as a a context-
aware sentence retrieval system for AAC users, is extremely chal-
lenging [25] as such systems require tailored setups and extended
use before benefits emerge. Asking an AAC user to switch devices,
potentially waiting months for improved communication, raises both
logistical and ethical concerns. Prior work [25] has used a design
engineering approach to tackle this problem. This approach entails
defining controllable and uncontrollable parameters for the design
and examining the potential effectiveness of such systems through
quantitative envelope analysis by varying the parameters through
simulation [25]. Such a design engineering method reveals insights
about the feasibility of such systems without the immediate need to
develop, introduce, and observe systems for extended time periods.
In addition, it allows examination of emergent qualities of systems
that would be very difficult to study in empirical user studies, such
as mechanisms explaining users strategies [26]. Similarly, Shen
et al. [52] also used a design engineering approach to evaluate a
multi-turn dialogue system for AAC using context-aware sentence
generation by bag-of-keywords. The design engineering approach
we propose in this paper shares a similar philosophy with this prior
work work.

2.4 Continual Learning
In a continual learning setup, the learning system is exposed to a
sequence of tasks over time, each represented by a specific data
distribution. The tasks may be related or completely different. The
model is expected to learn new tasks while maintaining performance
on previous ones, typically without access to data from earlier tasks
due to memory constraints or privacy issues. When a model, pre-
viously trained on older tasks, is simply fine-tuned on new tasks,
its accuracy on the old tasks rapidly deteriorates. It loses its pro-
ficiency in tasks it had previously mastered, effectively replacing
the old knowledge with the new. This phenomenon is referred to as
catastrophic forgetting. This problem occurs because conventional
neural networks update their weights primarily based on the most
recent data during training, a process that can result in the erasure

of previously acquired patterns and knowledge. More specifically,
gradient-based optimization algorithms prioritize minimizing the
loss of the current training task, often disregarding previous task
parameter settings [15].

To address this challenge, continual learning methods aim to
leverage previously seen information during training to improve per-
formance on new tasks. The objective is to overcome the forgetting
of learned tasks (stability) and utilize prior knowledge to achieve bet-
ter performance and faster convergence on new tasks (plasticity) [11].
There are three prominent families of methods for continual learning:
replay methods, regularization-based methods, and parameter isola-
tion methods [11]. Replay methods [5, 8, 20, 40, 41] use rehearsal to
mitigate catastrophic forgetting, storing examples from old tasks in
memory to be replayed throughout incremental task training. How-
ever, these methods are less memory efficient. Regularization-based
methods introduce a regularization term in the loss function of the
model [1, 32, 44, 70]. Parameter isolation methods either dedicate
different subsets of the model parameters to each task to prevent any
possible forgetting or expand the size of the model to acquire new
knowledge from new tasks [33,45,69]. Neither regularization-based
nor parameter isolation methods store past data in memory.

There are also other different learning paradigms, such as multi-
task learning [72], transfer learning [63], meta learning [58] and
online learning [48]. However, while most of these methods focus on
plasticity, they usually fail to address catastrophic forgetting, leading
to a dramatic decrease in the performance with old tasks [11]. Being
able to avoid catastrophic forgetting is critical in OWGR as it is
not solely about quickly learning new data - a challenge that can
be addressed by few-shot learning [56] or domain adaptation [34] -
but more importantly, the core challenge of OWGR is to retain old
data. More specifically, domain adaptation focuses on adapting to
new domains without necessarily retaining performance on the orig-
inal domain, which does not directly address catastrophic forgetting.
Few-shot learning deals with learning new tasks or adapting to new
data quickly from few examples, but it does not inherently address
learning multiple tasks sequentially without forgetting. These two
methods are specifically designed to optimize plasticity (transferring
knowledge from an old task to a new task), without considering sta-
bility (catastrophic forgetting). Therefore, these learning paradigms
are not well-suited to the OWGR problem. Hence, we do not directly
compare continual learning methods with other learning paradigms
in this paper.

