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Computational engineering design methods and tools are common practices in the modern industry. Such

approaches are integral in enabling designers to efficiently explore large and complex design spaces. However,

they also tend to dramatically increase the number of candidate solutions that decision makers must correctly

interpret.Because all candidate solutions canbe represented in adigital form togetherwith their assessment criteria, a

natural way to explore and understand the complexities of the design problem is to visualize their multidimensional

nature. The task now involves the discovery of patterns and trends within a multidimensional design space. This

work aims to enhance the design decision-making process with immersive Parallel Coordinates Plot (IPCP) in

virtual reality. This paper presents the design of this system, which allows representation and exploration of

multidimensional scientific datasets. A qualitative validation with two surrogate expert users demonstrated that

the system can be used successfully to detect both known and previously unknown patterns and support learning the

decision-making process in a shorter time. The results serve as a promising indication of how immersive parallel

coordinate plots can enhance decision support in complex engineering design processes.

I. Introduction

C OMPUTATIONAL design methodologies and customized
optimization tools are common practice inmodern engineering.

The primary benefit of such approaches is the automated exploration
of complex design spaces, which was previously not possible. How-
ever, this advantage creates user interface challenges on how to support
manipulation and analysis of high volume and high complexity multi-
dimensional datasets. While even formulating a real-world engineer-
ing optimization problem is a difficult task, the inherent additional
difficulties in extracting understanding, causality, and rationale of
discovered information is exacerbating the demands on the user.
The ultimate goal in this work is to assist users in understanding

and then communicating the complexities of the engineering design
task in question and thereby supporting the decision-making process.
As a step toward this goal, this paper presents the system design of an
immersive version of the well-established Parallel Coordinates Plots
(IPCPs). Prior work [1] has demonstrated that visualizing scientific
information in an interactive and engaging environment is benefi-
cial to users’ decision-making abilities. We hypothesize that further
benefits of visualization can be realized using emerging three-
dimensional (3D) immersive environments, such as the one offered
by virtual reality (VR).
In this work, we explore how VR can be used to support the

visualization and analysis of computational engineering design data-
sets. In addition, we discuss the positive and negative aspects of the
application of VR in the decision-making process. The overall taskwe
study is the identification of clusters and sets of solutions in two
optimization studies for the aerodynamic design of compressor blades

[2,3] and the design of S ducts [4]. However, we do not consider the
physical interpretation and understanding of the designed compressor
blades. We rather consider the physical nature of multi-objective
optimization data. In such datasets, the input parameters express the
design variables of the design optimization study, and the output
parameters express the objective functions and constraints.
In this paper, we do not address the classic challenges in using

Parallel Coordinates Plot (PCP) for visualization and analysis of
multidimensional scientific data. Instead, we explore how to build
a system that can support the design process and investigate the
usability of emerging immersive technologies for visualization of,
and interaction with, scientific information. This allows us to assess
which challenges remain, or which new ones emerge. Furthermore,
the exploration of engineering design computational data is fre-
quently centered on 3D visualization of the designed system. As
such, an immersive interface offers a highly promising method for
analysis and exploration of such data alongside with simultaneous
visualizations of individual product designs. Part of themotivation of
this work is to expose and exploit such strengths of VR technology
such as the possibility of immersing the user into a bespoke, 3D
environment fully simulated by the system’s designer.
To this end, we present the design of our VR-based IPCP system

that is supported by a series of formative studies. A description of the
first thereof which briefly discusses the observational user study, the
results of whichwe used to trim the vast design space, can be found in
the work by Tadeja et al. [5,6]. The underpinning VR system that
included the basis of interaction techniques, in other words, the gaze
tracking and ray tracing facilitated with a cross-hair metaphor, was
discussed in the work by Tadeja et al. [7,8] and is built based on the
Unity VR Samples Pack** that uses the well-known concept of a
cross-hair to simulate the user’s gaze (for instance, see the orange
circle in Fig. 1) and Oculus Utilities for Unity†† together with some
commercial assets from the Unity asset store packages‡‡.

II. Immersive Parallel Coordinates

Since the PCP concept was initially proposed by Inselberg [9], the
number of entries containing the phrase parallel coordinates, as
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returned by a Google Scholar search on 9 December 2020, reaches
over 2.030 million items. The theory and applications of PCP can be
found in the textbook written by Inselberg [10].
Thewide adoption of two-dimensional (2D) PCPhas led tomultiple

attempts of designing a useful and compelling 3D PCP. For example,
Wegenkittl et al. [11] and Gröller et al. [12] describe extruded PCP,
which uses a PCP to visualize a complex surface. A different example
of using the surface-type design is a density isosurface [13],whichwas
used to visualize cytomics data. Falkman [14] describes the Cube
package applied for swift analysis of medical data.
Parallel Glyphs combine Star Glyphs [15] with 3D PCP [16].

The usability of 3D Multi-Relational PCP in conjunction with
High-Precision Textures has been investigated by Johansson et al.
[17]. Dang et al. [18] describe a few examples of 3D parallel dot
displays and stacked PCP, which use various stacking techniques to
augment the standard visualization of dot plots and PCP, respec-
tively. In their related work, Chang et al. [19] compare joined
side-by-side 2D visualizations to PCP with scatter plot matrices,
concluding that the PCP-based approach offered clear advantages
over individual visualizations for most of their participants for a
number of their tasks. Furthermore, Johansson et al. [20] present a
comparison between 3D PCP visualizations with conventional 2D
plots and concluded in favor of the latter. Holten and Wijk [21]
discuss different variants and improvements of 2DPCP used to find
clusters in the multivariate datasets and remark that only the use of
additional scatter plots has a substantial positive impact on the
visualization.
ImAxes [22] allows the user to rearrange the axes interactively and

supports both 2D and 3D scatter plots. Another example of an
immersive PCP is the ART collaborative data analysis tool [23] that
distributes the user interface across an augmented reality headset and
a touch surface. Rosenbaum et al. [24] took another approach in
which the user was treated as an element of the immersive PCP
visualization itself.
Our approach, first described by Tadeja et al. [5] and discussed by

them later on [6], differs from other attempts in several key ways.
First, we denote values in each dimensionwith interactive volumetric
objects (i.e., unit-size cubes) that automatically highlight the item
under the user’s gaze in order to signal that they can be interactive.
The same is true for all the other interactive elements, such as
selectors (i.e., various size spherical markers in the interface) used
to move or rotate the scatter plots. This in turn opens up new design
possibilities [25] that can use characteristics of a 3D shape, such as its
orientation in the 3D space [25]. In addition, users can freely move
within andmaneuver in the infinite 3D space to explore all parts of the
visualization [5]. Furthermore, our system augments the pattern
identification task with 3D scatter plots [5–8], that can substantially
aid users in isolating groups of data items that can potentially form
patterns. In addition,we also explore bimanualmanipulation as a new
way of interacting with visualization elements. Here, we are inves-
tigating the feasibility of using a gesture-based interface facilitated

with an additional sensor§§ attached to the VR headset that tracks the
user’s hands in real time.

