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Fig. 1: The two settings used in the user study: (a) classroom and (b) shop floor. (c) AR-guided manual assembly.

Abstract—Numerous prior studies have investigated real-time assembly instructions using Augmented Reality (AR). However, most
such experiments were conducted in laboratory settings with simplistic assembly tasks, failing to represent real-world industrial
conditions. To ascertain to what extent results obtained in a laboratory environment may differ from studies in actual industrial
environments, we carried out a user study with 32 manufacturing apprentices. We compared assembly task execution results in
two settings, a classroom and an industrial workshop environment. To facilitate the experiments, we developed AR-guided manual
assembly systems for simple and more complex assets. Our findings reveal a significantly improved task performance in the industrial
workshop, reflected in faster task completion times, fewer errors, and subjectively perceived higher flow. This contradicted participants’
subjective ratings, as they expected to perform better in the classroom environment. Our results suggest that the actual manufacturing
environment is critical in evaluating AR systems for real-world industrial applications.

Index Terms—Augmented reality, manual assembly, user study, classroom setting, shop floor setting, augmented reality guidelines

1 INTRODUCTION

The rapidly ongoing digital transformation of manufacturing processes
carried out under the umbrella of Industry 4.0 and similar initiatives
has the potential to become a catalyst for industrial growth [35]. Aside
from automating various production processes, this digital transition
reshapes how workers execute their tasks [74]. In that context, aug-
mented reality (AR) is considered one of the foundational enablers of
these changes [74]. AR is believed to have high potential in applica-
tions where automation does not allow sufficient flexibility to adapt
to changing production processes [74]. Additionally, AR can reduce
cognitive workload and significantly improve task performance [15].

However, despite its potential for improving industrial processes,
there are only a few real-world examples of user studies of AR system
deployment in industrial environments as opposed to more controlled
laboratory or classroom settings. A laboratory setting is generally
characterized as an environment that is fully controlled to minimize
the impact of external factors, such as noise, lighting, other operators,
and dust. Examples of such environments are empty office spaces
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and classrooms with a desk set-up, which are non-representative of a
factory. The small number of real-world examples of user studies of
industrial AR system deployments can be attributed mainly to technical
limitations hindering large-scale adoption of AR in industrial appli-
cations [16, 25]. For instance, AR remains too immature to reliably
display complex data [57], which can lead to scene distortion, system
latency or rendering and communication delays, contributing to lower
system efficiency [25, 62].

Other obstacles preventing a wider adoption of AR are ergonomics
and safety. For example, workers with prescription glasses have faced
difficulties wearing head-mounted displays (HMDs) [61], negatively
impacting their acceptance of AR solutions [16]. Moreover, knowledge
deficiency regarding the influence of lighting changes, noise levels,
or working and environmental conditions presents significant imple-
mentation challenges [1]. AR’s reliability for deployment in industrial
settings hence remains uncertain and under-explored [25]. In addition,
the literature has rarely addressed how AR-guided tasks, such as man-
ual assembly, perform in real-life industrial settings (see Fig. 1(c)). As
noted in several studies [2,29,53,60,66,81,84], the main limitations of
currently used experimental set-ups are (1) evaluation of AR-systems
under controlled laboratory settings only, (2) no manufacturing expe-
rience and no representation of the technology’s target group by the
majority of participants, and (3) use of simplistic industrial tasks.

To address these gaps, we report the results of a user study with 32
manufacturing apprentices that investigates the effects of experimen-
tal surroundings in an AR-aided assembly task with two engineering
assets of varying complexities. We report on an evaluation of the
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Fig. 2: Results of our literature review: (a) participants’ background and expertise; (b) experimental setting; (c) study focus. These results show that
only 14% of studies took part in non-laboratory settings, with no more than 30% of participants having some industrial background.

assembly in two different settings: a classroom setting resembling a
more controlled laboratory environment (see Fig. 1(a)) and a real-life
shop floor setting, representing a typical industrial environment for
such tasks (see Fig. 1(b)). Such an approach allowed us to mitigate
the primary limitations of previous studies by conducting our study
in a real-life non-laboratory environment [50, 81], involving industrial
operators [42, 81], and using a complex asset as a basis of our task to
ascertain the findings against actual industrial procedures [2].

This paper shows that contrasting both environments is important,
as the results of our study highlight differences in AR task performance
attributed to the different environments. Our results reveal significant
differences between the classroom and shop floor groups, indicating
superior assembly performance in terms of both task completion times
and error counts in the industrial environment despite many distraction
factors, such as noise and movement. Based on our data and obser-
vations, we conjecture this surprising result is due to three factors:
(1) familiarity with the environment, (2) different associations with
environments, and (3) choking under monitoring. The latter is the
effect of pressure caused by being observed, resulting in subpar perfor-
mance [18]. In addition, our experiment further validated prior results
that task complexity significantly impacts performance [19], as shown
by the prolonged assembly duration and increased error occurrence
during the assembly of the more complex engineering asset.

2 RELATED WORK

Assembly guidance is a key application of AR in manufacturing [62].
Several prior studies demonstrate that operators perform significantly
better when guided by AR systems than traditional paper-based instruc-
tions [58, 63]. On the other hand, some findings indicate either no
difference or even a reduction in efficiency when assisting the manual
assembly process with AR-based support [22].

To better understand this body of literature and any existing gaps, we
carried out a systematic literature review guided by the standards of the
Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) [44] to identify and collect relevant articles and papers
using ACM Digital Library, IEEE Xplore, and Scopus databases. To
complete the review, we carried out two separate searches spanning
the past ten years. These yielded a total of 640 papers, out of which
69 were examined in full after screening. The first search focused on
the AR application in the industry, while the second concerned the
relevant assembly studies. Additionally, through forward and backward
searches, we identified a further nine papers that were also included in
the review.

AR-assisted assembly frequently provides step-by-step instructions
to the operator to help perform a specific manual task. In most prior
studies, the operator is expected to perform multiple ordered assem-
bly steps [8]. The AR guidance is designed to provide instructions
supporting the action currently being carried out. This is frequently
done by displaying images, videos, text, and other auxiliary informa-
tion [46, 71, 81, 83]. 3D models are commonly used to display the part
to be assembled at the corresponding location [3, 6, 30, 32, 49, 65]. Nav-
igating through the instructions is achieved using virtual [46, 71, 81], or
hardware buttons [2, 41, 84], using voice [68, 69, 83], or automatically
via an error detection module [3].