3 OPEN-WORLD GESTURE RECOGNITION (OWGR)
3.1 Real-World Cases
1. New context is where each task represents different environ-
mental/activity contexts, such as standing, walking, riding in a car,
pushing stroller/cart, laying down etc. Therefore, we desire an
OWGR system that is initialized on training data only from standing
contexts to be able to incrementally learn on new contexts such as
walking and riding in a car, while also preserving the knowledge
from the previous standing contexts. These contexts can be further
split into more detailed contexts. For example, standing includes
standing with hand up to the chest level and standing with hand
hanging, and walking includes walking with hand up to the chest
level and walking with hand hanging. Our dataset includes this finer
granularity of activity context. In practice, we need a task descriptor
to inform the model of each task in the new context. In the real-world
deployment, the description can be determined by the contextual
information provided by other devices, such as location or an HMD.
2. New User is where each new task is a separate user of the device.
A shared wrist-worn device should quickly adapt to new users, as
we assume the behaviors of performing gestures from different users
are different. Moreover, we also desire the device to not forget the
old users as this shareable device may be switched back to old users.
The task descriptor is reflected by the user’s identity.



3.2 Problem Formulation
We formulate the OWGR problem more formally in this section. In
a task-incremental setting for open-world gesture recognition, the
tasks (new context/gesture/user) arrive sequentially and the learner
optimizes until convergence within each task [14, 41, 45]. This
setting has the following assumptions:

1. Each new context/gesture/user would have a batch of data points.
Therefore, the gesture data arrives sequentially in batches, with each
batch corresponding to one task. The continual learning takes one
batch at a time, while we can still perform offline learning within
each task.
2. The recognition model will have a multi-head configuration, as
each task needs a separate output layer. Therefore, a task descriptor
is also fed into the recognition model since the algorithm needs
to know which head to use for that specific task. In practice, this
task descriptor would be generated through various sensing modal-
ities (e.g., activity recognition and location information [60]). For
example, a classifier using egocentric video from a head-mounted
display would estimate an activity context. We discuss the feasibility
of this method in Section 6.2.1 and Section 6.5. Despite a multi-
head configuration may not be necessary for the new user case, the
multi-head approach simplifies the comparative analysis of different
continual learning methods — allowing for consistent evaluation
with minimal adjustments.

Traditional gesture recognition assumes testing and training data
share similar characteristics, that is, they are independent and identi-
cally distributed (i.i.d). For this problem setting, we represent the
training set as Dtrain = (xi,yi)

n
i=1, where n denotes the number of

training data available, contains a feature vector xi ∈ X , and a target
vector yi ∈ Y . Each data pair in the training set (xi,yi) is sampled
from an i.i.d probability distribution, which corresponds to a sin-
gle task. The goal is to minimize the empirical risk of all data in
the task by optimizing the parameters θ of the gesture recognition
model [59]:

1
|Dtrain| ∑

(xi,yi)∈Dtrain

L ( f (xi;θ),yi), (1)

where the loss function L penalizes prediction errors, and f denotes
the trained gesture recognition model.

However, the i.i.d assumption no longer holds in OWGR, where
data arrives in an online fashion with changing characteristics. A
learner will observe the continuum of data as a triplet (xi,yi, ti).
ti ∈ T is a task descriptor identifying the task associated with the
pair (xi,yi). The pair is sampled from a probability distribution Pti
corresponding to the task descriptor ti. In each task ti, the gesture
data pair (xi,yi) is locally i.i.d.

The goal of continual learning is to minimize the statistical risk by
optimizing the parameters θ of the gesture recognition model f [11]:

∑
τ
t=1EX (t),Y (t)

[
L ( ft(X (t);θ),Y (t))

]
, with Expectation E of the loss

function denoted by L , the number of tasks seen so far denoted by
τ , X (t) being a set of data samples for task t, Y (t) being the labels
correspondingly, and ft representing the recognition model for task
t. For the current task τ , the statistical risk can be approximated by
the empirical risk [11]: 1

Nτ
∑

Nτ

i=1

[
L ( fτ (x

(τ)
i ;θ),y(τ)i )

]
.