III. Problem Context

We emphasize that the purpose of the two case studies is not only to
demonstrate how to identify patterns in high-dimensional engineering
datasets but also to demonstrate the effectiveness and usefulness of the
use of VR technology in the discovery of meaningful information in
complex datasets with ease and with common intuition. Both cases
represent real-world design problems in the field of turbomachinery.
In a typical process, when an automated shape aerodynamic design

optimization process is executed successfully, the designer discovers a
set of solutions representing the answer to the multicriteria design
problem.This set of solutions, thePareto set, is an approximation of the
Pareto front. To achieve this, the automated optimization process
should synthesize three modules: one to modify the geometry, which
is associated with the design variables; the second to simulate the flow
characteristics, which is associated with the quantification of the
objective functions; and the third to navigate through and explore
the design space, which is the optimization algorithm. Prior work [1]
introduced a stage of postprocessing of optimization results where the
user simultaneously considers the design parameters and objective
functions. Depending on the complexity of the optimization problem,
the number of solutions within the Pareto set can easily exceed a
few hundred. The objective at this stage of the design process is to
identify a few families, or groups, of solutions to aid the decision-
making process. The different groups of solutions are identified as
clusterswithin themultidimensional data space. It is this final stage that
we enhance in this work with the use of VR-based IPCP.
The first sample dataset is the result of an optimization study for the

3Dgeometrical design of compressor blades subject tomany equality
and inequality physical and geometrical constraints. In this study, we
use the data produced for a three-objective function formulation of
the optimization problem as described in detail by Kipouros et al.
[2,3]. This dataset (hereafter referred to as DS1) expresses the Pareto
front, which contains a set of 54 equally optimum design configura-
tions, and the 29-dimensional data items categorized as design
parameters (26 dimensions) and objective functions (3 dimensions).
The 2D view of the complete dataset and the two patterns whichwere
identified using the conventional 2D PCP are presented in Fig. 2. The
two patterns of interest A (in red) and B (in blue) are composed of 11
and 19 data items, respectively. These two patterns were identified by
domain experts, and we consider them as the reference in this work.
The user’s view of the same dataset through a VR headset in three
dimensions is shown in Fig. 3.
The second sample dataset (hereafter referred to as DS2) describes

the results of the optimization study of S-duct design (see Fig. 4), as

Fig. 1 3D scatter plot: a) the 3D scatter plot [7,8] generated from selected IPCP dimensions, b) zoomed-in volumetric data points, and c) the cones
marking mapped dimensions on the IPCP.

§§Leap Motion, “Leap Motion,” https://www.leapmotion.com [retrieved
September 2019].
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presented byD’Ambros et al. [4], and is composed of 39-dimensional
data items: design parameters (36 dimensions) and objective func-
tions (3 dimensions). The user’s view through a VR headset in three
dimensions is presented in Fig. 5.

IV. System Design

A. Overview

The overall objective is to design a visual analytics IPCP system
for engineering design processes, supporting efficient identification
and comparisons of patterns of interest in amultidimensional dataset.
This is a high-dimensional design space with many controllable and
uncontrollable parameters. Controllable parameters include render-
ing parameters, such as colors and shapes, visual/auditory feedback
design, interaction techniques, and choice of headset and hardware

controllers. Uncontrollable parameters include properties about
the datasets, such as size, density, and correlation structure and the
degree of domain knowledge and expertise of the user.
As a result of themany controllable and uncontrollable parameters,

we have adopted an iterative process of first building an early system
that provided direct transplantation of PCP to VR. This early design
was then used to carry out qualitative user studies (partially described
in a previous poster publication by Tadeja et al. [5]), briefly outlined
in Sec. IV.B. We use the information distilled from the user study
along with knowledge of the tasks, expert advice, and technical
constraints to arrive at a set of design principles (see Sec. IV.D),
which guide our task analysis in Sec. IV.E. In the task analysis, we
break down each task into functions and translate each function into a
solution based on technical constraints, expert advice, and informa-
tion gathered from the qualitative user study [5]. Finally, we provide

Fig. 3 The user’s field of view of the 29-dimensional dataset of 54 equally optimum design configurations describing the Pareto front (26 design
parameters and 3 objective functions).

Fig. 4 After the selection of an item on IPCP, the user is shown additional information, for example, an S-duct CAD geometry and a 2D plot of the
S-duct flow.

Fig. 2 The left plot shows the complete dataset in the standard 2D PCP. The two patterns are shown in red and blue on the right plot. Adapted from
Kipouros et al. [1]. Copyright 2013, T. Kipouros, A. Inselberg, G. T. Parks, and M Savill.
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verification and validation of the IPCP system in Sec. V, whereas
Sec. VII provides a description of the implemented extensions to the
system. These are twofold. First, we couple the systemwith CAD 3D
models of the actual geometries of the individual designs associated
with individual data items on the IPCP. Second, we develop and
implement a different manipulation technique that uses the hand
tracking and gesture recognition done with the help of Leap Motion
Controller (see footnote §§) coupledwith gaze tracking to aid the user
inmore effective interactionwith our system. Finally, in Sec.VIII, we
provide a detailed discussion about the entire process of design,
development, and validation of the IPCP system. Section IX offers
a brief summary of our work.

B. Qualitative Study

To help inform the design, we carried out a qualitative study with
seven participants (hereafter referred to as P1–P7). More details
about this study can be found in the work by Tadeja et al. [5]. The
IPCP visualization used in the study can be seen in Figs. 3 and 5. The
users could interact with the system using a mixture of gaze tracking
and an Xbox gamepad controller, as shown in Figs. 6a and 6b. The
color-coded cones¶ were used to denote both the selected dimensions
over the IPCPand axes directions at the scatter plots [7,8]; seeFigs. 6a
and 6c.
Although the visualized dataset comes directly from the specific

domain (the aerodynamic design of turbomachinery components),
we wanted to pinpoint the general underlying design principles that
can be used in future more advanced versions of the IPCP. Therefore,
we broadened our sample of participants to include both fields of
expertise and prior familiarity with PCP. Thevolunteers self-assessed
their level of expertisewith regards toVR andPCP using aLikert-like
scale. As the color coding plays a crucial role in the visualization,

participants were prescreened with Ishihara’s tests [26], which indi-
cated no color deficiency.
On average, participants needed 25 min during the training phase

and 15 min for the study itself. To offer insight into any adverse
physiological effects, volunteers were instructed to take the simula-
tion sickness questionnaire [27] before and after each phase (i.e.,
training or study) to see to what extent and if at all the visualization
negatively impacted their perception of comfort. Participants were
reminded that they should stop the experiment if they experienced
any of the symptoms described in the survey. However, none of the
participants decided to stop and discontinue the study.
Before the experiment commenced, each participant sat through a

demonstration of the IPCP technique, the studied tool, and all the
possible ways in which the user could interact with the system.
Moreover, while listening to a verbal description, participants could
track in real time the instructor’s actions and their corresponding
results on a computer screen.
Our participants reported having varying levels of prior familiarity

with the PCP and VR. To level the playing field, we provided each
volunteer with training data visualization. This process took between
18 and 36 min, depending on the individual participant’s needs as
judged by the researcher. The primary task of the user was to find
patterns within the given dataset using IPCP. In this context, the
pattern is understood as a group of data items sharing similar values
across all the dimensions visualized as group of polygonal curves
[see Fig. 2 (left)]. However, such curves can have certain variability
between one ormore of the line segments. The level of this variance is
left to be judged by the user.
This primary task was split into subtasks, including 1) selection of

both data items and dimensions on the PCP, 2) selection of data points
and clusters on the scatter plots, 3) visual analysis of the relation
between the visualization elements, and 4) rotation andmovement of
a scatter plot or generation ofmore than a single such 3Dprojection at
once. Familiarization with the system was especially important
because the trainingmay be very beneficial for the participant’s grasp

b)a) c) d)

Fig. 6 VR controllers: a,b) an Xbox gamepad and c,d) Oculus Touch. The green markers are showing the mapping between the action buttons on both
types of controllers.

Fig. 5 The user’s field of view of the 39-dimensional dataset (36 design parameters from FFD parameterization and 3 design criteria: CP, DC60, and
Swirl) (FFD: Free-Form Deformation; CP: Pressure Coefficient; DC60: Distortion Coefficient for a 60 degree segment).

¶The author of the cone model is W. Kresse; used under CC BY-SA 3.0;
http://wiki.unity3d.com/.
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of the PCP technique, as remarked by Shneiderman and Plaisant [28].
For this purpose, we used a portion of a real-world dataset of 80
multidimensional data points, each consisting of 22 dimensions
(20 inputs and 2 outputs). The training was followed up with a
semistructured interview. If deemed necessary by the researcher,
the participant was asked to repeat previously completed tasks. Each
instruction was marked as pass by the study supervisor, who con-
stantly monitored the participant’s actions on the accompanying
screen. During this process, the researcher provided oral instructions
upon completion of a task and whenever the participants requested
assistance.
To minimize fatigue, participants were given a break of approx-

imately 15 min after training and before the main experiment com-
menced. After training, the participants were asked to perform a task
within the VR environment without a time constraint. The main task
had an identical form compared to the training: identify patterns in a
multidimensional dataset of 26 input parameters and 3 output criteria,
together with the suggested approach to start developing the scatter
plot using the criteria dimensions.We adopted a think-aloud protocol
and requested participants to discuss what, why, and how they are
trying to achieve as the task progressed. The supervisor, who con-
tinuously monitored the experiment, could at any moment inquire
for further clarifications to gain more insight into the participant’s
actions and thought processes. In particular, for the first-time game-
pad users, an inquiry on whether the participant is stuck allowed the
supervisor to provide guidance, for example, information about
which button to click to invoke a specific action. This is important
as the controller is not visible through the VR headset. Moreover,
after running two participants (P1 and P2), we decided to instruct the
remaining participants (P3–P11) that a pattern is constituted by a
minimum of a four-points group. Audio and video were captured
during the study for later analysis.