Most papers investigating AR in manufacturing have used similar
experimental setups and have been carried out in laboratory environ-
ments, such as classroom settings, with students or researchers acting
as participants (see Fig. 2) [30, 49, 67]. Over 55% of the 36 studies we
reviewed were conducted with students or academics lacking manu-
facturing experience (see Fig. 2(a)), while only around 25% involved
operators and apprentices with industrial work experience.

86% of the reviewed studies evaluated AR in a laboratory setting, of-
fice, or classroom. Only 14% of the experiments took place in industrial
environments, which we refer to as the location where all production
work takes place (see Fig. 2(b)). These findings are in agreement with
other reviews [53, 60]. For example, Atici-Ulusu et al. [7] studied the
effect of AR on the workers’ cognitive loads in the inventory area of an
automotive assembly line. Among others, the authors mentioned noise
levels and artificial lighting as defining workspace characteristics [7].
Maio et al. [47] explored the benefits of real-time data monitoring
using an AR HMD with domain experts in a smart factory. The AR
application was tested in a large shop floor hall with multiple manual
assembly stations placed next to each other, illuminated with natural
and artificial lighting. Marino et al. [48] evaluated hand-held AR sup-
porting inspection of a base-plate assembly in a power plant, involving
engineers and factory workers as participants. In their industrial envi-
ronment, they experienced very bright light conditions, which caused
reflections and negatively affected the performance of the AR system.
Lotsaris et al. [46] studied a human-robot collaboration scenario for the
AR-assisted assembly of suspensions on a shop floor.

Furthermore, 25% of the reviewed studies evaluate AR interfaces
using simplified assembly tasks or objects (see Fig. 2(c)). For example,
Hou et al. [29] report on an experiment with students and identify a
significant objective performance improvement when assembling a
LEGO model using AR compared to paper-based instructions. LEGO
blocks have also served as simplistic assembly assets in other inves-
tigations [2, 49]. A study by Alves et al. [2] examines the impact of
different AR types on assembly guidance: mobile AR, indirect AR, and
a see-through head-mounted display (HMD). When assembling LEGO
blocks, the non-industrial participants found the three AR types men-
tally demanding in a similar manner. In addition, the HMD-based AR
preferred by participants resulted in significantly fewer errors regarding
the shapes of the assembly components.

To summarize, most of the existing studies on using AR for assembly
have not tested it in a real industrial environment but in a laboratory
setting. They also did not involve the target audience, such as appren-
tices or workers, but used students or university members instead (see
Fig. 2(b)). Some studies even used simple objects instead of real prod-
ucts [2, 29, 49]. No study contrasted AR for assembly in a laboratory
and an industrial environment, and both simple and complex objects
with the right target audience were used across different environments.
In this paper, for the first time, we contrast two AR-assisted assem-
bly tasks with different complexities in two different environments: a
classroom and a shop floor. This allows us to understand the impact of
the deployment environment on both objective and subjective ratings.
Our results show participants performing significantly better in the
industrial environment and fill a gap in the literature on understand-
ing the appropriateness, in terms of external validity, of relying on
a highly controlled classroom, office, and other ‘lab’ settings when
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Fig. 3: (a-b) The AR-based guidance for (2) the gearbox manual assembly with (1) the virtual instruction panel, the (3) [Next] and [Back] buttons and
(4) automatic step verification. Whereas (c) shows (5) control-station assembly with (6) QR-code used by the system as a reference point.

assessing AR-assisted systems for industry. In addition, although AR
can be applied in assembly training for novices as well, the target au-
dience of industrial AR is expected to possess some manufacturing
experience. Hence, our results further add to the limited body of re-
search [7, 47, 48, 70] that evaluated industrial AR systems by involving
actual operators representing the target audience as participants.

3 AUGMENTED REALITY ASSEMBLY SUPPORT SYSTEM

We developed our AR system for manual assembly using the Microsoft
HoloLens 2 (HL2) AR HMD platform. This see-through head-worn
device offers an over 50°diagonal FoV and built-in head, eye and hand-
tracking capabilities [55], as well as a camera that can be used for object
detection and tracking [85]. In comparison to other AR device types,
such as handheld tablets or smartphones, the main advantage is its
flexibility, as it allows hands-free operation, an immersive experience
and is not limited to a specific location [16].

Our AR instruction system was developed using the Unity game
engine, which is commonly used for creating immersive systems [75,
76], as well as the Mixed Reality Toolkit (MRTK) [54]. The step-by-
step instructions displayed through the HL2 headset consist of textual
descriptions and corresponding images of the desired state (see Fig. 3).
To navigate the process, the user could use the [Next] and [Back]
buttons present at the top of the instruction panel (see Fig. 3). In
addition, we also used the third-party libraries VisionLib [79] for marker-
less detection and tracking as well as the Vuforia Engine [64] for image
target tracking [64]. The instruction panels incorporate a combination
of text and images as this approach can lead to fewer errors and faster
learning times than instructions showing only text or picture [34].

3.1 Manual Assembly Support of Engineering Assets
We developed our AR guidance to support the assembly of two engi-
neering assets, namely, a low-complexity gearbox (see Fig. 3(a)) and
more complex control-station asset (see Fig. 3(c)).

The AR guidance developed for the gearbox asset included an au-
tomatic step verification and an error detection module. This feature
provided immediate feedback to the user with rework instructions (see
Fig. 3(a–b)). The AR system guided the user in two ways. First, the
virtual instruction panel next to the gearbox assembly provides step-
by-step guidance in the user’s FoV. Second, the results of the detection
module are used to automatically update the instruction panel depend-
ing on the recognized state and give rework aid in case an error is
detected (see Fig. 3(a–b)).

In the case of the control-station asset, instead of marker-less track-
ing, our AR system used image target tracking [64]. Similar to prior
work [31], object tracking was unreliable due to the lack of distinctive
textures and contrasting geometric features of the components in the
control-station asset [64]. Given the unreliability of the automatic error

detection module using image classification and object tracking, we
initiated image target tracking of the digital content by scanning a QR
code placed within the user’s FoV (see Fig. 3(c)). We also added voice
commands to decrease the time needed to press a button [31]. Thus, in
addition to manual navigation through the individual steps by pressing
the virtual [Next] and [Back] buttons, the system could also respond to
the voice commands: Next step and Go back [55].