3.3 Large-Scale Data Collection
We collected a large-scale dataset of inertial measurement unit (IMU)
data consisting of 6 dimensions (3-axis accelerometer and 3-axis
gyroscope). 1

1Figure 1 in the Appendix illustrates exemplary IMU signals collected.

(a) Single Pinch (b) Double Pinch (c) Middle Pinch (d) Fist Clench

Figure 3: Four dynamic gestures.

1. Gestures: We collected data from four dynamic gestures: single
pinch, double pinch, middle pinch, and fist clench (see Figure 3).
The specific set of gestures was chosen for their distinguishability,
and their representation of common hand actions. This selection
ensures familiarity, versatility, and intuitive interaction for users.
Apple’s AssistiveTouch gestures are also similar to the gesture set.
2. Participants and Apparatus: 50 participants were recruited
(24 self-identified female, 26 male) with a wide coverage of age
range (min = 18, max = 61, mean = 35). The majority of the users
were right-handed (N=44). We collected data using a wrist-worn
watch-like device equipped with IMU sensors. Initially, we gathered
raw data at a high sampling rate of 800 Hz to maximize our dataset’s
potential. However, during model training/testing, we found that a
sampling rate of 100 Hz was sufficient. Therefore, for the rest of
the paper, we exclusively uses 100 Hz data. This rate represents a
balanced compromise between a high sampling rate, which would
lead to increased power consumption, and a low sampling rate,
which could result in the loss of crucial information.
3. Procedure: Participants wore a watch-like device with an IMU
sensor on their non-dominant hand to collect data. During each
session, participants were prompted to perform the target gesture
through a chime or vibration, while an experimenter recorded the
start and stop times of each gesture. To ensure an accurate repre-
sentation of real user behavior, randomization was implemented
throughout the study. A total of 100 sessions were conducted, with
each session including all participants performing 50 instances of
a single gesture recurrence for each of the four gestures. These
gestures were paired with with 25 contexts, and each of the con-
texts mimics a real-life context. Examples of the 25 contexts are:
standing/walking with hand up to the chest level/ with hand hanging,
riding in a car a passenger, pushing stroller/cart with the other hand,
holding a cup or something else in the other hand, sitting at the
desk with elbow on the desk and hand in the air/ with arm laying on
the desk/ with the elbow on the arm rest and hand in the air/ with
the arm on an arm rest, laying down on back/side, lounging on the
sofa (horizontal/slouched posture) with hand laying on the sofa or
laps, cuddling/arm around someone else, stationary biking, walking
up and down stairs, jogging, leaning over, picking something up.2
The contexts are also differentiated by if the participant is looking
at the device or not. We also collected negative (i.e., non-gesture)
examples under various activities such as jogging, running, biking,
clapping, driving, waving, cleaning, etc. These examples are similar
to the negative examples from [66]. This methodology aimed to
capture the natural variability in users’ motions without introducing
any repetition bias.

4 DESIGN ENGINEERING APPROACH

Conventional machine learning approaches optimize the recognition
model to best fit the data once. In an OWGR process, as illustrated
in Figure 2, we additionally must optimize the policies by which
the recognition model continually updates itself. In the open-world
gesture recognition process, we outline five stages: (1) device de-
ployment; (2) data logging; (3) data curation; (4) retraining trigger;
and (5) updating policy. The final two stages highlight the two cru-
cial design considerations that are integral and critical to an OWGR

2Table 1 in the Appendix shows the full list of contexts.



process that allows offline analysis:

1. When do we update the recognition model? How do we define
the start and stop of a batch, and how frequently should we perform
model updates?
2. How do we update the recognition model? Which continual
learning method provides the ideal trade-off between plasticity and
stability, while minimizing processing and memory requirements?

We tackle these two considerations by adapting a design engi-
neering approach [25, 26] to perform a systematic evaluation of
an OWGR process without long-term deployment, including user
studies over multiple sessions, model deployment and run-time opti-
mization, continuous data logging and collection, and so on. Further,
the evaluation of an OWGR process involves system-level parame-
ters beyond the recognition model hyper-parameters.