1. Participants’ Background and Expertise

All the participants reported having a background and extensive
experience in the science, technology, engineering, and mathematics
fields in either industrial or academic settings or both. Nine partic-
ipants were men, and two were women with their ages ranging
between 22 and 44.
Participant 1 (P1) reported approximately six years of experience

in engineering at undergraduate and graduate levels and two years
spent in the automotive industry. This person was not previously
exposed to the PCP and had only very limited experience with VR.
Participant 2 (P2) reported less than three months of industrial

experience. However, this volunteer has a background in aerospace
engineering and engineering design spanning over nine years in total.
This person self-rated as a novice in using VR and with even less
familiarity with PCP.
Participant 3 (P3) spent seven years in an academic setting and

almost a year in the industry. This person reported to have not
previously used any VR headset. However, this participant is an
expert on the PCP technique and its applications in design.
Participant 4 (P4) reported 16 years of academic experience and

three years of prior work in the industry. This participant is also an
expert on PCP methods applied in modeling of the design processes.
Participant 5 (P5) has 21 years of academic (15 years) and indus-

trial (6 years) experience in computer science and software engineer-
ing. This person also reported basic awarenesswith respect toVR and
extensive exposure to PCP.
Participant 6 (P6) has a background in artificial intelligence and

computer science (nine years). During that time, this volunteer also
worked for three years with the PCP and multidimensional data
visualization methods.
Participant 7 (P7) reported that he has an academic background in

mathematics and computational fluid dynamics (eight years). How-
ever, this participant was a novice in terms of prior familiarity with
VR and PCP.
Participant 8 (P8) was a doctoral student working on the applica-

tion of analytical methods such us subspace-based dimension reduc-
tion to manufacturing deviations in turbomachinery components.

This participant also self-reported having some limited experience
with the VR and 2D PCP.
Participant 9 (P9) self-reported an intermediate level of familiarity

concerning both 2DPCP andVR. P9was also an expert in the field of
mechanical and manufacturing engineering with vast experience of
multi-objective optimization in academia and industry.
Participant 10 (P10) reported having some limited prior exposure to

VR and advanced knowledge about the 2D PCP. This person used the
2D PCP for conducting research for a master’s thesis in aerospace
engineering. P10 also holds an undergraduate degree in the same area.
In addition, this participant also recognized the dataset in which he
looked for the patterns, as P10 used the same data for prior research
involving 2D PCP. However, this person reported not spending a
substantial amount of time on the analysis of this data, and P10 did
not previously try to specifically identify the contained patterns.
Participant 11 (P11) self-reported to never before using the VR

headset and to have some limited prior exposure to 2D PCP. This
participant also reported to have undergraduate and postgraduate
degrees in mechanical and aeronautical engineering and is currently
in his first year of doctoral studies in aerospace engineering.

C. Identifying Patterns

Kipouros et al. [1] provided an analysis that discovered two
patterns of importance, shown in Fig. 2b. As the study involved a
real-world dataset (DS1), participants were instructed to note that
some variability was to be expected in the data. However, they had to
decide independently what level of variability would be acceptable.
Only two participants (P2 and P5) failed to recognizemost of the data
points belonging to the twogroups as shown inTable 1. In three cases,
the participants changed their initial pattern candidates by selecting
or deselecting elements originally grouped, thus creating subsets or
partial repetitions of the previous selection (P1, P4, and P6). The
majority of the participants identified almost the complete pattern A
(with completion ratios for P3: 9/11, P4: 8/11, P6: 9/11, andP7: 6/11) or
B (with completion ratios for P1: 16/19, P3 :16/19, P4: 15/19, P6 :19/
19, and P7 :15/19). These differences most likely come from limited
knowledge of the area fromwhich the dataset was sourced and, as such,
the allowed levels of noise between the respective values.

D. Observed Behavior

The results of the study involving the first seven participants
(P1–P7) suggest that the time needed for the analysis was correlated
with prior experience with PCP; that is, the more expertise the
participant had, the longer it took to finish the training session.
Simultaneously, experts took slightly less time to complete the
requirements of the main study. This effect may be caused by the
bias developedwhile exposed to 2DPCP.However, these data should
be interpreted with caution. The participants did not have a clear
cutoff point. For example, the study only finished once all the
potential patterns were found as judged by the participant. There
was also an age difference between the two groups; novice partic-
ipantswere in their 20s (P1, P2, andP7),whereas expertswere in their
30s (P3, P4, and P6) or 40s (P5). Furthermore, the experts had little or
no familiarity with VR or the controller, which put them at a dis-
advantage compared with younger participants, such as P7, who
reported extensive experience with this type of gamepad. This may
have impacted their approach used during the study.
All the participants quickly became fluent in their chosen move-

ment andmanipulation strategies and did not report any comments or
suggestions directly linked to these interaction techniques.
None of the participants generated more than a single scatter plot

comprising different dimensions, even though they were informed
about this possibility existed. Such behavior, however, may have been
observed because only three criteria were present in the dataset.
Hence, all of them could be mapped onto a single scatter plot. More-
over, the training phase also exposed participants to the methodology
of exploring the data mainly through the outputs’ scatter plot, which
was also used byKipouros et al. [1] in their exploration of this dataset.
However, some of the participants (P1, P2, and P6) reflected on the
fact that having more than a single scatter plot may be confusing.
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We observed that participants P4 and P6 chose to reposition the
scatter plot closer to themselves, or the particular part of the main
plot, instead of moving toward the scatter plot floating above the
center of the IPCP plot. This behavior would most likely change if
more data items were visualized at once. Therefore, the movement
would take considerably more time, and the perspective would render
the distant selection of the elements at the scatter plot almost impossible.
Only participants P2 and P6 chose to rotate the scatter plot.

However, we observed that for all participants the exact mapping
of the dimensions to the 3D projection was not critical, and this was
also confirmed later in validation. The participants were selecting
clusters on the scatter plot irrespective of the current rotation of the
projection. One participant (P3) was constantly selecting the same,
largest cluster, instead of exploring other groups or individual points.

E. Design Principles

From the technical constraints of what is achievable in VR, prior
work [5], and literature review, as well as from expert feedback [1],
and observations from our study, we distilled six design principles
(D1-D6).
D1 is immersive PCP visualization. The IPCP design should lever-

age the benefits bestowed by the immersive, spatial environment and
remain both useful and compelling to the user. Prior work [20] has
shown that standard 2D PCP may not benefit from translation into
three dimensions. In fact, it can yieldworse results due to, for instance,
occlusion effects. Hence, the immersion bestowed by the VR environ-
ment should be considered as a key factor when designing a 3D PCP.
D2 is pattern candidate identification. The user must be able to

identify candidates, in other words, a group of data items, as possible
patterns within the dataset. This is the key functionality, as the main
purpose of the PCP visualization is aiding pattern identification
within the given multidimensional dataset [10].
The next four design principles D3–D6 are derived from the first

two principles D1 and D2. Effective interaction, especially in the
case of complex, multidimensional visualization in 3D space,
requires the possibility of swift dataset inspection (D3) and explo-
ration (D6). In turn, these two factors influence how the patterns are
compared (D4) and stored (D5) for future reference. Without such
functionality, the user may not be able to gain an overview of the
whole, or parts, of the visualization and effectively analyze the
IPCP. This is due to the sheer size in terms of the number of data
items and how much space such a visualization can occupy in a
spatial VR environment. Further, as the patterns may overlap, the
system has to provide the user with the means of comparing pre-
viously found patterns with new candidates.