4 USER STUDY IN CLASSROOM AND INDUSTRIAL SETTINGS

As identified in the literature review, most AR research for industry
has in fact been evaluated in controlled classroom, office, or other ‘lab’
environments. Further, while there are notable exceptions, the effects
of the industrial environment itself, if any, is not understood in the
literature. To fill this gap we designed a user study with two independent
variables. The first variable was setting, which was either a classroom or
a real-world industrial environment. The second independent variable
was assembly task, which was either a gearbox or a control-station. We
treated the setting as a between-subjects factor and the assembly task
as a within-subjects factor.

4.1 Participants
We recruited 32 volunteers from an inter-industrial organization ded-
icated to training manufacturing apprentices. The participants were
randomly assigned to either the classroom or the shop floor setting
(recall that the setting was a between-subjects factor). Fourteen op-
erators of the shop floor group were male, while two were female
(M = 30.25yr.,SD = 16.10yr.). In the classroom group, fifteen partici-
pants were male, while one was female (M = 22.25yr.,SD = 7.29yr.).
Half of the volunteers acknowledged limited prior exposure to VR and
AR. We refer to the participants for both groups as C1–C16 and S1–S16
for classroom and shop floor settings, respectively.

4.2 Experimental Design
The user study was designed as a mixed design with two independent
variables. One of these variables was the deployed setting correspond-
ing to the user’s surroundings: (1) a classroom (see Fig. 1(a)), and (2) a
real-life assembly station on the shop floor (see Fig. 1(b)). Since this
variable was a between-subjects factor, we assigned different partici-
pants to each setting.

The second independent variable was the two-level assembly task
related to two engineering assets being assembled, a simple gearbox and
a moderately complex control-station [10] (see Fig. 3). Each participant
performed both tasks as per a within-subjects experimental design.
The order of the tasks was counterbalanced across all participants to
mitigate any potential learning effects. This allowed us to investigate
the differences between assembly tasks of varying complexities. At the
same time, we were also able to explore whether the surrounding of the



assembly environments coupled with slightly different AR-aids affects
the assembly performance of varying assets differently.

4.3 Settings
The participants were assigned to one of the two settings, i.e. classroom
and shop floor (see Fig. 1(a-b)). The classroom setting was selected
to emulate controlled laboratory conditions. While the participants
were familiar with both settings, they were not used to performing
hands-on manufacturing tasks in the classroom. On the other hand, the
shop floor setting is very common for manual assembly tasks and is
characterized by the arrangement of workbenches and other equipment,
as well as industrial activity in the background. Table 1 contrasts the
main characteristics associated with each setting, such as different noise
levels and degrees of movement within the workspace.

Table 1: Characteristics of experimental settings.

Characteristic Classroom Shop floor

Environment:
Background
activity

None Multiple people work-
ing on unrelated indus-
trial tasks

Noise level 61 dB 78 dB
Room size Standard dimension

for educational spaces
for around 20 students

Large open workspace
with high ceilings

Lighting Artificial light using
overhead LED panels

Artificial light using
overhead LED pan-
els and natural light
through small rooftop
windows

Lighting con-
dition

Evenly lit Evenly lit

Air quality Ventilation system en-
suring constant supply
of fresh air

Ventilation system en-
suring constant supply
of fresh air

Temperature Room temperature Room temperature

Workspace:
Tabletop Wooden & smooth Plastic & smooth
Tabletop color Light brown Grey
Work position Standing Standing
Allocation Unshared dedicated

workspace
Unshared dedicated
workspace

Space for
movement

Unobstructed move-
ment possible

Unobstructed move-
ment possible

4.4 Manual Assembly Tasks
The main contributors to manual assembly complexity are the number
of parts of an asset as well as the amount and variety of steps required
to finish the assembly [10]. Thus, we consider the eight-part gearbox
(see Fig. 3(a)) asset that requires six steps to finish its assembly as a
low-complexity asset. The control-station (see Fig. 3(b)) consists of 32
parts and requires 29 steps that are more difficult for workers to retain in
their working memory while performing tasks. Hence, we consider this
asset moderately complex and more challenging to assemble than the
gearbox. In our case, the participants conducted the assembly of both
assets (see Fig. 3) in a standing position, using AR-based instructions
provided through the HL2 (see Fig. 1(c)).

4.5 Procedure
The user study was performed over four subsequent days with the
same two experimental moderators and standardized instructions and
procedures. The participants were randomly assigned to either the
classroom or shop floor settings. They were first asked to read and
sign a consent form and complete a pre-questionnaire to gather their

(a) Comparison of the two assembly tasks (b) Comparison of the two settings

Fig. 4: Log-transformed task completion time with the whiskers denoting
the standard error. The statistically significant differences between the
(a) assembly tasks and (b) settings are marked with asterisks (two and
three asterisks for p ≤ .01 and p ≤ .001, respectively).

background information on gender, age, native language, education,
and relevant experience.

Next, the participant had to complete the Simulation Sickness Ques-
tionnaire (SSQ) [37]. To ensure proper spatial visualization and ac-
curate recording of the eye gaze, each participant had to adjust the
HL2 to their interpupillary distance through eye calibration. Thereafter,
participants learned how to use hand gestures to interact with the virtual
interface. The assembly of each engineering asset was followed by
NASA Task Cognition Load (NASA-TLX) [28], System Usability Scale
(SUS) [13], and Flow Short Scale (FSS) [24] questionnaires. During
each assembly task, we logged the task completion time and recorded
all assembly errors. After finishing the experimental phase, participants
had to complete the SSQ again to re-assess the potential simulation-
sickness level. The entire experiment was audio and video recorded for
further analysis.

Lastly, we conducted a semi-structured interview to gather partic-
ipants’ feedback. The main interview themes were inspired by the
Technology Acceptance Model (TAM) [17] and concerned the per-
ceived surrounding influences, the perceived usefulness and ease of use
of each system in the respective setting, and the perceived difference
between assembled assets and supporting AR systems.