4.1 Functional Design and Function Carriers of OWGR
Following prior work [25, 26], we begin by identifying the main
function (Open-World Gesture Recognition) and its key
sub-functions (Data Logging, Data Curation, Retraining
Trigger, Updating Policy, Device Deployment), along
with their interrelationships.

Having established a function model, we then seek function
carriers, or solution principles, and specifically for the Updating
Policy function. We evaluate potential function carriers by con-
sidering their controllable and uncontrollable parameters through
envelope analyses that simulate emergent outcomes as a function
of the controllable and uncontrollable parameters in the system.
This helps us understand the system requirements for these function
carriers to effectively fulfill their functions.

Our study mainly examines two functions, Retraining
Trigger and Updating Policy, which both require dedicated
online analysis studies. This approach aids in quantitative parame-
ter investigation, thereby enhancing our understanding of continual
learning methods for open-world gesture recognition. A compre-
hensive functional design of the entire system is beyond this paper’s
scope.

We here study six function carriers. The study of these function
carriers will determine which continual learning method to use to up-
date the gesture recognition model. By varying the function carrier,
we can explore the design question: how do we update the recog-
nition model?. We evaluate the following five different continual
learning methods, and a baseline, across the aforementioned families
in Section 2.4:

1. Baseline (finetuning): For baseline, we use naive finetuning,
which optimizes the model trained from previous task on the current
task. This method greedily trains each task without considering
previous task performance [11].
2. Learning without Forgetting (LwF): Learning without Forget-
ting (LwF) [28] retains knowledge of preceding tasks by means of
knowledge distillation.
3. Synaptic Intelligence (SI): In SI [70], each synapse accumulates
task-relevant information over time and exploits this information to
rapidly store new memories without forgetting old ones [70].
4. PackNet: PackNet [33] iteratively assigns parameter subsets to
consecutive tasks by constituting binary masks. For this purpose,
new tasks establish two training phases. The first phase is training the
recognition model without altering previous task parameter subsets
and then pruning a portion of unimportant free parameters. The
second training phase retrains the remaining subset of important
subsets. Therefore, PackNet allows explicit allocation of network
capacity per task, and therefore inherently supports zero forgetting
on previous tasks. However, the disadvantage of PackNet is that the
total number of tasks is limited.

5. Replay: We use finetuning with an arbitrary replay buffer, which
exploits available exemplar memory up to the replay buffer size
and incrementally divides equal memory capacity over all previous
tasks [11].
6. Memory Aware Synapses (MAS): MAS [1] computes the im-
portance of the parameters of a neural network in an unsupervised
and online manner. When learning a new task, changes to important
parameters can be penalized by the accumulated importance measure
for each parameter of the network, effectively preventing important
knowledge related to previous tasks from being overwritten [1].

Both SI and MAS are parameter prior-based regularization methods,
whereas LwF is a data prior-based regularization method. MAS is a
parameter isolation method.

Additionally, we carried out a preliminary offline experiment
with internal participants who were asked to perform gestures under
two distinct scenarios. In this experiment, we tested the above six
different continual learning methods, aiming to adapt the gesture
recognition model. The outcomes of this study are presented in
Figure 4. This preliminary analysis primarily highlights three key
findings:

• Naive fine-tuning with new task data leads to significant forgetting
of previously learned tasks, underscoring the necessity for contin-
ual learning methods to address this issue. This emphasizes the
critical nature of the open-world gesture recognition paradigm.

• Continual learning methods demonstrate varied effectiveness
across different scenarios; a method that shows superior perfor-
mance in one case may not be the best choice for another. This
underlines the importance of conducting comprehensive quan-
titative analyses on large-scale open-world gesture recognition
datasets to provide design guidance.

• The execution of this preliminary study required substantial re-
sources and time, as participants needed to perform gestures in
a variety of contexts and combine different gestures. This under-
scores the critical need for online experiments to supplement or
replace such extensive offline analyses.

4.2 Surrogate Task Model
In envelope analysis, a surrogate model is a simplified variant of a
complex, computationally involved model. It involves identifying
and varying controllable and uncontrollable system parameters to
evaluate a system with respect to its emerging outcomes. Control-
lable parameters can be fine-tuned for optimization, while uncontrol-
lable ones help predict potential performance variations (sensitivity
analysis) [25]. Envelope analysis is performed by altering one pa-
rameter at a time, with the other parameters held constant.