D3 is pattern candidate inspection. The user has to be able to
inspect candidates for potential patterns within the dataset to decide
if the particular group of data items forms a pattern.
D4 is pattern candidate comparison. To avoid repeated selections

of the same pattern, the user has to be able to effectively compare a
group of data items that could potentially form a pattern but also be
able to compare such a group with previously discovered patterns.
D5 is pattern storage. The possibility of saving and retrieving on-

demand information about discovered patterns is necessary for the
users to be able to differentiate between potential new candidates and
previously discovered patterns.
D6 is visualization exploration. The system should support explor-

atory visualization by providing mechanisms for zooming and
exploring individual visualization elements.

F. Task Analysis

We performed a task analysis by first identifying a suitable user
interface workflow guided by the previously described user study.
Each task is broken down into functions carried out either in series or
in parallel. Thereafter, each function was translated into a function
carrier (solution) by considering the requirements, technical con-
straints, and data from the user study. This analysis was carried out
by first modeling the function structures with the help of the Function
Analysis Systems Technique (FAST) [29] (see Fig. 7). Next, by using
information gained through the formative user study in the form of
observation and user comments and discussion, we have arrived with
a list of six key tasks.

1. D1: Visualize Data Using IPCP

This task can be implemented in many variants in both 2D and 3D
settings. For instance, one can use parallel planes [20,23] to visualize
the parallel axes. Instead, in our case, each data item is essentially a
series of connected, interactive cubes spaced in equal intervals over
theX axis. Identically to 2D PCP, the Y component denotes the value
for each dimension. However, as we are spreading the points also in
the third dimension, the cube’s position inZ axis signals the data item
indexingwith the first element startingwith theZ component equal to
zero and progressing toward the positive direction of the Z axis (see
Fig. 3 or 5). As opposed to other 3D implementations, dropping the
parallel planes limits the potential effects of occlusion and allows
users to gain a birds-eye overview of the dataset by positioning
themselves above the IPCP.
None of the participants reported confusion concerning the way

the system visualized PCP.Moreover, all of them quickly understood
that the interactive cubes indicate the numerical values in each

Table 1 The groups of data items identified as potential patterns by the participants (P1–P7); color coding of these data indicates the overlapwith the
two patterns (two bottom rows) identified by Kipouros et al. [1] as can be seen in Fig. 1 in red and blue, respectively

Pattern
candidate P1 P2 P3 P4 P5 P6 P7

1
34, 35, 36, 38,

39

2, 5 8, 9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 21, 22,
23, 24, 25, 26,

30

8, 9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 21, 22,
23, 24, 25, 26

34, 37, 38 33, 34, 35, 36,
38, 40, 41, 42,

43

8, 9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 23, 24,

25, 26

2

8, 9, 10, 12, 13,
14, 15, 16, 17,
18, 23, 24, 25,
26, 27, 28

0, 1 33, 34, 35, 36,
38, 40, 41, 42,

43

33, 34, 35, 36,
38, 40, 41, 42

6, 8, 9 8, 9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 21, 22,
23, 24, 25, 26,

30

33, 34, 35, 36,
38, 40

3

9, 10, 12, 13,
14, 15, 16, 17,
18, 24, 25, 26,

27, 28

7, 9, 10, 17, 19,
27, 29, 42

47, 48, 50, 51,
52, 53

8, 9, 10, 11, 12,
13, 14, 19, 20,

21, 22

29, 30, 39 8, 9, 10, 11, 12,
13, 14, 15, 16,
17, 18, 23, 24,
25, 26, 27, 28,

29, 30

——

4 ——
47, 51 —— —— — — 46, 47, 48, 49,

51, 52, 53
——

Pattern A 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43
Pattern B 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 23, 24, 25, 26, 27, 28, 29, 30
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dimension and that a group of line-connected cubes constitutes a
single data item.

2. D2: Pattern Identification

This task can be carried out in two ways: via exploration of the
IPCP and visual inspection of a subset of selected data items or with
the scatter plot, as it was strongly suggested to the participants during
the user study. However, we observed that the participants preferred a
mixture of both approaches; that is, in many cases, a participant
augmented a subset of data items selected with the help of the scatter
plot by adding or removing selected data items individually from the
PCP visualization.

3. D2*: Scatter Plot Generation

This task provides a feasible approach to pattern identification,
especially when handling a large volume of data visualized with
IPCP. The IPCP is augmented with the help of scatter plots [1,21]
generated from values in one, two, or three dimensions across all the
data items. We gave the participants the ability to create up to five
different 3D scatter plots. We also advised our participants to start by
selecting the criteria to develop the scatter plot and see if they can use
this aid to identify clusters of data points on the scatter plot to help
them efficiently select a group of data items that can potentially form
a pattern.
The scatter plots were augmented with additional functionality,

such as the ability to apply rotation in 90 deg about a chosen axis [6–8].
In addition, they could be moved into any position in 3D space [6–8].
Based on the participants’ comments, we decided to contextualize

the data points and scatter plot axes by providing textual labels, as
seen in Figs. 1a and 1b. The labels contained information of which
dimensions, that is,whichY values,weremapped towhich coordinates
on the scatter plots. However, the two expert participants suggested a
reevaluation of this design, as they found the labels not to be very
helpful.
If two or more values in a particular dimension are identical

within the floating-point precision of their coordinates, they will be

presented as two entirely overlapping cubes on the scatter plot. This
effect would interfere with the ray tracing used for gaze tracking as
the system has no means to decidewith which overlapping object the
user wants to interact. The analogous situation may also happen in
the 2D PCP. In such a case, only a single point will be visible on the
scatter plot, the selection of which will highlight multiple corre-
sponding items on the IPCP as those points would be automatically
clustered with each other. The simple clustering algorith (see Fig. 8)
was nonetheless quite effective. The clustering method only consid-
ers the Euclidean distances between the cubes’ (data points) centers,
from which we estimate the level of overlap between the cubes.
Certain restrictions, such as a difficulty of differentiating with which
object users want to interact if they are entirely overlapping, cannot
be easily solved. We conjecture that different clustering algorithms
formultidimensional data, such as one proposed byWegman andLuo
[30] might be applied here. One way to minimize occlusion and
cluttering effects in PCP is to use the density information of the data.
This is shown byHeinrich andWeiskopf [31] and also byArtero et al.
[32], who proposed algorithms that use frequency and density infor-
mation to decrease the overall number of data points that are shown to
the user in PCP.Moreover, giving the user the possibility of zooming
in and out of the cluster internal structure may prove to be very
convenient in such situations.

4. D3: Inspection of Selected Data Items

This task ismade possible through visual inspection of the selected
items by either rendering not-selected points temporally invisible or
by making a copy of the subset and placing it in a chosen part of 3D
space. In both cases, participants usually first tried to gain an over-
view of the entire selection by positioning themselves (i.e., zooming
out) in front of the subset and then compare and decide if particular
data items constitute a pattern.

5. D4: Comparison of New Candidate to Other Patterns

This task is achievable by placing candidates near each other in 3D
space and thenvisually inspecting possible overlaps.However, one of

Fig. 7 The FASTdiagram [29] used to reason about the requirements of IPCP. The horizontal axis shows abstraction level: higher-order functions to the
left are gradually decomposed into lower-order functions to the right. The vertical axis shows order of execution.

5338 TADEJA ETAL.

D
ow

nl
oa

de
d 

by
 p

ok
21

@
ca

m
.a

c.
uk

 o
n 

D
ec

em
be

r 
15

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
04

41
 



the participants mentioned that having some analytical aid could be
helpful, especially if the data items are confounded by many dimen-
sions. This participant also suggested using color coding to provide
additional information on how particular subsets potentially overlap
with each other.

6. D5: Storage of Identified Patterns

The system automatically logs a list of data items selected by the
user into a file. Second, the subselection of data items can be placed
and stored in any part of the 3D space throughout the entire duration
of the visualization. However, as the IPCP extends along theZ axis, it
may be difficult to compare points that are placed on the opposite
sides from each other.
In addition, participants also remarked that a combination of both

of these methods could potentially be even more beneficial. The
logged data can be made recallable, visualized on demand to assist
the user in understanding, for example, if, and towhat extent, patterns
overlap each other by additional color coding or temporal shape
change.