5 RESULTS

5.1 Task Completion Times
On average, the control-station assembly consumed more time than
the gearbox, and the tasks were carried out faster on the shop floor
than in the classroom (see Fig. 4). The captured task completion times
were log-transformed to make them normally distributed. Levene’s
test showed no significant departure from the homogeneity assumption
for either the gearbox F((1,30) = .74, p = .787) or the control-station
(F(1,30) = .563, p = .459). The outlier analysis based on z-scores
above three standard deviations yielded no outliers.

A 2×2 mixed analysis of variance (ANOVA) with the between-
subjects factor setting (i.e., classroom and shop floor) and within-
subject factor assembly task (i.e., gearbox and control-station) revealed
a significant main effect between the different assets with a large ef-
fect (F(1,30) = 203.708,η2

p = .872, p < .001). Across both levels,
there was a mean difference of MDi f f =−10.117 between the gearbox
and control-station, SE = .755,95%−CI[−11.659,−8.756]. Assem-
bling the control-station resulted in a significant increase in the task
completion time, regardless of the assigned setting.

The main effect of the setting was also statistically significant,
F(1,30) = 10.093,η2

p = .025, p = .003, indicating that task comple-
tion times differ between the setting groups with the shop floor re-
sulting in shorter task duration (MDi f f = 3.044,SE = .876,95% −
CI[1.256,4.832]). Fig. 5 shows the relative performance of each partic-
ipant in each setting ranked by their task completion time, that is, the
fastest participant in the classroom compared with the fastest partici-
pant in the shop floor, and so on. As is evident in Fig. 5, the shop floor
resulted in faster performance in every single comparison, indicating a
strong and persistent effect due to the different settings.

No significant interaction effect was found between the assem-
bly task and setting on task completion times (F(1,30) = .05,η2

p =
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(a) Accumulated completion time of both assembly tasks

(b) Completion time of gearbox task (c) Completion time of control-station task

Fig. 5: Ranked bar chart of individual participants in both setting groups showing (a) the overall task completion time of both assets, (b) the task
completion time of the gearbox and (c) the task completion time of the control-station in minutes with exponential trend lines.

Table 2: Error counts by the assembly task, asset
and error category.

Setting

Error Category Classroom Shop floor

Gearbox:
Top case wrong orientation 3 -
Screws not screwed in 5 2
White shell wrong orientation 4 1

Control-station:
Rubber upside down 14 9
Label misaligned 5 3
Legend holder misaligned 15 15
Legend holder wrong position 1 -
Nut upside down 10 1
Contactblock not pressed in 1 1
Cases misaligned 3 1
Screws in wrong case 1 1

.002, p = .825), indicating that the environment did not affect task com-
pletion times for the gearbox differently than for the control-station.

When controlling simultaneously for age, gender, years of assembly
experience, and prior AR or VR experience, the main effects remain
statistically significant (i.e., assembly task: F(1,26) = 4.510,η2

p =

.148, p = .043, setting: F(1,26) = 9.871,η2
p = .275, p = .004).

5.2 Error Counts

We defined the assembly error as an occurrence where a mistake arises
during the assembly process and remains uncorrected until the partici-
pant determines the complete assembly. In the context of the gearbox,
examples of potential assembly errors include swapped locations of
gears, misaligned shells and gear shafts (see Fig. 3(a–b)). For the
control-station, potential errors may involve assembling components
upside down, incorrect rotations or part misalignments. The errors were
documented using a pre-defined sheet (see Tab. 2).

The most common error for the control-station assembly was the

(a) Comparison of the two assembly tasks (b) Comparison of the two settings

Fig. 6: Error counts with the whiskers denoting the standard error. The
statistically significant differences between the (a) assembly tasks and
(b) settings are marked with asterisks (two and three asterisks for p ≤ .01
and p ≤ .001, respectively).

misalignment of the legend holder on the hole of the empty enclosure,
independently of the setting. The second most frequent error was attach-
ing the rubber band upside down on the push-button head. Moreover,
securing the nut on the back of the empty enclosure posed challenges
for the classroom group, resulting in ten errors, while only one such
error occurred in the shop floor group. The most common error for
the gearbox assembly was neglecting to insert the screws in the final
step, with five errors occurring in the classroom and two in the shop
floor setting. The second most common mistake refers to the wrong
orientation of the white shell, with four errors in the classroom setting
and one error in the shop floor setting (see Tab. 2).

As the error counts are discrete data, we analyzed them using a Log-
Poisson kernel to test for a difference between the setting and assembly
task. The Wald Chi-Square test yielded a statistically significant dif-
ference between error count and assembly task (χ2(1) = 30.374, p <
.001,Exp(B) = 11.333) (see Fig. 6(a)) as well as between the error
count and setting groups (χ2(1) = 9.406, p = .002,Exp(B) = 5) (see
Fig. 6(b)). This indicates that the error count increased for all par-
ticipants, regardless of the setting, by a factor of ten in the case of
control-station compared to the gearbox. Further, between the two
levels of setting, participants made four times more errors in the class-
room compared to the shop floor. In other words, participants induced
significantly more errors in the classroom compared to the shop floor.

We found no statistically significant interaction between setting



Table 3: Questionnaire Results of the NASA-Task Load Index (NASA-TLX), System Usability Score (SUS) and Flow Short Scale (FSS). The Latter
Shows the Anxiety and Flow Levels Separately as per the Scale Design

Setting Surveys Assembly task

Gearbox Control-station

N Min Max M SE 95%-CI N Min Max M SE 95%-CI

Class- TLX 16 5 58 30.65 3.82 [22.5, 38.8] 16 20.33 81 50.25 4.26 [41.16, 59.34]
room SUS 16 37.5 95 69.22 4.16 [60.36, 78.08] 16 20 97.5 67.81 4.68 [57.83, 77.79]

Anxiety 16 1 5.7 3.23 0.31 [2.56, 3.9] 16 1 6 3.29 0.36 [2.52, 4.06]
Flow 16 3.7 6.3 4.84 0.18 [4.46, 5.22] 16 2.9 6.1 4.71 0.21 [4.25, 5.16]

Shop TLX 16 6.67 75.33 34.19 5.76 [21.92, 46.45] 16 8.67 75 38.65 5.73 [26.44, 50.85]
floor SUS 16 37.5 100 76.41 4.84 [66.09, 86.72] 16 27.5 95 71.56 4.67 [61.61, 81.52]

Anxiety 16 1 5 3.02 0.27 [2.44, 3.6] 16 1.3 5 3.06 0.23 [2.57, 3.55]
Flow 16 3.6 6 5.3 0.21 [4.86, 5.75] 16 2.9 6.7 5.16 0.23 [4.66, 5.65]

and assembly task (χ2(1) = 3.03, p = .082). After controlling again
for age, gender, years of assembly experience, and prior AR or VR
experience, the main effects remain statistically significant (i.e., as-
sembly task: χ2(1) = 30.860, p < .001,Exp(B) = 11.336, setting:
χ2(1) = 5.488, p = .019,Exp(B) = 4.015).