We here propose a surrogate task model in which we can vary
different task settings. The task setting in each case determines
the specific definition of each task which is represented by the task
descriptor ti in a triplet (xi,yi, ti). By varying this setting, we can
answer the other design question: when do we update the recognition
model?, because the task setting defines the start and stop of a batch,
the size of a batch, and the frequency of model updates, and so on.
We have the following parameters in the surrogate task model that
determines the task setting:

1. Granularity of tasks: The tasks can be either fine-grained or
coarse. For example, in the case of new context, coarse task granu-
larity is standing and fine task granularity is standing with hand up
to the chest level. This parameter is controllable.
2. Order of tasks: By varying the order in which new tasks are
presented (e.g. easier-to-harder vs harder-to-easier), we can explore
whether the order of tasks affects the learning result. This parameter
is uncontrollable because new tasks do not arrive in pre-defined
order. The easiness of a task is determined by the preliminary results
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Finetuning 78.67 (18.66)
LWF 84.51 (0.64)

SI 82.43 (3.42)
PackNet 84.55 (0.00)

replay 77.71 (14.27)
MAS 77.48 (3.46)

(b) New User: Each new task inquires 6 new users to perform the same set of gestures in the same context. This is akin to a model learning to generalize across
different users’ behavior patterns.

Figure 4: We examine the accuracy of a gesture recognition model, in an open-world gesture recognition problem, tested on Task n, while
the model is trained incrementally from Task n to Task N. N is the total number of tasks, and the model is trained by five continual learning
methods and one baseline method: Finetuning. For instance, in a subplot with title Task 2, we test the model, progressively trained from Task
2 through Task 10, exclusively on Task 2 and report 9 data points. It lacks the data points from the model trained on Task 1 and tested on
Task 2, because the tasks were introduced sequentially; a model trained on Task 1 has not been exposed to Task 2. Consequently, the subplot
for Task 2 omits these results. This pattern continues with Task 3 and subsequent tasks, with a subplot of Task n only reports N −n+1 data
points (per method). The observed deep decline in accuracy from Finetuning in each subplot can be attributed to the model’s tendency to
forget earlier tasks as it learns new ones, which is referred to catastrophic forgetting. We proposed five continual learning methods to address
this catastrophic forgetting problem in open-world gesture recognition, namely SI, replay, LWF, PackNet and MAS, which are introduced in
detail in Section 4.1. In this Figure, we illustrate the results from performing preliminary experiments on two use cases of open-world gesture
recognition. We report average accuracy (forgetting) in the legend. Forgetting is the measure of the decrease in accuracy. We discuss these two
measures in detail in Section 4.3.

obtained through testing the accuracy of a classification model on
that task. A higher accuracy level indicates an easier task.
3. Number of tasks: This is equivalent to the number of tasks in
total. In the case of new context, by investigating the total number
of contexts, we can observe the capacity of each continual learning
method. This parameter is controllable because we set the maximum
total number of tasks to which the system can adapt.

These task settings are applied differently to each of the use cases:

1. New context: We incorporate all parameters from the surrogate
task model. The default task setting is coarse task granularity pro-
vided in a random order. The default number of total tasks is set to
10 (as in [11]).
2. New user: We only include the controllable parameter number
of tasks. Here the number of tasks is the number of total users. The
default setting is 15 users, selected at random.

4.3 Evaluation Metrics
We use accuracy and forgetting as the evaluation measures for the
OWGR model, with definitions adopted from prior work [7] as
follows:

1. Accuracy: Let ak, j ∈ [0,1] be the gesture recognition accuracy
(fraction of correctly classified gesture events) evaluated on the
held-out test set of the j-th task ( j ≤ k) after training the network
incrementally from tasks 1 to k. The accuracy measure at task k is
then defined as Ak =

1
k ∑

k
j=1 ak, j. The average accuracy measures

the plasticity of the system in transferring knowledge from old tasks
to new tasks.