7. D6: Exploration of Visualization

The movement and manipulation methods allow the user to zoom
in or zoomout on any visualization element, which, as reported by the
participants,was easy to usewith either theXbox controller orOculus
Touch (see Fig. 6).
Based on the gathered qualitative data, all the participants swiftly

understood the proposed movement and manipulation techniques.
However, participants unfamiliar with the controller had problems
remembering which button activated which action. This problem can
be rectified by several strategies. First, the training can be extended.
Second, the feature set can be narrowed. Third, the feature set can be
initially limited and gradually expanded as the user gains proficiency
in the interface. This third strategy is an example of a training wheel
interface [33]. The ideal solution is probably a combination. In the
short term, extending training is preferable as PCP, even in its 2D
version, demands intensive practice to gain fluency in their usage
[28]. Another possible option would be to use a different VR headset
(e.g., HTC Vive) that supports extended spatial tracking of the wearer.
In such a case, instead of using a controller for movement and
maneuvering, the user canmove around in the realworld,whichwould
be instantly reflected in the VR environment. This would decrease the
number of required interaction methods, although it would raise other
issues, such as the increased complexity in tracking setup and space
demands for the system.

V. Verification and Validation

A. Interface Verification

We verified the usability of the system using the widely adopted
Nielsen heuristics [34,35].

1. Visibility of System Status

The system constantly informs the user which visualization ele-
ments are in a selected state on both the IPCP (see Figs. 3 and 5) and
on the scatter plots (see Figs. 1 and 8). The selected objects remain
highlighted (in light green or orange) up to their deselection or when
the user invoked visualization reset. This provides the user with
continuous feedback about the state of all individual elements. More-
over, the system supports linking and brushing interaction techniques
by automatically mapping the current state of each of the visualiza-
tion elements, in other words, scatter plots and the IPCP onto each
other. Furthermore, if the user reaches the limit of possible duplicates,
the system will disallow this operation and signal this to the user by
playing a short sound.

2. Match between system and Real World

Both the 3D scatter plots and the cross-hair-based gaze tracking
[5–8] should be familiar to the majority of users. The use of the
cross-hair to represent the user’s gaze point and the focus the user’s
attention on an object directly in front of where the user is looking
at the moment was implemented based on a well-known real-
world concept (see footnote **). This, in turn, allows the system to
optimize its resources to provided immediate feedback and response
to the user’s actions.

3. User Control and Freedom

The user can reset [5–8] (see button �R� in Fig. 6) the visualization
to its original state, which will preserve the copied data items (see
Fig. 5). However, due to efficiency reasons, these duplicates will no
longer support any kind of interaction after the system reboots and
remain in a freeze state based on where they were originally copied.
To further foster user control and freedom (before validation with the
larger dataset), the systemwas extended to support the undo and redo
operations; in other words, the last selection of a data item on the
IPCP or data point on the scatter plot can be undone or redone if
necessary by the simultaneous press of two thumb-rest buttons (one
on each of the controllers; see button �H� in Fig. 6).

4. Consistency and Standards

Despite the recent rapid development and advances in the research,
VR technology is still in its early stage. As a consequence, the
standards regarding the interaction techniques, visualization guide-
lines, or the overall design principles are not yet fully understood.We
were trying to be consistent with well-known concepts; thus, for
instance, the selection of the object requires a double-tap of the
gamepad button instead of a single click, similar to what is necessary
when selecting an object using a computer mouse.

5. Flexibility and Efficiency of Use

The accelerator provided for the benefit of advanced users was the
possibility to generate multiple scatter plots. Each of them could map

Fig. 8 3D scatter plot: a) the 3D scatter plot [7,8] and b,c) the results of a simple clustering algorithm applied to overlapping data points.
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up to three dimensions from the IPCP. Moreover, some users pos-
sessed previous experiencewith the Xbox controllers (see Fig. 6) and
therefore required substantially less time to acquaint themselves with
the interaction techniques.

6. Error Prevention

Themost common slip type of an error related to the user failing to
focus his or her gaze on a chosen point is easily fixable with
maneuvering techniques which allow the user to zoom in the object
by just moving toward it. The scatter plots automatically deselect the
rotation selector when another one is being selected by the user [5–8].
This prevents the system from confusion about which axis the scatter
plot should be rotated. Moreover, the system will omit visualization
of the data items on the PCP and the scatter plots if there is a gap in
values at the input dataset, hence preventing the user from working
with broken or incomplete data.

7. Help Users Recognize, Diagnose, and Recover from Errors

The system uses the audio feedback to inform the user if no more
duplicates of the selected data items can be generated immediately
after such an action was performed.

8. Recognition Rather than Recall

The linking and brushing interaction techniques help to minimize
the user’s memory load by providing constant feedback about which
operations have been previously executed by the user. Moreover, the
user can easily duplicate a group of data items for further inspection
and comparison with other such groups. This feature can be used, for
instance, to keep track of which group of points were previously
recognized by the user as a pattern.

9. Aesthetic and Minimalist Design

The systems keep the information presented to the user to a
minimum. Only selected elements are highlighted in green or orange
(see selected: movement selector in Fig. 1a, data items in Fig. 3, and
cluster in Fig. 8c).Moreover, the gazed-locked textbox is only shown
once the user’s gaze is hovering over a data point on the scatter plot
and automatically disappears otherwise. Thus, minimizing the pos-
sible collateral cluttering and occlusion effects. The textbox also
contains additional information of which dimensions were used to
map into this data points’ rearrangement on the particular scatter plot.

10. Help and Documentation

As it is hard to find users experienced in both the PCP and VR, the
participants were trained in how to read the PCP and how to interact
with our system through the gaze tracking and the Xbox controller
(P1–P7) or the Oculus Touch (P8 and P9).

B. Validation

It is very challenging to meaningfully validate visual analytics
tools in short-term laboratory-based studies. Traditional human–
computer interaction (HCI) evaluation methods, such as A/B testing,
rely on the experimenter’s ability to explicitly control all control-
lable and uncontrollable parameters of the system and the task as
much as possible. However, in visual analytics, this parameter space
is very large. For example, the data density, the nature of the task,
characteristics of the dataset used in the test, and the experience and

motivation of the participants are all variables that are likely to
affect the outcome of an A/B test. In addition, easy-to-measure
dependent variables, such as task time, are only partially relevant as
one of the primary objectives of a visual analytics tool is to provide
additional insight rather than enabling users to make decisions
faster.
As a consequence, we validated the system design qualitatively in

two independent user studies. We recruited two pairs of different
surrogate expert users to participate in each study. These participants
are referred to as P8 and P9 in the case of the study involving the same
dataset as in the previous study (DS1) and P10 and P11 with the new,
larger, more complex dataset (DS2). All four volunteers were also
prescreened with the complete version of the Ishihara’s color defi-
ciency test [26].

1. Part I: 54 Data Items with 29 Dimensions per Element (DS1)

To validate the system design, we used the same three-part pro-
cedure and dataset DS1 (see Fig. 3) as in the first study reported
earlier in this paper. However, based on the previous participants’
feedback, we skipped parts of the presentations related to having
multiple 3D scatter plots, although this possibility was not removed
from the IPCP. As such, the training phase was truncated. Overall, the
results revealed that participant P8managed to find the majority of the
elements in both patterns,Awith a 9/11 completion ratio andBwith an
18/19 completion ratio, whereas the second participant P9 correctly
identified only the entire pattern B with a 19/19 completion ratio.