As the AR guiding system for the gearbox included an automatic
error detection module (see Fig. 3(a–b)), our recordings show that four
errors have been corrected with the help of this functionality. To rule
out any influence of this module, we conducted another analysis using
the Wald Chi-Square test, including the in-situ corrected assembly
errors. Similarly to the previous analysis, this test yielded statistically
significant effects (assembly task: χ2(1)= 30.371, p< .001,Exp(B)=
6.8, settings: χ2(1) = 9.056, p = .003,Exp(B) = 3.4).

5.3 Questionnaires

We analyzed the simulation sickness (SSQ) scores using the Wilcoxon
Signed-Ranks test, which revealed a statistically significant difference
in the scores before and after the experiment (Z =−1.984, p = .047)
with the higher median after the experiment was finalized. This indi-
cates a slight increase in discomfort after participating in the experiment,
as often encountered in VR studies [36, 78]. There was no difference
between the experimental settings (p > .05). We report all the remain-
ing questionnaire results in Tab. 3. As in the case of quantitative results,
we also conducted the outlier analysis for all variables on the individual
group levels. The inspection of z-scores showed no values above three
standard deviations, resulting in no data exclusion.

5.3.1 NASA-Task Load Index (NASA-TLX)

We calculated a weighted score by evaluating the pairwise comparison
of the workloads. Fig. 7 shows the cumulative scores of the participants.
The Shapiro-Wilk test showed no significant departure from normality
for each of the levels’ combinations. Levene’s test of equality of
error variances showed no significant difference (gearbox: F(1,30) =
4.004, p = .055; control-station: F(1,30) = 2.193, p = .149).

A 2×2 mixed analysis of variance (ANOVA) with the between-
subjects factor setting (that is, comparing the classroom and the shop
floor) and the within-subject factor assembly task (the gearbox and
the control-station) revealed a significant main effect of the assembly
task, F(1,30) = 22.825, p < .001,η2

p = .432, indicating a lower per-
ceived workload for all participants when assembling the gearbox than
the control-station with a mean difference of MDi f f =−12.031,SE =
2.518,95%−CI = [−17.174,−6.888]. Fig. 8 (a) shows the statistically
significant difference between the assembly tasks.

The main effect of the setting was not significant (F(1,30) =
.378, p = .543,η2

p = .012) though the interaction was significant
(F(1,30) = 9.043, p = .05,η2

p = .232). We carried out a paired sam-
ples t-test to investigate this interaction, and there was a significant

Fig. 7: Results from the NASA-TLX survey showing both the weighted
NASA-TLX score as well as its components using box plots for both
assets (lower scores are better, 0=low demand, 100=high demand; the
scale of the performance rating goes from 0=good to 100=poor). Most
noticeable is the difference in perceived mental demand, effort and
frustration level between the gearbox and control-station accounting for
the significant main effect of the assembly task.

difference only for the classroom setting (p < .001), where the gearbox
assembly resulted in a lower mean score.

We also conducted a mixed-design ANOVA to test each dimension
for significance. Controlling for participants’ individual characteristics,
mental demand (F(1,26) = 4.367,η2

p = .144, p = .047), physical de-
mand (F(1,26) = 4.520,η2

p = .148, p = .043) and temporal demand
(F(1,26) = 4.720,η2

p = .154, p = .039) were perceived significantly
lower in the shop floor setting compared to the classroom setting.

5.3.2 System Usability Scale (SUS)

We transformed the ratings to a range from 0 to 100 to compute the
final SUS score. On such a scale, a score of 70 indicates acceptable
usability [14]. SUS scores were rated with acceptable usability (60-
80) [14] in both settings for both assembly tasks.

Levene’s Test of SUS scores showed no departure from equal vari-
ances (p > .05). The Shapiro-Wilk test reported a departure from
the normality of the SUS score for the control-station on the shop
floor. However, we conducted the 2×2 mixed ANOVA for the follow-
ing reasons. The observable difference was small (p = .34) for the
control-station on the shop floor, and prior simulation studies have
shown that the ANOVA is robust against moderate deviations from
normality. Also, the false positive rate is not affected notably by vi-
olations of the normality assumptions [27]. The system usability, as
indicated by the SUS scores, differed significantly between the as-
sembly tasks (see Fig. 8)(b)), F(1,30) = 5.497, p = .026,η2

p = .155,
with a mean difference of MDi f f = 3.125,SE = 1.333,95%−CI =
[0.403,5.847], suggesting that the participants perceived the gear-



(a) NASA-TLX – Comparison of the two
assembly tasks

(b) SUS – Comparison of the two
assembly tasks

Fig. 8: Results from the questionnaires with (a) depicting the NASA-TLX
scores and (b) the SUS scores with the whiskers denoting the standard
error. The statistically significant differences netween the assembly
tasks are marked with asterisks (one and three asterisks for p ≤ .05 and
p ≤ .001, respectively).

box assembly support system more usable than its version prepared
for the control-station. We determined no significant effect of the
setting (F(1,30) = .739, p = .397,η2

p = .24) and interaction effect
(F(1,30) = 1.161, p = .207,η2

p = .053).

5.3.3 Flow Short Scale (FSS)
The FSS measures the user’s perceived flow level on a seven-point Lik-
ert scale. A total normalized score from 1 to 7 indicates the subjectively
perceived flow or anxiety experienced by participants.