2. Forgetting: We define forgetting for a particular task as the
difference between the maximum knowledge gained about the task
throughout the learning process in the past and the knowledge the
model currently has about it. This, in turn, gives an estimate of
how much the model forgot about the task given its current state
(catastrophic forgetting). Following this, we quantify forgetting for
the jth task after the mode has been incrementally trained up to task
k > j as: f k

j = E
l∈{1,..,k−1}

al, j − ak, j,∀ j < k. Note, f k
j ∈ [−1,1] is

defined for j < k as we are interested in quantifying forgetting for
previous tasks. Moreover, by normalizing against the number of
tasks seen previously, the average forgetting at k− th task is written
as Fk =

1
k−1 ∑

k−1
j=1 fk, j . Lower Fk implies less forgetting on previous

tasks.

In this paper, we do not report accuracy using different met-
rics, such as F1 scores, because the contribution is not to propose
state-of-the-art gesture recognition models. Instead, the focus is on
comparing the relative accuracy and the forgetting measures between
different continual learning methods to provide design guidance for
developing open-world gesture recognition methods. Furthermore,
given the extensive experiments conducted under various settings in
this paper, it is impractical to include and report on different metrics.
Therefore, we report on the final accuracy and forgetting, obtained
by evaluating each task after learning the entire task sequence.

4.4 Implementation Details
We implement the continual learning algorithms based on an open-
source generalizing continual learning framework [11] in PyTorch.
For data processing, we use a sliding window approach to segment
the data for both training data and testing data preparation, we use
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Figure 5: Effect of Task Setting on Performance for New Context Each sub-figure represents one task setting. Each box plot shows mean,
median, and quartile data. a) Order of Contexts: Change of context order does not significantly affect average accuracy and forgetting measure
for most methods. The X-axis represents a specific order of the tasks. E-H is easy-to-hard, H-E is hard-to-easy. b) Granularity of Contexts:
Some methods perform particularly better or worse in fine-grained context than coarse context. The X-axis represents that if the context is
coarse or fine. c) Number of Contexts: Different methods exhibits various performances when number of contexts (tasks) increases. The
X-axis represents the total number of contexts (tasks)

Figure 6: Effect of Number of Total Tasks for New User. A
larger number of total users leads to higher accuracy and forgetting
measure for most methods. Each box plot shows mean, median, and
quartile data. The X-axis represents the total number of users that
the model must learn in the New User case.

a window size of 120 and a window step size of 60. We adopt the
same parameters for debouncing thresholds in [51]. For the hyper-
parameter search of each continual learning method, we conduct
an approach that first tries to decay each hyperparameter separately,
and decays all if none of these individual decays to achieve accu-
racy within the finetuning margin. This process is then repeated
until the stability decay criterion is met For the specific setup of
the training framework, we define maximal plasticity search with
a coarse learning rate grid

{
1e−2,5e−3,1e−3,5e−4,1e−4}. We set

the finetuning accuracy drop margin to 0.2 and the decaying factor
to 0.5. We use a Stochastic Gradient Descent with a momentum
of 0.9 and batch size of 128. We use a max of 100 training epochs
with early stopping and annealing of the learning rate. That is the
learning rate decays with factor 10 after 10 unimproved iterations
of the validation accuracy and the training process should terminate
after 15 unimproved iterations of training.

We use a simplified version of QuartzNet architecture [24], a
state-of-the-art convolutional architecture for speech recognition, for
our gesture recognition model described by f in Equation 1. It is
used as the classifier that takes IMU signals as input and predicts
among the gesture classes. The selection of the QuartzNet model
is based on preliminary experiments. We began with a literature re-
view on state-of-the-art classification models for time series data and
tested over 10 models. Our experiments revealed that the QuartzNet
model achieves state-of-the-art performance in real-time gesture

recognition, striking an optimal balance between accuracy and la-
tency. We further improved the performance by hyperparameter
sweeping making it suitable for IMU data classification. This is
attributed to the model’s quantization, which allows it to be compact
enough to operate in real-time on smaller devices. To make the
model deployable on more memory-constrained devices, we have
removed the residual connections, grouped point-wise convolutions,
and channel shuffle without scarifying the accuracy performance. 3

5 RESULTS

This section describes the results of varying the surrogate task model
for each of the two use cases.