2. Part II: 166 Data Items with 39 Dimensions per Element (DS2)

After extending the systemwith additional capabilities, such as the
support of basic undo and redo operations, we reran our validation
study with another two domain experts (hereafter referred to as P10
and P11). We also used the Oculus Touch instead of the Xbox
gamepad controller to facilitate the interaction (see Fig. 6).
We further investigated the feasibility of using IPCP for pattern

identification in a substantially larger andmore complex dataset DS2.
The user studywas carried out over a new dataset containing 166 data
items with 39 dimensions per element containing four patterns of
interest identified by domain experts (see Fig. 5). This dataset
describes the results of the optimization study of S-duct design (see
Fig. 4), as presented by D’Ambros et al. [4].
In addition, the near misses in terms of selection were the main

observable issues with our selection technique. To support the user’s
selection task, one can use a form of target acquisition aid, that in our
case has been loosely inspired by the Bubble Cursor proposed by
Grossman and Balakrishnan [36]. We leveraged the features natively
supported by the Unity game engine by on-the-fly manipulation of
the size of the sphere collider¶¶ component attached to the interactive
objects (cubes) in the IPCP. The size of the collider, which acts as a
target for the ray tracer (see footnote **), is dynamically adjusted
based on the size of cross-hair (see the orange circle in Fig. 5), which
in turn is dynamically scaled with respect to the user’s distance from
the target objects (see footnote **). Initially, we set the collider’s
radius as

���

3
p

∕2 ≈ 0.866 to encompass the entire cube in the sphere.
The further away the user is from the object, the larger the collider
becomes.

Table 2 Group of indices of data points identified as patterns by the participants P8 and P9; the two bottom rows contain the two patterns that were
identified by Kipouros et al. [1] as can be seen in Fig. 1 in blue and red, respectively (here, we report only the participants’ best attempts to identify

the two patterns)

Pattern candidate P8 P9

1 33, 34, 35, 36, 38, 40, 41, 42, 43, 46, 49, 52 8, 9, 10, 12, 14, 15, 16, 17, 18, 27, 28

2
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25,

26, 27, 28, 30
8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 23, 24, 25,

26, 27, 28, 29, 30
Pattern A 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43
Pattern B 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 23, 24, 25, 26, 27, 28, 29, 30

¶¶Unity Game Engine, “Unity,” https://unity.com/ [retrieved July 2018].
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P10 found 5/8 of pattern C, 9/13 of pattern E, and almost entire
pattern F: 11/12. P11 found 4/8 of pattern C, 4/13 of pattern E, and
9/12 of pattern F in his best attempt. However, none of the two
participants found the pattern D. They did, however, identify other
potential patterns that were not initially found by the original
researchers, which is a concrete demonstration of the utility of the
system in enabling users to explore and identify previously unknown
patterns in the dataset. Interestingly, some overlapping results were
reported by both participants, as can be seen in Table 3, namely,
pattern candidate 6 for P10 and pattern candidate 2 for P11. More-
over, both participants identified additional groups of points that in
their opinion constituted patterns not originally identified by the
experts in the work by D’Ambros et al. [4]. As mentioned before,
in the case of visual analytics, we aim to provide additional insight
into the dataset; hence, we were interested in the new candidates for
potential patterns found by the two participants (P10 and P11). To
do this, we requested a domain expert to reanalyze and comment on
the new pattern candidates identified. After inspection and prelimi-
nary analysis, the expert concluded that indeed these are different
patterns sharing some common characteristics with those identified
previously and as such they are complementary. However, the
domain expert commented that they are not as rich as the dominant
four patterns previously identified, in other words, C, D, E, and F.
Nonetheless, this tentatively indicates that the VR analytics system
can empower users to detect new patterns.

VI. Design Decisions

We summarize the final design decisions refined after we ran
additional experimental studies with domain experts over two sepa-
rate datasets (see Figs. 3 and 5) varying in both the number of data
items and dimensions per data item as well. Moreover, based on the
participants’ observed behavior and their comments, we also identi-
fied a number of potential improvements.

A. D1: Immersive PCP Visualization

We have developed IPCP as a software system running within the
Unity (see footnote ¶¶) game engine. Our approach represents a 3D
version of regular 2DPCP butwith values of each dimension denoted

as volumetric, interactive objects, that is, cubes spread in the Z axis
instead of using parallel planes as regular 3D PCP usually does.
However, this way of presenting data has its own challenges. For
instance, to clearly see the distant objects with respect to the user’s
current position, it was necessary to provide adequate means of close
inspection of such regions. Here, we give the user the possibility to
freely move and maneuver in the 3D space using the controllers
(Xbox gamepad in first and Oculus Touches in the following two
observational studies). Such an approach has additional advantages,
especially when we coupled the IPCP visualization with the CAD
models of the respective designs (see Fig. 4), which now can be
inspected not only from outside but also from within (see Fig. 4c).
Another possibility is to give the user means of manipulating the
entire PCPvisualizationwith the user’s hands as shown in Figs. 9–12.

B. D2: Pattern Candidate Identification

In the context of PCP, the pattern is understood as a group of data
items sharing similar To identify and highlight a group of data items
that can potentially form a pattern, the user either selects data items
one by one or by generating a 3D scatter plot from up to three
dimensions. These data are automatically clustered based on the
distance between the data points (see Fig. 8) and the selection of
such data points belonging to a cluster simultaneously highlights
points belonging to this cluster on the scatter plot and the IPCP alike.
The larger the dataset and subsequent IPCP visualization, the more
the scatter plots seem to aid the user in the task of finding patterns.
Here, we noted that the actual orientation of the scatter plot’s local
axes is not as important as providing the user with a clear way of
distinguishing which points on the scatter plot potentially form a
cluster. We observed that even a simple clustering algorithm, how-
ever, relying on the user’s intuitive feel of the grouping of volumetric
points placed in close vicinity, can be surprisingly effective. Hence,
potential improvements could be threefold. First, other clustering
algorithms can be studied here such us Ordering Points to Identify
Cluster Structure (OPTICS) [37] orDensity-Based Spatial Clustering
of Applications with Noise (DBSCAN) [38] as they can, by design,
handle noisy data, for example, containing almost constant dimen-
sional values across all the data items, such as the one used in
our experiments. Second, different methods of the 3D scatter plot

a) b) c)

Fig. 9 Data item selection: a) gazing with a cross-hair, b) selecting data items with single-pinch gesture, c) or selecting the entire dimension with double-
pinch gesture.

Table 3 Group of indices of data points identified as patterns by the participants; the four bottom rows contain the four
patterns that were identified by domain experts [4] (in the case of P11, we excluded repeated pattern selections)

Pattern candidate P10 P11

1 93, 96, 102, 103, 105, 119, 120 44, 46, 49, 56
2 5, 9, 12, 25 92, 95, 98, 106
3 13, 15, 17, 19, 20, 21, 23, 29, 30, 31, 42, 43 5, 9, 12, 14, 25, 27
4 2, 3, 4, 5, 8, 9, 12, 14, 18, 25, 27 34, 35, 37, 38
5 44, 46, 49, 56, 59 1, 2, 3, 5, 7, 10, 11, 12, 14, 18, 22, 25, 27, 59
6 90, 92, 95, 98, 104, 106 110, 114, 116, 117, 121
7 - 2, 3, 7, 18
Pattern C 44, 45, 46, 48, 49, 51, 56, 59
Pattern D 57, 61, 62, 63, 64
Pattern E 13, 15, 17, 21, 29, 30, 31, 34, 35, 37, 38, 42, 43
Pattern F 2, 3, 4, 5, 8, 9, 12, 14, 18, 22, 25, 27
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manipulation can be used. For instance, instead of rotating the scatter
plot along with one of the three main axes, it could be rotated about
any vector selected by the user (see Fig. 10). Thesewould potentially
help the user swiftly obtain an overview of all the data present in the
scatter plot. Third, to avoid repeated selection of the same cluster, and
subsequent repeated selection of the same group of data items on the
IPCP, we could additionally color-code or otherwisemark previously
selected and inspected clusters. Furthermore, additional information
could be given in the form of textual labels attached to the data points
instead of current axesmapping, such as the scatter plot’s coordinates
or a number of pointswithin the selected cluster, which could bemore
informative to the users.

C. D3: Pattern Candidate Inspection

To inspect the pattern candidates, the user can temporarily disable
the unselected data items of the IPCP and use the manipulation and
movement capabilities in the 3D space to verify if this particular
group of data items forms a pattern.Moreover, if a particular data item
is upon inspection deemed by the user to not be part of this pattern, it
can be easily deselected as well. This is especially useful the more
data items are contained within the dataset. As the data items will be
spread in theZ axis (see Figs. 3 and 5), the potential occlusion effects

are more persistent with the growing number of data items. Here, the
ability to toggle between the view with all or only currently selected
data items has proven to be very useful.