For each combination of the factors for the anxiety level, the Shapiro-
Wilk test showed no significant departure from normality (p> .05). The
Levene test showed that the homogeneity of variances can be assumed
(p > .05). Hence, a 2×2 ANOVA can be performed to investigate
the anxiety level. The test showed no statistically significant effects
between the types of assembly tasks (F(1,30) = .112, p = .741,η2

p =

.004), the settings (F(1,30) = .311, p = .581,η2
p = .01) and no inter-

action between both factors (F(1,30) = .004, p = .947,η2
p = 0). This

indicates that both the assembly assets as well as assembly surroundings
did not contribute to participants’ anxiety levels during the task.

Regarding the flow scores, the Shapiro-Wilk test showed a substan-
tial departure from normality for the flow score of the gearbox assembly
on the shop floor (W (16) = .78, p = .001). Due to the refutation of the
normality assumption, we could not conduct the ANOVA. The Shapiro-
Wilk test for each factor showed no deviation from normality on as-
sembly tasks with W (32) = .935, p = .053 for the gearbox case and
W (32) = .969, p = .46 for the control-station. Given the repeated mea-
sure, we carried out a two-sample paired t-test (t(31) = 1.148, p = .26).
Its result indicates no statistical difference in the flow level when as-
sembling the different assets. The Shapiro-Wilk test showed a devia-
tion from normality with respect to the settings level (i.e., classroom,
W (32) = .974, p = .61, and shop floor, W (32) = 0.879, p = .002).
Hence, we conducted a Mann-Whitney U test which showed a sta-
tistically significant difference in the flow level (U = 329.5, p = .014).
The mean rank of the flow level on the shop floor (38.2) is significantly
higher than in the classroom (26.8), with higher scores indicating higher
task flows. Fig. 9 shows the difference between the settings and sug-
gests that the impact of the setting on the flow level does not depend on
the assembly asset, indicating the absence of an interaction effect.

6 PARTICIPANTS’ COMMENTS AND FEEDBACK

We analyzed qualitative feedback received after each assembly condi-
tion, the semi-structured interviews following the experimental phase,
as well as our own observations of users’ behaviors. We examine the
interviews’ transcriptions using a thematic analysis [12] approach.

6.1 Influence of the Surroundings
Contrary to the performance measurements, eighteen participants (eight
participants from the classroom setting and ten from the shop floor set-
ting) were expected to perform better in a classroom setting than in their
usual industrial work environment. The reasons for such assumptions
included various hazards, confined spaces, severe lighting changes,
dusty environments, and used machinery.

(a) (b)

Fig. 9: Results from the FSS survey on the perceived flow level (higher
scores indicate higher task flows). (a) Comparison between setting and
assembly task using box plots. (b) Mean flow level with the whiskers
denoting the standard error. The statistically significant differences be-
tween the tasks are marked with asterisks (one asterisk for p ≤ 0.05).

The remaining fourteen participants expected their performance
would not differ based on the setting, as they were accustomed to the
surrounding noise and activities. For instance, C4 stated that “(...) he
has already learned how to blank out [the noise] and just concentrate on
the work.” S6 reflected that the focus and attention span would probably
have been the same in both settings. Participants also acknowledged that
the improved performance might be specific to our industrial setting.

Regarding performance pressure, the volunteers mentioned differing
experiences based on the setting. For instance, on the shop floor, other
operators usually surrounded and observed them, leading to perfor-
mance pressure. S9 stated that he did not feel uncomfortable while
being observed, but he felt slightly under pressure to get it done.

Conversely, numerous participants characterized the classroom envi-
ronment as a “fun, learning environment" without performance pressure,
as stated by S3. In contrast, C12 expressed feeling slightly pressured
during the assembly in the classroom due to being observed and be-
lieved that having more people around him would have mitigated this
pressure. Interestingly, five classroom participants sought affirmation
when unsure of their progress versus none on the shop floor.

6.2 Hardware Limitations and Drawbacks
Participants expressed potential health and safety concerns with AR in
their day-to-day work. Many of them reported increased focus on the
digital content and reduced awareness of their surroundings (C1, C5,
C9, C13, S3-4, S10-11, S13), resulting in a loss of peripheral awareness
(S3 and S13). Other participants (S10, C1, and C9) raised further safety
concerns, as AR operators may become distracted by digital artifacts
when they should remain fully aware of their surroundings [39, 40, 45].
This phenomenon is commonly referred to as attention tunneling and
can lead to hazardous scenarios [77].

The HL2 design was not considered robust enough for industrial
applications. For example, four participants (C9, C16, S13, and S15)
noted that HMDs are most likely incompatible with protective equip-
ment, such as safety glasses or hard hats. Three participants on the
shop floor noted that the headset was too heavy and uncomfortable (S6,
S7, S12). Similar to other studies [85], participants with prescription
glasses found wearing the HL2 awkward (S5-8).

6.3 System Differences and Subjective Performance
The overall feedback on the AR systems was positive, with participants
considering it as "simple" (S8), "intuitive" (S13), or "straightforward"
(C13). Most users, i.e., 78% of all participants, noted that they would
use our AR system in their daily work activities. As expected, twenty-
eight, i.e., 87.5% of all participants, found the control-station more
complex to assemble as opposed to the gearbox (see Fig. 3).

Only three participants noticed a difference between the two AR
systems with regard to the automatic step validation feature for the
gearbox assembly (S6-7, S15). Five participants from the classroom
setting (C2-3, C7, C10, C13) and seven participants from the shop



floor setting (S3, S5-6, S8, S12, S14-15) tried to use the voice control.
However, the functionality failed to work despite earlier positive tests
in the laboratory. C3 noticed that in a noisy industrial environment, this
interaction mode is likely to fail, and C8 raised the concern that it might
mix up the voices of surrounding people. This further underlines the
need to carry out AR system deployment tests in life-like environments.

Concerning the auto-detection of gearbox assembly errors, S5 re-
marked that he overlooked the system progressing to the next step
when performing the task, leading to confusion when new instructions
appeared. Although some participants found the error detection feature
helpful, S1 noted that it is not ready for commercial use and needs
to become more responsive, as judged by C4. S5 and S7 disliked the
automatic error detection module as they felt out of control.

Some participants remarked on the restricted FoV negatively impact-
ing the QR code tracking in the control-station assembly scenarios. C5
said he had to look back at the QR code multiple times as he believed
the HMD’s camera lost track of the code when he turned his head
to assemble the parts. This observation was also shared with other
participants, including C15, S10, and S15.