Figure 5 consists of three sub-figures which describe the effect
of different task settings separately for the new context case. Prior
work suggests that an easy-to-hard task ordering might achieve better
performance than a hard-to-easy ordering [61]. However, Figure 5 a)
shows that the impact of the task order on the average accuracy and
forgetting measure is insignificant. We do observe that the variance
of the performance scores is considerably smaller for easy-to-hard
ordering. In Figure 5 b), when setting the granularity of contexts to
fine-grained as the task-setting, we see that finetuning shows a lower
accuracy and a higher forgetting measure, whereas methods such as
LWF, PackNet, and replay reach a higher accuracy while maintaining
a low forgetting measure. A coarse context setting has more training
data, as a coarse context consists of multiple fine-grained contexts.
This suggests that these continual learning methods can successfully
optimize plasticity (transfer knowledge of previous tasks to new
tasks) to achieve data-efficiency. Figure 5 c) shows that a lower
number of total tasks can stabilize the average performance of the
continual learning methods. A larger number of total tasks leads to
an increased forgetting measure as the model’s capacity for learning
new tasks is limited. However, PackNet and LwF can successfully
re-use the previous knowledge to produce an increased accuracy on
new tasks. On the other hand, finetuning introduces a significant
forgetting measure accompanied by a low accuracy score when the
number of tasks is large.

For the new user case, we observe from Figure 6 that a larger
number of users increases both accuracy and forgetting metrics with
finetuning and replay methods. In contrast, most continual learning
methods such as PackNet, MAS and LWF achieve high accuracy
while maintaining low forgetting measure with larger number of
total users. This suggests that, in the new user case, PackNet, MAS,

3Figure 2 in the Appendix illustrates the details of the model architecture.



and LwF can better transfer knowledge of old users to new users.

6 DISCUSSION

6.1 Balance between Stability and Plasticity
Continual learning aims to strike a balance between two key objec-
tives: stability and plasticity. Stability refers to the ability to retain
previously learned knowledge over time, avoiding catastrophic for-
getting. Plasticity, on the other hand, refers to the ability to acquire
new knowledge from new data distributions, avoiding overfitting
to old data. Stability is typically measured by evaluating the de-
gree of forgetting or performance degradation on previously learned
tasks or data distributions. Plasticity is measured by assessing the
model’s accuracy or performance on new, unseen data distributions.
When designing OWGR processes, it is crucial to consider this
stability-plasticity trade-off. Design choices and techniques should
be evaluated based on their ability to achieve an appropriate balance
between these two objectives.

6.2 Design Guidelines from Envelope Analysis
6.2.1 When do we update the recognition model?

This question asks for the best task setting for each case. This
involves defining the boundaries between tasks and determining
when a new task has commenced. Once a new task is detected, a
retraining trigger (Figure 2) activates the update of the recognition
model using a continual learning method. Thus, we use the results
from the envelope analysis from the surrogate task model to answer
this question, and we explore which task settings yield the most
favorable outcomes. Most of the parameters in the surrogate task
model are controllable by the designers. We advise that a coarse
context usually gives better results for the new context case. A
coarse context is also more practical, as it simplifies the activity
recognition needed to produce a task descriptor. The accuracy of
a task descriptor determines the granularity of tasks; a less accu-
rate descriptor results in a coarser context, while a more precise
descriptor leads to a finer-grained context. We previously discussed
that the new context case may require classification of the current
activity context, which can be performed by AR/VR HMDs and
wearables via activity detection through different sensors [10, 31].
The precision of state-of-the-art activity classifiers, acting as task
descriptors, is sufficiently high that it does not adversely affect the
primary gesture recognition model. Therefore, these task descriptors
are generalizable descriptors and do not require re-training with new
real-world data. For the new user case, we see the best results
when the number of different users is large with LwF and Pack-
Net, as we observe that a larger number of users increases the overall
accuracy for these two methods. In practice, a model needs to
be pre-trained and it is encouraged to pre-train the model on a
large-scale dataset if available.