D. D4: Pattern Candidate Comparison

To compare the currently selected group of data items with pre-
viously recognized patterns, the user can make a copy of these data
items, in other words, the pattern candidate, and place them in a part
of 3D space where the other patterns have been stored. The user may
thenvisually compare them to decide if a new pattern has been found.
Here, the system should provide the user with the snapping mecha-
nism that would automatically align the subsets of the data items
that the user wants to compare with each other. To some extent, the
participants were trying intuitively to obtain a similar effect by
placing the duplicates of previously found patterns next to each other
in the 3D space.

E. D5: Pattern Storage

Previously discovered patterns of data items can be stored freely in
any location within 3D space. Here, even though we could keep the
frozen data items as noninteractive for optimization reasons, we
could color code the data items overlapping across the previously

a) b)b)

Fig. 11 The IPCP movement procedure: a) gazing over and selecting the IPCP’s selector with a double-pinch gesture and b) moving the IPCP with
either hand.

b)a)

Fig. 12 The IPCP scaling procedure: after selecting the IPCP, the IPCP is scaled by the users moving their hands a) farther apart or b) closer together.

a) b) c)

Fig. 10 3D scatter plot: a) the 3D scatter plot [7,8], b) bimanually enlarging and simultaneously rotating the scatter plot, and c) gazing over a selected
cluster and recalling a pop-up textbox.
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found patterns and the new group of points to inform the user to what
extent they share the same subset of data.

F. D6: Visualization Exploration

Exploration of the entire visualization with all of its elements is
made possible through the use of gaze tracking, head tracking, and
movement assisted by the controllers. Here, we observed that all our
participants swiftly gain fluency in how to move around the virtual
space. We can also leverage the tracking of the user in a real space,
especially if we combine this with the bimanual manipulation of the
PCP elements (see Figs. 9–12). However, in our case, the IPCP
(depending on the input data size) can be potentially vastly extended
in at least the XZ plane parallel to the user actual ground plane. As
such, it could be unfeasible for the user to walk and see the entire
visualization; hence, new interaction and transportation methods
would have to be included.

VII. Visualization Extensions

A. Extensions of IPCP

After analyzing both the qualitative and quantitative feedback
together with the participants’ comments and our own observations,
we have decided to extend our system with a number of additional
features. We have also decided to explore a completely new method
of interacting with the system using hand-tracking-based gestural
input coupled with gaze tracking (see Fig. 13). The changes were
twofold.
First, we have equipped the systemwith the CAD3Dmodels of the

individual designs to allow the user to inspect and asses the associated
30 geometries on the fly while selecting data items on the IPCP
(see Fig. 4).
Second, instead of using hand-held controllers (see Fig. 6), this

system iteration explores gaze tracking coupled with hand tracking
supported by an additional sensor (see Fig. 13), namely, the Leap
Motion Sensor (see footnote §§) attached to the VR head-mounted
display to track and recognize the user’s hand gestures.
Finally, we report the results of an interface verification of the

system guided by Nielsen’s heuristics [34,35]. This allows us to
identify the main usability bottlenecks and issues with respect to
the new gesture-based interaction method.

1. Coupling IPCP with Computer-Aided Design Geometries

The system contains the visualizations of associated 3Dmodels of
the full 3D S-duct geometries and 2D flow solutions, an example of
which can be seen in Fig. 4. In the future, we are also planning to give
the users the possibility of overlaying the various S-duct geometries
on top of each other to closely inspect and identify potential nuances
in the difference between the shapes as demonstrated in the AeroVR
system presented by Tadeja et al. [7,8] and upon which this visuali-
zation is built. This allows the users to promptly verify their pattern
selections and compare between the S-duct shapes associated with

selected data items. This extension also fosters the connectivity with
commercial software and simulation packages that arewidely used in
the industry.

2. Hand Tracking and Bimanual IPCP Manipulation

The user can manipulate all the visualization’s elements with the
help of a new, bimanual interaction technique and a range of
gestures (see Fig. 13) without the need of using hand-held control-
lers (see Fig. 6). This was achieved through a mixture of gaze-
tracking and hand-gesture recognition. The left-hand menu (see
Fig. 13a) recalls the hand-attached menu with all the available
options: 1) [RESTART] resets the visualization to default settings,
2) [DUPLICATE] duplicates the selected data items at the location
in 3D space the user is currently gazing while pressing the button,
3) [UNDO] reverts the results of any manipulation of either the
IPCP or scatter plot depending on which of the two is selected while
pressing the button, and 4) TOGGLE toggles between the full view
and the view with only selected data items in the IPCP. The thumbs-
up gesture (see Fig. 13b) is used to release selection of an interactive
object. The pinch gesture (see Figs. 13c and 13d) executed with the
index finger and thumb allows the user to select and control inter-
active objects. After gazing on an interactive object, the user can
activate or deactivate control over this object by performing the
pinch gesture.
In case of the IPCPmain plot, the users can select (see Fig. 9) either

a single data item using the single-pinch gesture (see Fig. 9b) or the
entire dimension across all data items using the double-pinch gesture
(see Fig. 9c). In addition, there are two interactive movement selec-
tors situated above and below the main plot. These selectors have a
form of spherical markers whose, similarly to scatter plots, color
coding switches to orange after selection as seen in Fig. 11 or in
Fig. 12. After activating one of these selectors, users can manipulate
the whole IPCP by doing the following:
1) Rotate the 3D scatter plot. See Fig. 10; part a shows the scatter

plot generated out of three criteria dimensions of the DS2 dataset
(selected in red), b illustrates the user enlarging and simultaneously
rotating the scatter plots using both hands, and c depicts the user
gazing over a selected cluster of data points in the enlarged scatter
plot, which results in a text box with additional information.
2) Move the IPCP main plot. See Fig. 11; part a is gazing at the

IPCP’s selector (red sphere) and selecting it with the double-pinch
gesture, after which the user can in part b move the IPCP with
either hand.
3) Scale the IPCPmain plot. See Fig. 12; after selecting the IPCP’s

selector (orange sphere) and articulating a pinch gesture with both
hands, the users can scale the IPCP by moving their hands further
apart or closer together (a–b).
The 3D scatter plot can be generated out of a maximum of three

dimensions selected on the IPCP, and it can be manipulated similarly
to the main IPCP (see Fig. 10). Moreover, the system could allow the
user to select a group of points that constitute a cluster based on one of

Fig. 13 The recognized gestures are a) the left-hand menu, b) the thumbs-up gesture, and the pinch gesture c) before and d) after execution. Icons by
Icons8 (https://icons8.com).
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the selected clustering algorithms such as the earlier mentioned
OPTICS [37] or DBSCAN [38]. A selection of the algorithms can
be attached to the left-hand pop-up menu in place of the empty
buttons shown in Fig. 13a. Any other actions can be attached to those
buttons, aswell. For instance, we could give the user the possibility of
attaching actions facilitated with the execution of the user-indicated
external script or another program, thus, vastly enhancing the IPCP’s
capabilities and simultaneously rendering IPCP more suited to the
user’s individual needs and wants.

B. Verification of Extended Interface

The usefulness of basic IPCP and 3D scatter plot designs were
verified and evaluated previously with the user studies in which the
domain experts were able to not only rediscover previously found
patterns in the data but also, to a limited extent, to discover new ones.
Here, the updated version of IPCP was equipped with the new
gesture-based interface. As such, the main goal here is to verify the
impact this new, bimanual interaction technique has on the interface
and to reason about the potential benefits brought with it to the user.
To achieve these, we apply the formative evaluation method; in
other words, we assess the interface’s usability with the help of
Nielsen’s heuristics [34,35].

1. Visibility of System Status

The user is continuously informed about the current selection of
data items at the IPCP, data points on the 3D scatter plots (see Fig. 9),
activation of objects’ selectors (see Fig. 10), and buttons selection
(see Fig. 13a). This is achieved through automatic color coding and
highlighting.