7 DISCUSSION

There are at least six validity concerns for a user study, such as the one
presented in this paper. First, we have to achieve construct validity, that
is, we need to measure things that are meaningfully representative of
what we want to find out. Second, there has to be high internal validity
to ensure the observed differences are indeed due to manipulations of
independent variables. Third, we need to achieve high external validity
to ensure our results generalize to different contexts. Fourth, we need to
have high ecological validity to ensure the results transfer to actual de-
ployment environments. Fifth, we need to achieve study heterogeneity,
which allows multiple studies to be meaningfully compared in system-
atic reviews and meta-analyses. Sixth, studies need to be replicable so
that we can confirm or challenge prior findings.

Our systematic literature review indicates that prior studies primarily
focused on internal validity, study heterogeneity, and replicability, and
to a more limited extent on construct validity and external validity.
The findings in this paper indicate the importance of also considering
ecological validity (Sec. 7.1) to ensure findings are representative of
deployment environments and construct validity (Sec. 7.2) in using
tasks that are sufficiently complex for users that are trained to work in
actual manufacturing contexts.

7.1 Influence of Classroom and Shop Floor Settings

Our experiment revealed statistically significant differences between the
classroom and shop floor settings across a spectrum of measurements.
Participants on the shop floor demonstrated shorter task completion
times (see Fig. 4) and a lower error count (see Fig. 6), indicating better
performance in industrial surroundings. Additionally, the shop floor
group reported a higher flow level (see Fig. 9), suggesting a higher
focus level in the setting predominantly associated with work. The
results controlled for participants’ demographics and characteristics
show the adverse effects of experimental settings on AR users’ per-
formance across multiple metrics, including task completion time and
error counts. The gathered participants’ feedback, their behaviors
and the literature suggest the following tentative explanations that we
conjecture could have induced better performance on the shop floor.

7.1.1 Explanation 1: Familiarity with the Environment.

One potential explanation for the superior shop floor performance (see
Fig. 4 and Fig. 6), along with the elevated reported flow levels (see
Fig. 9), could stem from prior exposure to environmental conditions dur-
ing manufacturing tasks, such as constant movement or increased noise
levels. The latter, for instance, has been previously found to “provide
a sense of reassurance and decrease stress” [5]. This prior exposure
fosters a sense of familiarity with the shop floor as a customary setting
for manufacturing tasks. This was also reflected upon by interviewees
(C4, C15-16, S9 and S14). The participants were used to studying the
theory of manufacturing in a peaceful classroom setting, while the shop

floor setting was characterized by a more familiar environment for the
apprentices during hands-on assembly tasks.

7.1.2 Explanation 2: Different Associations with Environments.
Another potential explanation for enhanced shop floor performance is
its association with performance pressure, contrasting with the class-
room, which is perceived as a learning environment where participants
may feel more comfortable taking additional time to complete tasks
at a slower pace. This aligns with fewer observed errors on the shop
floor and that only classroom participants asked questions and sought
affirmation from the researchers (C3, C6, C9-10 and C12). Prior results
suggest that help-seeking is embedded in a classroom environment and
aligns with its natural state [59]. This learning environment [38] could
be further broken down into the physical learning environment and the
psycho-social aspect [38]. The former refers to classroom furniture,
lighting, air quality, displays and technology [38], all of which were
present in our classroom setting (see Fig. 1(a)). Hence, the appren-
tices were more likely to view the classroom as a learning environment
where they could seek advice from staff, take more time to complete
the tasks, and feel less inhibited about making mistakes.

7.1.3 Explanation 3: Choking under Monitoring.
Another alternative explanation could be offered by the choking under
monitoring phenomenon [18]. Observational pressure makes people
perform below their actual abilities [18]. The pressure of being ob-
served by others and one’s performance being evaluated increases
self-awareness and self-consciousness [18]. Such effects can occur in
real-world and laboratory settings [9]. However, distractions can allevi-
ate the monitoring pressure as they can prevent individuals from over-
thinking a skill that functions best with minimal explicit control [18]. In
that context, the observational pressure in the classroom setting, where
the participant was secluded and supervised only by the researcher and
health and safety officer, may have negatively impacted the overall
performance and flow scores.

Moreover, the noise level in the classroom resembles normal speech
volume, while the shop floor provided an environment with substantially
higher noise, comparable to machine operation [33]. In the classroom
setting, one participant (C14) explicitly expressed feeling negatively
pressured due to being observed and stating, “Because I was being
watched, I felt like (...) I had a bit of pressure.”. When asked about
environmental factors that could influence their AR-guided assembly
performance, he responded “No, other than being watched”. In total,
three participants (C6, C7, C14) in the classroom admitted feeling
negatively affected because of being observed, while no participant on
the shop floor reported experiencing such an effect. Distractions, such
as a higher noise level, more people, and a more complex environment,
could have mitigated this observational pressure on the shop floor [18].

Closely associated with this effect, although more connected to indi-
vidual differences, is performance anxiety, which can lead test-anxious
individuals to be more sensitive to outcome pressure, as more concerns
and intrusive thoughts can disrupt working memory processes [18]. In
the context of our study, it can be assumed that individuals with a pre-
disposition to anxiety are more likely to “choke under monitoring” [80].
The interplay between trait anxiety and situational stress within the
settings influences assembly performance [82]. However, participants’
individual traits, such as age, gender and assembly experience, did not
affect the overall performance.

The impact of the observational pressure in the classroom can be
noticed in the difference in error counts, in particular, related to securing
the push button accurately with a nut (see Tab. 2). The errors, such
as inserting the nut upside down or incorrectly attaching the rubber
band to the push button head, demand focus and close attention due
to their intricate nature and could be identified as operation in the
wrong direction [23]. Participants from the classroom setting showed
a substantially higher occurrence of incorrectly oriented parts than
those from the shop floor setting. Consequently, our results suggest
that participants in the classroom setting are more prone to errors
in complex steps. This aligns with the significantly higher perceived
mental, physical and temporal load in the classroom setting compared to



the shop floor setting (see Fig. 7). Past research has shown a correlation
between task complexity and these three NASA-TLX dimensions [26].
That is, the more complex the task was, the higher the perceived mental,
temporal and physical demands [26].