6.2.2 How do we update the recognition model?

We observe that naive fine-tuning experiences serious catastrophic
forgetting and is not suitable for OWGR. For the new context case,
the replay method outperforms other continual learning methods by
a large margin in accuracy. In contrast, PackNet has zero forgetting
by its design and still maintains relatively high accuracy. Overall,
for the new context case, the replay method is the best choice to
optimize accuracy—memory/privacy constraints permitting—
whereas PackNet is a better choice to balance accuracy and
forgetting, provided the model capacity is sufficient for the total
number of tasks. For new user, the replay method no longer ranked
as the top performer in accuracy. Both PackNet and LwF exhibit
more stable performance in this case as the difference between the
first quartile (Q1) and the third quartile (Q3) is smaller, showing a
smaller variance in the performance metrics. Thus PackNet and
LwF is a better choice for the new user case.

6.3 Envelope Analysis: A Practical Alternative to Large-
Scale User Studies in OWGR

The primary objective of this research is to introduce an novel
method for assessing continual learning methods for OWGR, by-
passing the need for large-scale user studies. Researchers often lack
resources for such studies, which are more demanding than evaluat-
ing conventional gesture recognition models in controlled settings.
The proposed approach uses envelope analysis with parameteriza-
tion of key functions, offering a robust and practical alternative
to user studies. By varying parameters, different scenarios can be
systematically explored. The extensive and diverse dataset used in
this research provides a strong foundation for evaluating the OWGR
process, reducing the need for a separate large-scale user study. Al-
though some conclusions drawn from the envelope analysis might
appear intuitive, there has been a notable absence of such thorough
experiments in the realm of what we would classify as OWGR.
Further, assumptions from other, related, areas might not directly
translate to gesture recognition problems relevant for mixed reality
applications.

6.4 OWGR in Mixed Reality
OWGR enables gesture recognition models to adaptively learn new
gesture data patterns from diverse contexts and users on-the-fly,
eliminating the need for extensive pre-deployment data collection.
It facilitates personalization by learning and adapting to individual
users’ contexts, whether performed in static or dynamic environ-
ments. For shared devices among multiple users, such as families,
it eliminates recalibration needs by remembering previous users’
patterns while continuously learning from new user. This ability
to seamlessly learn and retain knowledge across contexts and users
ensures a robust, calibration-free experience.

6.5 Limitation and Future Work
One limitation in our study is the lower accuracy in gesture recog-
nition. It’s worth noting that the accuracy reported in this paper
represents the final model’s accuracy on the last task, following the
entire task sequence (see Section 4.3). The accuracy diminished
from the initial task to the final task due to catastrophic forget-
ting. This further encourages us to refine our continual learning
algorithms as future work. Another contributing factor is that our
training algorithm wasn’t explicitly tailored for optimal accuracy.
Techniques such as data augmentation, feature engineering, and
model pre-training, which are commonly used to enhance model
performance [49, 51, 66], were not employed in our study. This deci-
sion was intentional, as our primary aim was to isolate the effects of
the envelope analysis. By excluding these optimization techniques,
we ensured that any observed effects on the final results were solely
due to changes in the parameters of the envelope analysis.

7 CONCLUSION

This paper presents a design engineering approach, using a large-
scale dataset in combination with envelope analysis, to explore
continual learning methods for the open-world gesture recognition
process. We discuss the significant catastrophic forgetting observed
in the baseline fine-tuning approach and examine the positive and
negative qualities of various continual learning methods. To assist
other researchers and developers we present guidelines derived from
the extensive data collection and the computational experiments.
Intended for developers and designers of wrist-worn gesture-sensing
systems, our guidelines provide an alternative to traditional large-
scale user studies, lowering the barriers and promoting a more re-
fined OWGR process. This paper is also a demonstration of how
a design engineering methodology, in particular envelope analysis,
offers a new route for system evaluations in this area, potentially
inspiring other researchers in mixed reality to adopt similar methods
for real-world assessment challenges.
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