2. Match Between System and Real World

The interface provides the user with the possibility to use gestural
input coupled with the gaze tracking to select, manipulate, and
interact with the main visualization elements the same way as the
user would in the nonvirtual world. These include the possibility to
1) rotate (see Fig. 10), 2) move (see Fig. 11), or 3) rescale the size (see
Fig. 12) of either the main IPCP plot or the 3D scatter plot alike.

3. User Control and Freedom

The system features both [UNDO] and [RESTART] options (see
Fig. 13a). The former allows the user to undo the last executed
manipulation of either the 3D scatter plot or the IPCP. These oper-
ations will not result in the loss of the previously made selections of
data items nor data points. The restart (see Fig. 13a) will cause the
entire visualization to be restored to its defaults.

4. Consistency and Standards

In the case of the interactive objects’selectors, the same convention
is followed; in other words, both the scatter plot and IPCP main plot
have the selectors in a form of large, spherical markers that have
to be selected with the double-pinch gesture while the user is gazing
over them.

5. Error Prevention

The execution of the two operations that may cause irreversible
effects on the current state of the visualization, in other words, the
[UNDO] and [RESTART], require the double press of a button to be
executed instead of a single press required for the execution of the
remaining options.

6. Recognition Tather than Recall

The user can execute the palms-up gesture which instantaneously
recalls the left-hand pop-up menu with all the available options
(see Fig. 13a).

7. Aesthetic and Minimalist Design

Only the main IPCP is initially visible to the user unless the user
decides to make copies of the groups of selected data items or

generate the scatter plot. However, if no dimensions on the IPCP
are selected, the scatter plot will not be visible.

VIII. Discussion

The IPCP tool automatically provides a rudimentary form of
collaborative design environment. The first-person view of the head-
set wearer can also be simultaneously streamed on the PC display as
well. As a consequence, multiple designers can look at the steps
undertaken by the user and easily collaborate having a verbal dia-
logue between themselves and the person using the headset. This
capability was observed by the authors while working on the design
and verification of the IPCP tool presented in this paper. The advan-
tages of such a setup will be further studied in a series of more
controlled user studies.

A. Limitations

The evaluation with a group of surrogate expert users, P8 and P9
for the smaller (DS1) and P10 and P11 for the larger dataset (DS2),
revealed that userswere indeed capable of identifying patterns in both
datasets. However, while this evaluation demonstrates the efficacy of
the system and serves to provide some evidence to consider the
potential merits of 3D PCP, we advise caution against overinterpret-
ing these results given the qualitative aspect of the findings. The
sample size is very small, and as a consequence, the findings are
highly sensitive to the individual participants’ general ability to use
novel immersive technology to analyze a demanding real-world
multidimensional dataset.
A previous study conducted by Johansson et al. [20] indicated that

3DPCPwas, in fact, worse than a conventional 2Dversion in both the
metrics (i.e., response times and error rates). However, the study was
conducted using a desktop computer connected to an external display
instead of an immersive, VR environment, and thus it is unclear
whether the findings generalize to a truly immersive environment.
However, such a study is intrinsically limited in terms of the many
study parameters that have to be arbitrarily set in order to be able to
achieve an A/B comparison. Examples of such study parameters
include data density and volume, saliency of data items, field of view,
the user’s sense of presence, situational awareness of a 3Dworld, and
so on. The objective in this paper is to explorewhether VR is feasible
for PCP. Our results demonstrate that PCP is indeed viable for VR
analytics and thus encourage andmotivate further design exploration.
However, as PCP in VR is still in its infancy, it is important to avoid a
premature 2D vs VR comparison until an effective PCP in VR design
has fully emerged.

B. Future Work

Future work includes conducting statistically robust quantitative
studies that are able to tease out the merits and flaws of immersive
PCP visualization compared with status quo 2D PCP visualizations.
However, such studies are difficult to carry out due to the many
controllable and uncontrollable parameters of the system and the
experimental task. This makes the design of a robust and meaningful
experimental design highly challenging. Prior work has reflected
about this problem, both in general for evaluating visualization tools
[39,40] and specifically for the problem of comparing 2D and 3D
visualizations [41].
For the near future, we believe a more fruitful approach is to

iteratively evolve a highly promising PCP in VR approach by follow-
ing the model of this paper of combining design with qualitative
insights gathered from domain experts. Once such a design has fully
matured, it will becomemoremeaningful to carry out large-scaleA/B
comparisons capable of teasing out the likely nuances differences
between PCP in 2D or VR.
We believe a promising area of future work is to further refine the

system design by evolving the task model and the underpinning
functions and revisit the process of translating functions to solutions.
This can be achieved by identifying controllable and uncontrollable
parameters for each overall function necessary to carry out a task and
study the effects of modifying these parameters in isolation.

5344 TADEJA ETAL.

D
ow

nl
oa

de
d 

by
 p

ok
21

@
ca

m
.a

c.
uk

 o
n 

D
ec

em
be

r 
15

, 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

06
04

41
 



For example, the 3D immersive environment opens up a plethora
of methods for selecting data points using input techniques such as
head tracking, gaze tracking, touch controllers, game controllers,
or direct manipulation mechanics. At the same time, selection
feedback can be provided using a variety of output techniques, such
as color coding, shape modification, sound, haptic feedback, or a
combination.
Further, the data analytics toolkit can be extended with a range of

new features, including explainable AI methods such as LIME [42],
SHAP [43], or Anchors [44] to allow the user to query more complex
questions about the data, such as the following: “Why were these
points classified as noise and not included among any of the identified
clusters?” Another interesting research direction is to investigate
coupling the system with a voice interface.
Our system implementation can aid such future explorations of

how tomake informed decisions on, for instance, which combination
of inputs and outputs to choose to arrive at an effective operating
point for immersive data analysis and thereby assist designers in
gaining a more complete understanding of the tradeoffs and their
effects that are inherent in such design decisions. We believe such
technological capability should be harmonized with state-of-the-art
interactive computational engineering design methodologies [45]
and thereby open up a new generation of engineering design software
environments and systems.

IX. Conclusions

The qualitative results in this paper reveal that immersing the user
within PCP in a VR environment is, at the very least, complementary
and may provide ways to enhance the user’s ability to identify
patterns. Thus immersive 3D PCP can potentially be considered as
a promising way of visualizing high-dimensional data. Most of the
participants throughout these qualitative studies managed to identify
the same patterns as recognized as interesting by Kipouros et al. [1],
which can be regarded as the reference standard. The two participants
working with a substantially larger dataset in terms of its complexity
and size (the number of dimensions per data itemand the total number
of data items) discovered similar patterns as those given by D’Am-
bros et al. [4] and identified additional candidates for potential
patterns. This demonstrates the potential for immersive VR in engi-
neering design processes.
Themain contribution of this paper is the six design principles that

were distilled based on the technical constraints of what is achievable
inVR, prior work [5], literature review, expert feedback [1], and from
observations from this study.
The second strand of contribution is the task analysis carried out at

the functional level and the translation of these functions into sol-
utions that allowed the system to be realized. This scaffolding struc-
ture is useful in framing the findings from the preliminary qualitative
user study in such a way that the outcomes of the user study could
directly shape the refinement of the initial design.
Further, the authors gradually updated the hardware interface for

the interaction between the user and the IPCP. They switched from an
Xbox gamepad to Oculus Touch controllers specifically designed for
VR (see Fig. 6) and replaced the controller-based interface with
gestural input coupled with gaze tracking (see Fig. 13). This enabled
the user to manipulate the IPCP plot and 3D scatter plot in a manner
similar to real-life objects.
To better inform the user’s decision making and analysis of the

dataset, the authors coupled the individual data items with addi-
tional information. These supplementary data can, among other
things, include the 3D geometries, such as the S-duct designs for
DS2 or the 2D plots of the flow going through the duct as shown
in Fig. 4.
In summary, the results in this paper serve as a promising indica-

tion that immersive parallel coordinate plots may enhance decision
making in complex design engineering processes, which are intrinsi-
cally reliant on the user being able to analyze and reason about
multidimensional data.
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