7.2 Influence of the Assembly Tasks
We compared the impacts of different assembly tasks on users’ per-
formance, cognitive loads, and system acceptance (see Fig. 4, Fig. 6,
and Fig. 8). The results demonstrate a significant difference between
the two assembly tasks in the objective performance measures, i.e.,
task completion time (see Fig. 4) and error counts (see Fig. 6). There
was also a significant difference between the two assembly tasks in the
subjective evaluations, i.e., perceived task load or system usability (see
Tab. 3). Therefore, we conjecture that two primary influencing factors
arise from the assembly task: (1) assembly task complexity and (2)
ease of comprehending instructions.

7.2.1 Explanation 1: Assembly Task Complexity.

Both quantitative and qualitative data showed that task complexity
influences performance. The gearbox assembly led to shorter task
completion times and fewer errors than the control-station assembly
(see Fig. 4 and Fig. 6). 28 participants, 13 in the classroom setting and
15 on the shop floor, respectively, stated that the control-station was a
more complex asset. These observations align with previous findings
of lower cognitive workload for simpler tasks [19].

7.2.2 Explanation 2: Ease of Comprehending Instructions.

The greater difficulty of the control-station assembly could be related to
instructions that were more challenging to comprehend [51]. Mentioned
reasons were the higher number of steps (C2, C10, S3, S4, S15, S16)
and greater variety of components (C6, C8, C10, C13, C16, S7, S9).
Further, C5, C15, S5, S10, S11 and S15 reported difficulties with the
selected image target tracker, i.e., the QR code. This could have led to
increased mental demand during the task execution [42] as illustrated
through a higher cognitive load experienced during the control-station
assembly (see Tab. 3).

7.3 Implications for Future Research
The vast majority of existing research does not thoughtfully repre-
sent real-work industrial processes [20] critical for ecological valid-
ity [4, 43, 50]. The findings derived from our literature review further
underscore the crucial role of construct validity, emphasizing the ne-
cessity of employing tasks that resemble the complexities of real-life
assembly with the help of training manufacturing participants. Our
study further affirms these needs by demonstrating that AR-guided per-
formance significantly varies when deployed in different environments.
Although further investigation is required to assess the generalizability
of the observed differences in both settings to other industrial contexts,
caution is advised when interpreting findings derived from laboratory-
based experiments, as they might not apply to real-world industrial
scenarios.

Our findings also highlight the overall variance observed in per-
formance evaluations when employing objective and subjective mea-
sures [52]. Other studies regarding the use of AR in industry also
report discrepancies between subjective and objective performance
ratings [70, 72]. These mixed findings indicate that performance mea-
sures depend upon complex inter-plays between the nature of the task,
the technology employed, and the worker’s familiarity with both [70].
Extensive reviews of AR user studies suggest that subjective ratings
are the most widely used dependent measures [20]. However, the ob-
served discrepancies in subjective and objective measures underscore
the importance of combining both types of measurement to achieve a
comprehensive evaluation of the impact of AR [21, 56] and to refrain
from interchangeable use of performance measures [11].

We see promising future work in replicating our study in alternative
industrial and classroom environments with a more diverse population
involving participants with non-industrial backgrounds and a more bal-
anced male-to-female ratio to ascertain the robustness of the results

in this paper. We also see important work in conceiving protocols
for standardized ways of collecting measures and reporting data from
the more uncontrolled industrial environments to help increase study
heterogeneity and eventually allow researchers to carry out sophisti-
cated meta-analyses to understand which AR techniques significantly
improve manufacturing work and why.

Furthermore, Steed et al. [73] discussed an interesting scenario
where VR technology was used to simulate the AR interface, thus
allowing for remote experimentation and virtual assistance. If proven
reliable and providing satisfactory results contrasted with data gath-
ered in real-world settings, such an approach could potentially offer
an interesting alternative to AR system evaluation in a deployment
environment. Such an approach could possibly reduce the effects of
“choking under monitoring”, capture more natural participant behaviors,
and be especially useful in reaching a broader participant base [73].
Aside from evaluating other experimental environments, the influence
of context-aware intelligent virtual agents can be another interesting
avenue for further research concerning the impact of user surroundings
on task performance [60].

8 CONCLUSION

AR interfaces are promising tools for supporting manual assembly
in manufacturing environments. As a result, several investigations
have been conducted on how to design AR systems for this purpose.
However, in our systematic literature review, we discovered that most
studies are carried out in non-industrial environments, and many studies
also consider tasks that are not fully representative of actual shop
floor activities. We, therefore, designed a user study to specifically
investigate the effects of ecological validity and construct validity when
evaluating AR systems for industry.

The study involved 32 manufacturing apprentices and experienced
workers to ascertain the impact of work settings on an AR-assisted
assembly task. Each participant was asked to assemble two assets with
different characteristics. This allowed us to assess the effect of construct
validity. Furthermore, participants carried out the assembly task in one
of two assigned settings: a classroom and a real-life industrial shop
floor (see Fig. 1). This allowed us to understand the impact of the work
environment on both objective performance and subjective ratings, and
thereby, we could assess the effect of increasing ecological validity.

Our study revealed better participants’ performance and higher flow
levels obtained on the shop floor compared to the classroom across a
range of quantitative and qualitative metrics (see Fig. 4, Fig. 6, and
Fig. 9). Participants who carried out their tasks in a shop floor setting
were able to cope effectively with increased noise levels and the envi-
ronment’s busyness, performing statistically significantly better than in
a classroom setting typically associated with a learning environment.

Further, in terms of the assembly task, the control-station assembly
resulted in longer task completion times, higher error counts, higher
perceived task load, and lower system usability compared to the gearbox
assembly process (see Fig. 4, Fig. 6, and Fig. 8). The findings suggest
objective performance measures, different perceived workloads, and
system usability levels all vary significantly based on the complexity of
the assembly assets and the associated AR-based instructions.

Through this study, we have helped address understanding of the
influence of highly controlled classrooms, offices, and other ’lab’ set-
tings on AR-assisted systems for the industry to provide insights into
actual user performance under real-life work conditions. Our findings
extend the limited body of research [7, 47, 48, 70] and highlight the
need to consider operational surroundings, environmental factors, and
assembly tasks in evaluating such systems.
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[85] M. Łysakowski, K. Żywanowski, A. Banaszczyk, M. Nowicki,
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